
HAL Id: hal-00531720
https://hal.science/hal-00531720v1

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recent advances in the modelling and simulation of
electrokinetic effects: bridging the gap between

atomistic and macroscopic descriptions
Ignacio Pagonabarraga, Benjamin Rotenberg, Daan Frenkel

To cite this version:
Ignacio Pagonabarraga, Benjamin Rotenberg, Daan Frenkel. Recent advances in the modelling and
simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions.
Physical Chemistry Chemical Physics, 2010, 12, pp.9566. �10.1039/C004012F�. �hal-00531720�

https://hal.science/hal-00531720v1
https://hal.archives-ouvertes.fr


Recent advances in the modelling and simulation
of electrokinetic effects: bridging the gap

between atomistic and macroscopic descriptions

I. Pagonabarraga∗ B. Rotenberg† D. Frenkel‡

May 27, 2010

Abstract

Electrokinetic phenomena are of great practical importance in fields as diverse
as micro-fluidics, colloid science and oil exploration. However, the quantitative
prediction of electrokinetic effects was until recently limited to relatively simple
geometries that allowed the use of analytical theories. In the past decade, there
has been a rapid development in the use of numerical methods that can be used to
model electrokinetic phenomena in complex geometries or, more generally, under
conditions where the existing analytical approaches fail. The present paper dis-
cusses these recent developments, with special emphasis on the advent of coarse-
grained models that make it possible to bridge the gap between a purely atomistic
and macroscopic descriptions.

1 Introduction
Charged materials are ubiquitous in nature. This abundance stems among other from
the outstanding ability of water to dissolve charges. Its high electric permittivity favors
ionic dissociation, and most water-soluble macromolecules and colloids are charged.
Charge thus plays a key role in their interactions and significantly affects the collective
properties of a large variety of materials. Electrostatics is also involved in the properties
of biological systems at cellular and molecular scales1, where electrostatic correlations
play an important role in their equilibrium properties2. From the dynamical point
of view, the interaction between charges is only one aspect of the problem, and the
coupling between solvent and charge flow, referred to as electrokinetic phenomena,
must be properly taken into account.

Electrokinetic effects have long been studied in colloidal suspensions. The elec-
trophoretic mobility of colloids results not only from the direct effect of the applied
electric field on the colloid, but also from the force acting on the suspending fluid
which is charged in the vicinity of the surface. This same force is also exploited (elec-
troosmosis) to generate a fluid flow near a charged, solid surface, e.g. in microfluidic
devices3. Recent experimental advances have made it possible to address the behaviour
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of charged systems in new regimes, such as the electrokinetic response of dilute col-
loidal suspensions with low salt concentration. In these conditions, the screening of
the colloidal charge by the salt micro-ions is less efficient and as a result, the dynamics
is more sensitive to the colloid volume fraction than for a suspension of uncharged or
strongly screened colloids4. This scenario, most easily achieved for small colloids, is
relevant for protein suspensions.

Electrokinetic effects also play a role in biological systems. For example, vesicles
respond to applied electric fields5, giving rise to a variety of phenomena, including
membrane flow, electroporation and fusion6. Nonlinear induced electrokinetic flows
influence the properties of membranes outside of equilibrium7 and the potential drop
across membranes can destabilize them8. Electrokinetic effects have also been ex-
ploited in novel imaging techniques, such as ion-conductance microscopy9, which can
operate under ambient conditions to obtain nanoscale-resolution images of living cells
and can be used to probe their local mechanical properties10. Modern manipulation
techniques make it possible to follow the motion of individual macromolecules in het-
erogeneous environments. Such studies have made it possible to analyse the elec-
trophoretic response of microtubules and their orientation transverse to the electric
field11, arising from a competition between bending and electrokinetic forces12. Sin-
gle molecule manipulation is of particular relevance in the case of DNA electrophoresis
through nanopores13. As the ionic current is sensitive to the charge of the polymer seg-
ment in the pore, experimental studies of ionic currents during DNA translocation can
in principle be used to discriminate between different types of nucleic acids14. There
is also growing interest in the behaviour of dispersions of liquids of widely differing
permittivity. Experiments on water droplets in oil have shown that charge accumulated
at the interface between the two phases can stabilize water-in-oil dispersions15. Fi-
nally, understanding of the coupling of charge transport and flow in porous materials
is of relevance for the study of dispersion of radio-active ions in the soil and for the
understanding of seismo-electric phenomena (see e.g.16).

The theoretical description of the equilibrium properties of charged colloids has a
long history, going back to the seminal work of Gouy, Debye and Hückel and, more
specifically for colloids, the work of Derjaguin, Landau, Verwey and Overbeek. Here,
we will not review the literature on the equilibrium theory (for a recent review that
includes references to the historical literature, see ref.17). Suffice it to say that de-
termining the equilibrium properties suspensions of charged colloids, emulsions and
porous materials is already difficult, because of the heterogenous nature of the sys-
tems (solid-liquid or liquid-liquid interfaces, internal structure of dissolved macro-
molecules...), and the range of length scales involved: Molecular size (microions and
solvent molecules at the surface), diffuse layer over which the fluid is charged, radius of
the colloidal particle or pore size, distance between colloids. Moreover, the dynamical
phenomena associated with each of these length scales can occur over a wide range of
time scales. This multiscale nature of the problem makes it difficult to treat all species
on the same footing, e.g. using all-atom Molecular Dynamics simulations.

When modelling electro-kinetic effects, the challenges posed by the long-range
nature of electrostatic interactions are compounded by the fact that hydrodynamic in-
teractions are also long-ranged. Hence, both in the structure and the dynamics there
is a coupling between very different length scales. Moreover, the dynamics affects
the structure: hydrodynamic interactions among the macroions change the distribution
of the micro-ions, which in turn modify the electrostatic interactions. The mate-
rial heterogeneity at intermediate scales is intricate in most of the examples discussed.
Therefore, approaches to model these systems must be flexible in dealing with bound-
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ary conditions and cannot be limited to simple, regular geometries. This constraint is
especially severe when combined with long range electrostatic interactions. Several
approaches have been proposed in recent years to arrive at an integrated description
of electro-kinetic phenomena. In this paper, we first recall the basic concepts of elec-
trokinetics (Section 2). We then analyze the (often complementary) strategies that aim
at capturing the relevant dynamic processes at different length and time scales (Sec-
tion 3). Finally, we discuss several illustrative examples of the use of these methods
(Section 4).

2 Basic concepts
Electrokinetic phenomena refer to coupled solvent and charge flow in the vicinity of a
charged surface. Electro-osmosis, for example, is the solvent flow arising in the pres-
ence of an electric field near a stationary charged solid surface. Conversely, a fluid flow
near such a surface transports charges and hence gives rise to an electrostatic potential
difference, referred to as the streaming potential. The corresponding electrokinetic ef-
fects in the case of charged solid particles in a stationary fluid are electrophoresis and
generation of a sedimentation potential, respectively.

Any theoretical description of the phenomena listed above necessarily involves
three ingredients: 1) a description of the surface charge distribution (e.g. on the sur-
face of a colloidal particle or on the pore walls in a porous medium), 2) a description
of the distribution and transport of the microscopic ions (counterions and dissolved
salt) and 3) a description of the dynamics of the liquid phase (or phases, in the case of
liquid/liquid interfaces).

It should be stressed that in heterogeneous media such as we discuss here, electro-
neutrality is only satisfied globally – the fluid carries a net charge in the vicinity of
charged surfaces. A simplification of the problem results if we can use the “macro-
scopic” Maxwell equations to describe the relation between the electric field strength
and the charge distribution in the liquid phase with relative dielectric constant, εr. In
that case, the electrostatic potential ψ satisfies the Poisson equation ∇2ψ =−ρel/(ε0εr),
where ρel = ∑

N
k=1 ρkzke is the local charge density due to a N−component electrolyte

mixture and e stands for the unit charge, while ε0 corresponds to the dielectric constant
of vacuum . Here ρk denotes the number density of the ionic species with valency
zk. In equilibrium at temperature T , the ionic densities follow, to a first approxima-
tion, a Boltzmann distribution ρk = ρ0

k e−β zkeψ , where ρ0
k denotes the number density

of species k in a (possibly hypothetical) osmotic reservoir in contact with the system
of interest. β = 1/kBT , where kB denotes the Boltzmann constant. For the simple
geometry where the solid particle or the fluid interface can be regarded as a planar
surface, for small potential drops across the interface, this Poisson-Boltzmann theory
can be linearized. In this so-called Debye-Hückel limit, the ionic densities vary as
e−κx, where x denotes the distance from the surface and κ−1 ≡

(
4πlB ∑k ρkz2

k

)−1/2 is
referred to as the the Debye screening length. The Bjerrum length lB = e2/4πε0εrkBT
is the distance at which the electrostatic interaction between two unit charges equals
the thermal energy. In water at room temperature, lB = 7 Å and for a 0.1 mol/L solution
of a symmetric 1-1 electrolyte κ−1 ∼ 1 nm. Note that the Debye-Hückel theory ignores
all direct correlations between ionic species - in this respect, it is a mean-field theory.

Within this mean-field picture, the time evolution of ionic densities is usually de-
scribed by the Nernst-Planck equation that accounts for the combined effect of advec-
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tion, diffusion and migration:

∂ρk

∂ t
+∇ · (ρku) = ∇ ·

(
Dk∇ρk +

Dkzk

kBT
ρk∇ψ

)
. (1)

The key transport properties in the Nernst-Planck equation are the diffusivities Dk of
the various ionic species. The local fluid velocity u is assumed to satisfy the Navier-
Stokes equation

∂

∂ t
u+u ·∇u = ν∇

2u− ∇P
ρ

+
fV

ρ
(2)

where ν = η/ρ is the kinematic viscosity of the embedding fluid of density ρ whilst the
local force density fV includes electrostatic forces −ρel∇ψ . For example, an applied
electric field can only induce flow in the diffuse layer close to the surface, where the
fluid is charged. In contrast, in the bulk of the liquid, fluid flow is affected by convective
(u ·∇u) and viscous (ν∇2u) momentum transfer, plus any body forces (such as gravity)
that act on all fluid elements, irrespective of their charge.

The set of equations listed above (Poisson, Nernst-Planck, Navier-Stokes) contains
the required ingredients to describe the coupled ionic and solvent fluxes. The numerical
solution of these equations is however not an easy task as they are coupled, non-linear
partial differential equations. Moreover, the boundary conditions are generally com-
plex (irregular porous medium, moving colloidal particles...). Nevertheless, the details
of the flow and of the ionic charge distribution are often not our primary interest: When
modelling a colloidal suspension, the aim is to include the effective interactions be-
tween macroions, mediated by the solvent and the microions in the diffuse layer. Such
a coarse-grained picture may be accurate enough if there is a clear length and time scale
separation between the dynamics of the macroions on the one hand and that of the sol-
vent and microions on the other. If the colloidal size, as measured by its radius R, is
much larger than the ionic radius, a, it is reasonable to use a coarse-grained description
in which the ionic atmosphere is modeled as a continuum.

Even in that case, if ions interact strongly, electrostatic correlations cannot always
be neglected. The transition between two regimes (surface-ion or ion-ion dominated)
can be understood in terms of the ratio between two characteristic length scales, namely
the Bjerrum length lB described above and the Gouy-Chapman length lGC = kBT ε/σse
(with σs the surface charge density of the colloid) at which the electrostatic energy
of a unit charge in the field of the charged surface is equal to the thermal energy.
The so-called strong-coupling limit is then such that z3lB/lGC � 1. In such cases, a
more detailed model that resolves the ionic structure is required to account for ionic
correlations.

In the absence of driving fields, on time scales in which colloids relax structurally it
is safe to neglect the detailed coupling of the colloids to the solvent dynamics. Nonethe-
less, one cannot exclude a priori situations where hydrodynamics can have a significant
effect on the long-time dynamics of the colloids. What level of description is appropri-
ate to account for this coupling depends on the particular situation. As always, the aim
is to use is to use a model that is as simple as possible...but not simpler. For example,
the electrostatic interactions between macroions are screened by the diffuse layers and
decay as e−κr/r, whilst the hydrodynamic interactions may be accounted for in dilute
suspensions via the Oseen tensor decaying as 1/r. These rather extreme simplifica-
tions are not always appropriate; they rely, for electrostatics, on a mean-field, frozen
picture of the ionic diffuse layer, and for hydrodynamics, on the flow induced by dis-
tant spheres in an unbounded medium. Such descriptions assume in particular that the
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relevant timescales are large compared to the electrostatic relaxation time of the ionic
cloud, the Debye time τD ∼ 1/D±κ2 and the viscous relaxation time τν ∼ R2/ν .

Even under these conditions, if one is interested in the effect that the structure of the
ionic distribution will have on driven system, the interplay between electrolyte advec-
tion and diffusion, as quantified by the Péclet number, Pe, must be taken into account.
For example, at high Pe one cannot assume the equilibrium electrolyte distribution
when analyzing the dynamics of such a driven system. An appropriate treatment of the
fluid and electrolyte density dynamics must be carried out on the same footing.

3 Simulation strategies
In principle, all-atom molecular dynamics (MD) simulations of charged heterogeneous
fluid media provide a proper means to model both the electrostatic and the electroki-
netics of electrolytes. Such studies have allowed, for example, a careful and systematic
analysis of the relation between wall-induced ionic ordering and the effective bound-
ary conditions of electrolytes at solid surfaces18. Such studies made it possible to
determine the limit of validity of the simple mean field approach19. However the
computational cost of atomistic simulations prevents their use to investigate the large
length-scales and long time-scales relevant for colloidal systems or for flow in porous
media. Thus a variety of coarse-grained approaches have been developed to meet this
modelling challenge. As shown in 1 for the particular case of a colloidal suspension,
these different coarse-graining strategies differ in their description of both the charged
species and of the embedding solvent, and can be combined to yield a variety of ap-
proaches that are complementary to each other, both conceptually and computationally.
In general, particle-based approaches treat electrostatic interactions assuming periodic
boundary conditions, although in some cases more realistic treatment of the system
geometry has been carried out.

Figure 1: The dynamics of charged fluids involves different length scales. Accordingly,
different levels of coarse-graining are possible, illustrated here in the case of a suspen-
sion of charged colloids. Both the microions and the solvent can be described at three
different levels: (1) explicitly as ions and molecules, or (2) explicitly as continuous
fields such as ionic densities ρ±(r) or solvent velocity u(r), or (3) implicitly lumped
into effective interactions between colloids. Simple, approximate expressions for the
latter include a screened Coulomb interaction for the Potential of Mean Force (PMF)
and the Oseen tensor for Hydrodynamic Interactions (HI).

In the following, we discuss some of the coarse-grained approaches before illus-
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trating their use in specific applications. We stress that our aim is to illustrate rather
than to be comprehensive. In particular, our overview covers methods that differ in
their description of the solvent that can either be modelled as collection of particles or
as a continuum or that, at an even coarser level of description, can only manifest itself
via effective hydrodynamic interactions. Similarly, the micro-ions can either be mod-
elled explicitly as particles or as ionic densities, or their presence can be accounted
for implicitly through their effect on the rest of the system. The different levels of
descriptions discussed in the present article are summarized in 1.

Explicit Solvent Implicit Solvent
Explicit Ions MD (3) BD with HI (3.1)

LB + MD (3.4.2)
Implicit Ions DPD or MPCD (3.3) BD with PMF and HI

Hybrid LB (3.4.3) or Green Function (3.2)
FPD (3.5)

Table 1: Summary of the levels of descriptions discussed in the present article. The
meaning of the acronyms can be found in the corresponding sections.

3.1 Implicit solvent, explicit ions
As most of the space is occupied by the solvent, and ions normally constitute rather
dilute suspensions, a number of modelling techniques have focused on retaining infor-
mation about the molecular details of the charged species of interest, whilst simplify-
ing the description of the solvent and treating it as an effective medium. The solvent
motion, even at this coarse-grained level, may affect significantly the dynamics of a
charged suspension due to the hydrodynamic flows it carries. However, accounting for
hydrodynamic interactions among charged species, especially when dealing with col-
loidal suspensions, is not obvious, and hence there exist different ways to account for
the collective effect of the solvent dynamics on charged suspensions.

3.1.1 Absence of hydrodynamic interactions

Electrolyte properties have often been studied within the framework of the Primitive
Model, according to which the uncharged, polarizable solvent contributes an effec-
tive electric permittivity, εr, while ions are described as charged hard spheres. One
can then analyze the distribution of charged ions in this dielectric background and the
corresponding resulting thermodynamic properties20. Within the Primitive Model, the
major effect of the solvent on the dynamic properties of the ions disregards the details
of the flows they generate but lumps all hydrodynamic effects in an effective friction
coefficient, related to the solvent viscosity η by Stokes’ law F = −6πηav, with a the
ionic radius, and a random force resulting from the thermal collisions between solute
and solvent which satisfies fluctuation-dissipation. When the friction is large, the solute
velocity relaxes instantaneously and the Langevin dynamics to describe ionic motion
simplifies to simple Brownian dynamics (BD).
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3.1.2 Inclusion of hydrodynamic interactions

Although the approach described above may be interesting to analyze the structural
changes induced by external forces on an electrolyte solution, it fails to provide a cor-
rect hydrodynamic description, as the total momentum of the system (ions plus solvent)
is not conserved. This shortcoming can be overcome by modifying the effective friction
that the moving ions feel as a result of the flow they induce when they are accelerated.
More precisely, the flow generated by a moving point ion is not resolved explicitly but
only the resulting force acting on a second, distant ion is included in the form of an
interaction Oseen tensor. In the spirit of the Primitive Model, the finite size of the ions
may be included in the hydrodynamic interaction (HI) tensor, resulting in the Rotne-
Prager form21. This significantly improves the description of the transport properties
of bulk electrolytes, including multicomponent solutions of mono and divalent ions,
and micellar solutions22. Brownian dynamics of charged suspensions that approxi-
mate hydrodynamics by assuming that the Oseen tensor is pairwise additive, have been
used extensively to analyze the long-time diffusion of charged colloidal suspensions
and to compare both with analytical predictions and with experimental results23.

This tensorial approach to HI has also been extended by Netz and coworkers to
capture the effect of solid boundaries on the solvent flow24. This description, where
charged ions are described individually while solvent atoms are regarded as a continu-
ous medium is not fully consistent when the sizes of these two types of particles are of
the same order of magnitude, and the associated coarse graining, whilst conceptually
understood in equilibrium conditions, does not hold in principle out of equilibrium.

Due to the long-range nature of the HI, approaches based on the Oseen propaga-
tor scale very badly with system size, and are in principle valid only for unbounded
systems. The approach of Netz and coworkers implements Blake’s propagator, which
accounts for a single planar wall, also suffers from poor scaling. Building upon ear-
lier works for unbounded media25,26, recent studies have proposed to deal with con-
fined geometries using ideas similar to Ewald summation and particle-particle particle
mesh27 methods in electrostatics to speed up the slow convergence induced by the
long range nature of the HI28. However, to our knowledge these methods have not
been applied in combination with electrostatic interactions to address electrokinetic
phenomena.

An analogous approach has also been developed to speed-up Stokesian dynam-
ics29, a method that includes the dynamic effect of the solvent in the corresponding
friction matrix which determines colloidal diffusion and response to driving fields. This
approach has been used to analyze the relevance of hydrodynamic interactions in the
long-time diffusion of charged suspensions30. The quantitative comparison with exper-
imental results has clarified the relevance of many-body hydrodynamic interactions. In
particular, it has shown the need to go beyond the usual assumption of pairwise addi-
tivity to understand the collective diffusion of charged suspensions without having to
invoke hydrodynamic screening.

3.2 Implicit solvent, implicit ions
In order to reach longer scales, the standard procedure is to average out the degrees of
freedom corresponding to the microions, whose dynamics is assumed to be much faster
than that of the macroions, and consider only the Potential of Mean Force between
the latter. In equilibrium, the prime example of such an approach is the celebrated
DLVO theory31. The DLVO approach has been extended by a number of researchers
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(for recent reviews see e.g.17,32). In particular, it has been possible to go beyond the
frozen double-layer picture using density-functional-like approaches33 or numerical
computation from Brownian dynamics simulations with explicit microions34. At this
stage, these approaches have not yet been integrated with a hydrodynamic description
of electrokinetic phenomena.

One possibility to arrive at such a description is to solve the linearized electro-
hydrodynamic equations to obtain the propagator of the electrolyte solution. In the
Debye-Hückel limit Ajdari and Long35 derived the corresponding Green function of
the system as a response to applied external fields. This strategy has the advantage
that one can use it to study the Brownian dynamics of a macroion suspension without
including the dynamics of the salt and counterions explicitly. Such an approach has
been followed by Löwen and coworkers36 to study the long-time dynamics of charged
colloidal suspensions. In particular, when applied to mixtures of colloids with opposite
charges they showed that the phenomenon of “laning”’ that is observed in the absence
of hydrodynamic interactions, is destroyed by HI and more complex patterns emerge.
One drawback of the above approach is that it cannot deal with the deformation of
the double layer, which is assumed to be always in thermal equilibrium. Moreover, it
assumes that the fluid is unbounded and cannot account properly for non-electrostatic
external driving forces either.

It is in principle possible to solve the dynamics of the electrolyte in terms of their
local number densities, ρ± using lattice kinetic approaches, exploiting the analogy of
the Nernst-Planck equation and the Fokker-Planck equation which can be studied in
terms of a phase space distribution fk(r,v, t) with an appropriate kinetic model which
conserves particle number. Lattice methods, that are quite efficient numerically37 can
be exploited to achieve large length and time scales in the evolution of these systems at
the expense of neglecting dynamic correlations between ions.

3.3 Explicit solvent: Particle based approaches
Dealing with hydrodynamic interactions through an implicit solvent is computation-
ally expensive because of the slow decay of fluid flow due to momentum conservation.
During the last decade alternative approaches have been developed to treat solvent
flow through local rules. One strategy is based on introducing appropriate dynamics
for effective particles, which recover the correct thermodynamic equilibrium and hy-
drodynamic modes of the system, even if the particles do not describe the atomic or
molecular character of the solvent. Such approaches benefit from the knowledge of
molecular simulation, and provide an appealing framework to understand the dynam-
ics of the system. Among these approaches, Dissipative Particle Dynamics (DPD),
introduced by Hoogerbrugge and Koelman38 and formulated consistently by Español
and Warren39 models the solvent as point particles that interact through conservative
as well as pairwise dissipative and random forces. DPD avoids hard-core exclusion ef-
fects, thus speeding up the computations to the extent that it becomes possible to reach
hydrodynamically relevant time scales. Non-Hamiltonian interactions are proposed to
ensure that proper hydrodynamic behaviour is recovered40.

Groot41 proposed an extension of DPD which accounts for electrolyte dynamics. In
order to avoid the collapse of oppositely charged point ions, local charges are smeared
out around each DPD particle. A variant of the particle-particle particle mesh (PPPM)
which solves the far field in real space, introduced to deal with systems with hetero-
geneities in the electrostatic properties of the system (such as the local permitivitty)42

and general geometries, is then used to treat separately the near field and far field in-
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teractions between such charge distributions. Standard Ewald sums techniques can be
adapted to study systems with soft potentials43, although PPPM has been shown to be
more flexible and to provide better control of the numerical accuracy than Ewald44.
This method allows a standard approach to deal with electrostatics, and the total force
of the smeared charge distribution is then applied to the point particle. As the charge
distribution in the system is affected by hydrodynamic flow, this approach provides a
natural coupling between electrostatics and fluid motion. However, smearing the point
charge into a Gaussian distribution introduces a new length scale in the system, which
is usually comparable to the Bjerrum length, lB, whereas one would prefer to have a
smearing on a range small compared with lB. The ability of DPD to treat hydrodynamic
transport in complex geometries has been exploited to study the dynamics of a variety
of charged, soft materials, including the self-assembly of charged surfactants45, poly-
electrolyte suspensions46 and brushes47 as well as the effect that polyelectrolytes have
on membrane properties48 and their transport properties across bilipidic membranes49.
DPD can be regarded as a momentum-conserving thermostat together with soft conser-
vative forces. The use of alternative momentum-conserving thermostats with simpler
structure, such as the Lowe-Andersen thermostat50, offers the possibility to combine
molecular methods enforcing appropriate momentum conservation.

A combined study of a DPD fluid with resolved charged ions which interact through
explicit electrostatic interactions has been carried out to compare the performance with
a Lattice-Boltzmann (LB) method (see below) where also ions are treated explicitly51.
A systematic procedure to map parameters between the two mesoscopic approaches is
put forward, showing that the computational cost associated with the electrostatic cou-
pling is equivalent in both approaches. The different interactions between the fluid and
the solid wall in the two methods allow to assess the relevance of boundary conditions
in electrokinetics.

3.4 Explicit solvent: Kinetic methods
3.4.1 Pure solvent

As an alternative to particle-based approaches, kinetic models have been introduced to
exploit locality in dealing with the solvent dynamics. This usually involves including
charged species in a pre-existing kinetic approach for a hydrodynamic system. A pow-
erful tool to simulate hydrodynamics, which was later extended to deal with charged
species, is the so-called Lattice-Boltzmann (LB) method. The LB approach follows
the time-evolution of the one-particle density distribution of solvent molecules mov-
ing on a lattice using a discrete set of velocities. Accordingly, the model is discrete
in time and space and the distribution function, f (r,v, t), evolves in two steps. In the
first (collision) step, f relaxes locally to a prescribed equilibrium distribution, which
can be understood as a low-velocity expansion of a Maxwell-Boltzmann distribution.
In the second (propagation) step, f is advected to neighbouring nodes. Viscosity arises
from the collision step. If the lattice satisfies certain minimal symmetry requirements,
this kinetic model recovers hydrodynamic behaviour at long time and length scales52.
Since all kinetic rules are local, this approach can easily deal with complex boundary
shapes; in particular it becomes feasible to analyze the dynamics of complex fluids in
arbitrary confining geometries. Colloidal suspensions can also be simulated using the
same approach and one can enforce the appropriate time and length scale separations
that characterize the hydrodynamics of such suspensions53.
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3.4.2 Explicit microions

It is possible to couple the LB scheme to the motion of particles with sizes smaller than
the lattice spacing. One then needs to follow the dynamics of these particles, which
follow Newton’s equation of motion together with a dynamic coupling which accounts
for fluid friction. The particle experiences a friction force whenever its velocity differs
from the fluid velocity from the nearby nodes. Since total momentum is conserved
because there are no external forces involved in this coupling, the opposite of this force
is also distributed among the neighbouring fluid nodes. To reach thermal equilibrium,
it is necessary to add a stochastic force which compensates for the energy lost due to
this dissipative coupling. This force follows a Gaussian process with zero mean and
amplitude proportional to the friction coefficient. This approach has been successfully
applied to study the dynamics of polymer and colloidal suspensions54,55 and has been
extended subsequently to include small charged particles56. These small particles can
also be joined to form a larger macroion, such as a colloid. In this case the colloidal
charge is located at the colloid center of mass while the small spheres which define
its surface ensure, through Lennard-Jones potential interactions with the dissolved ions
that these do not enter inside the colloid. This approach has been used to study the
electrophoresis of colloidal suspensions57 and also of polyelectroytes, showing the
relevance of HI in their dynamical response58. Using the same approach, colloidal
electrophoresis in the strong charge regime has been addressed59. Resolving individual
ions has the advantage that the effect of electrostatic correlations on the dynamics of
colloids and polymers can be captured. However, large colloids are difficult to reach;
hence spatial separation between ionic and solvent sizes is lacking. In fact, the ion
size sets the smallest relevant length scale in the simulations, which are then typically
restricted to the nanometer scale.

3.4.3 Implicit microions

One way to reach larger length scales is to regard the collective, rather than individual,
behavior of ions. In doing so, one loses in principle the possibility to account for elec-
trostatic correlations due to the finite ionic size, but now the relevant length scales as-
sociated to the ionic densities are given by the Bjerrum and double-layer length scales,
which are usually larger than the ionic molecular size, depending on the solvent under
consideration (although for water at room temperature the Bjerrum length is compara-
ble to an atomic size).

An alternative approach to address some of the problems mentioned above keeps
the LB description of the fluid but, rather than following the dynamics of the individual
ions, considers a density of anions and cations at each lattice node. Unlike the compo-
nents in a LB binary mixture, these ion densities have no intrinsic velocities, and cannot
therefore be regarded as one body distribution functions. One can set up dynamic rules
discrete in space and time to reproduce the convection diffusion equations which char-
acterize their motion. The coupling between the charged species and the fluid flow is
twofold. On the one hand, the charge densities are advected with the local fluid flow;
on the other hand, the local charge density results in a force and accelerates locally the
fluid by adding a forcing term in to the LB model. Finally, the Poisson equation needs
to be solved at each time step to determine the potential gradients and determine the
local electric field. Real space solvers of the Poisson equation are not restricted to pe-
riodic boundary conditions. They allow in particular to account for general geometries
and locally varying dielectric permittivites.
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Originally, Warren60 exploited moment propagation, a recursive scheme to diffuse
a passive scalar in a LB scheme61, to study electro-osmosis of an electrolyte in a pore.
Horbach and Frenkel62 studied the foundations of the model and applied it to analyze
the effect of the double layer width on colloidal sedimentation.

However, this approach suffers from “leakage” at fluid/solid boundaries. An im-
proved implementation was subsequently developed63,64, which considered the diffu-
sive fluxes along links joining nodes – the basic dynamic quantity which determines
the temporal evolution of the charge densities. This approach has been applied to ana-
lyze the sedimentation of charged spheres63 and disks65 as well as to the dispersion of
charged solutes in porous media66. The need to resolve the the charge density profile
of the double layer on the lattice length scale in these approaches sets a stringent con-
dition on the scales that can be captured numerically. In practice, it tends to limit the
approach to the study of processes where the double layer is wide. It should be noted
that the method of63 relies on the knowledge of an approximate free-energy functional
that depends on the charge densities. However, the method as such can also be ap-
plied to other non-ideal fluids67. In this context, the method described in the previous
paragraph corresponds to an ionic mixture that behaves as an ideal gas, hence recover-
ing Poisson-Boltzmann theory in equilibrium, although not restricted to its linearized,
Debye-Hückel limit.

It is straightforward to extend the hybrid description of the electrolyte to model
suspensions of charged colloids where colloids, unlike the small co- and counter-ions
are modelled individually68,69. For example, the local structure of the LB method
allows to couple the fluid to solid/liquid interfaces with general symmetries, favoring
easy parallelization with good scalability70. The link-flux description for the temporal
evolution of the charged densities also allows for a simple implementation of moving
boundary condition without “charge leakage”.

3.5 Fluid mechanics approaches
Instead of using a kinetic model to provide a more microscopic basis to describe the
collective dynamic behaviour of the fluid, it is possible to solve numerically the Navier-
Stokes equation, Eq. 2 on a lattice. In this context, the Fluid Particle Dynamics (FPD)71

method regards explicit colloids as a fluid of large viscosity, with a viscosity profile de-
termined by a tagged field centered around each colloid, φ . This profile (taken for
convenience as a hyperbolic tangent) moves as the center of mass (c.o.m.) displaces
in time. The c.o.m. velocity is obtained from the fluid evolution itself, weighted with
the corresponding colloid’s tagged field. Forces between colloids are also distributed
following φ and added as appropriate contributions to fV in Eq. 2. Within this scheme,
the solid/fluid interface is diffuse, but the computational effort is reduced to that of
solving the Navier-Stokes equation on a lattice and convecting the particles accord-
ing to their local fluid velocities. This approach has been generalized to account for
electrolyte solutions72. The colloidal charge is localized on the colloid surface by dis-
tributing it according to ∇φ . Additional density fields for the electrolyte species, ρ±
are introduced, analogously to the hybrid method described in previous sections. The
local charge provides an additional contribution to the force fV acting on the fluid, and
the Nernst-Planck equation (1) is solved numerically on the lattice. This approach has
been applied to study colloidal electrophoresis and its use to separate colloids with
opposite charges.

In order to avoid distortions in the colloidal shape, FPD needs to operate at large
viscosity contrasts, which comes at high numerical cost. In order to avoid numerical
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inaccuracies which result from compromises between the viscosity contrast and time
steps in practical FPD implementations, it is possible to keep the same approach but
regard φ as a frozen field and exclude the fluid from its interior. One then does not need
to treat the colloid as a higher viscosity fluid, thus overcoming some of the previous
limitations73. This alternative Smoother Profile (SP) method74 has been applied to
study the electrophoresis of colloidal suspensions as a function of colloid concentration
and double layer width75. These methods offer complementary approaches to the
use of standard techniques from fluid mechanics. The latter, traditionally exploited to
analyze the fluid dynamics at macroscopic scales, have been also extended to consider
electrolyte flows in generic microfluidic geometries76. An appropriate meshing of the
space is required to deal with complex geometries.

4 Applications
The different approaches described in the previous section have been used to analyze
a variety of physical systems. Below, we briefly discuss some representative examples
to indicate the usefulness of the coarse-grained methods described and also to show
the wealth of physical situations where charge dynamics, and the coupling with the
underlying solvent, become relevant and should be accounted for properly.

4.1 Electrokinetics in colloidal suspensions
4.1.1 Electrophoresis

The understanding of electrophoresis is a classical subject in colloidal science77. O’Brien
and White performed a theoretical study of the electrophoretic mobility of a sphere in
the Debye-Hückel regime for an arbitrary double layer78. However, for double lay-
ers that are outside the Smoluchowski (narrow double-layer) or Henry (very diffuse
double layer) limits77, expressions for the speed of electrophoresis are lacking and nu-
merical simulations are needed to test the approximate theoretical predictions. Dünweg
and Holm4 analyzed the electrokinetics of charged colloids in the presence of counter-
ions alone and in the low-salt regime, using lattice-Boltzmann simulations. In their
approach, they make use of the so-called “raspberry method”55, where the colloid is
regarded as a spherical shell covered by small particles, with radius smaller than the
lattice spacing, which move as a rigid object. Dissolved ions are also modelled as small
spheres that interact with the colloidal charge (located at the center of mass of the col-
loid). Electrostatic interactions are computed using a PPPM approach and both the
particles that constitute the colloid and the moving ions interact with the surrounding
fluid through momentum conserving, dissipative forces. This approach properly ac-
counts for ionic correlations and short-range interactions, but it becomes prohibitively
expensive for colloidal sizes that are much larger than the ionic size.

Combining experimental and numerical evidence, Ref.4 has analyzed electrophore-
sis for high salt and low salt dispersions. The study shows that it is possible to analyze
in a unified way the response of a suspension, regardless of the number of dissolved
ions, in terms of the effective length κ−1 = (4πlBnc)−1/2, where nc = Z/V denotes the
counterion number density. This length reduces to the standard Debye length when salt
is present and nc corresponds to the total ion number density. The simulations show
that when the double layer of different colloids start to overlap the contribution from
the counterions to the electrophoretic mobility should be accounted for. Moreover, in

12



the absence of added salt, the electrophoretic mobility goes through a maximum before
leveling off at its limiting high-Z behaviour.

The numerical scheme is validated by comparing with experiments as a function
of colloid volume fraction, Φ, and salt concentration. At low volume fractions the
“evaporation” of the counterion layer around the colloid leads to a sharp increase of the
electrophoretic mobility. On increasing volume fraction, on the other hand, the colloid
acquires an effective charge that is not very sensitive to the bare colloidal charge, Z.
This broad analysis identifies the main dependence of the electrophoretic mobility on
the relevant system parameters, characterized in terms of the reduced electrophoretic
mobility, µred ≡ µ/µH(Z = 1), where µH = Ze/6πηR is the electrophoretic mobility
in the Henry limit for a charged sphere of radius R in a fluid of viscosity η . The
proposed scaling , µred(Φ,Z, lB/R) ' µred(Φ, Z̃), where Z̃ = ZlB/R, reproduces the
experimental results in all the regimes analyzed. It is possible to identify the regime
where the response is linear in the applied electric field using the Green-Kubo linear-
response expression for the electrophoretic mobility79.

The same numerical approach, based on the ‘raspberry model", has also been used
to analyze the effect of a symmetric electrolyte on the electrophoretic mobility of a
highly charged colloid59. In this regime a part of the electrolyte is strongly attached
to the colloid, although the study shows that hydrodynamics reduces this strong cou-
pling with respect to the equilibrium electrolyte structure. The dynamic distortion of
the charge distribution close to he colloid is also sensitive to the ion properties. For
asymmetric electrolytes a reversal of the electrophoretic mobility is reported59, in ac-
cordance with experimental observations.

The electrophoretic mobility of polyelectrolytes has been explored in the same
framework58,80. These charged polymers are modelled as a chain of charged beads
joined with non-linear springs. The electrophoretic mobility has a dependence on the
number of monomers in accordance with the Zimm model, which displays a maxi-
mum as a function of the polymer charge analogous to observations obtained for the
electrophoretic mobility of a highly charged colloid. Alternatively, an implicit solvent
model has been used to analyze DNA electrophoresis81, showing that on increasing
the salt concentration, the counterions cease to be dragged along with the chain. This
change in the dynamical behaviour of the counterions induces an anomaly in the coun-
terion excess conductivity, which also affects the polyelectrolyte mobility. For charged
DNA segment diffusion the effect of salt concentration is weaker82. A minimum in the
diffusivity is found at intermediate screening lengths as a result of a balance between
the number of counterions dragged by the polymer and the effective hydrodynamic
radius of the neutralizing cloud.

Studies of the electrophoretic mobility of charged suspensions have also been car-
ried out using the SP approach74. The computed mobilities compare well with the pre-
dictions of O’Brien and White in the regime where the double layer is of the same order
as the colloid radius (Rκ = 1 and 1/2) even for high colloidal charge, (up to Z = 500)
and large field strengths. These findings are surprising as this is the regime where the
linearized theory might be expected to fail. Simulations containing up to a few hundred
colloids and Φ ≤ 0.6 show that the electrophoretic mobility decays initially as Φ1/3,
as predicted by Ohshima83. Deviations from the (low-density) Ohshima prediction are
only observed when the double layers of different colloids start to overlap.

The Fluid Particle Dynamics (FPD) method71 has also been used to study colloidal
electrophoresis to study the effect of double-layer overlap72. An enhancement of the
velocity fluctuations with the electrolyte double layer width is observed; a simple the-
oretical argument predicts an increase of the relative velocity fluctuations that scales
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with (κR)−1/2, in agreement with the numerical observations. Simulations of sus-
pensions of oppositely charged colloids make it possible to quantify the efficiency of
electrophoretic techniques to induce particle separation.

4.1.2 Sedimentation

A complementary electrokinetic geometry corresponds to charged colloid sedimenta-
tion. As opposed to the previous situation, there is now a net force acting on the sus-
pension. As a result, the flow fields generated by the sedimenting colloids are longer
ranged. Theoretical predictions in this case are restricted to the narrow double layer
limit84. Numerical simulations using a Lattice-Boltzmann approach and disregarding
individual ions have verified that Booth’s predictions are recovered for narrow double
layers and have extended the study of the terminal sedimentation of charged spherical
colloids for intermediate and wide double layers63. It was found that the reduction in
the sedimentation velocity is maximal for a double layer with a size comparable to that
of the colloid, indicating that in this regime the distortion of the double layer is the
largest. The results showed that for sedimentation finite-size effects are more relevant
than for electrophoresis, due to the external force acting on the system.

Figure 2: Flow field for a sedimenting disk of radius R with valency Z = 300 and aspect
ratio 10 in an electrolyte solution with ionic strength κR = 1. ( Figure reproduced from
Ref.63 with permission from AIP).

The effect of colloidal shape has also been addressed analyzing the sedimentation
of charged disks65. Particle asymmetry leads to asymmetric mobilities. Double layer
distortion and polarization is now different for transverse or longitudinal sedimentation,
and for large applied fields this asymmetry generates fluid vortices at the corners of the
colloidal particle, a feature absent with spherical colloids. At high charges, in the non-
linear regime, the sedimentation velocity becomes less sensitive to the colloidal bare
charge. In 2 we display the velocity field around a highly charged disk sedimenting
transversally. One can appreciate that the disk radius determines the characteristic size
over which the fluid flow is coupled to the particle motion. Although barely visible,
in the rear corners of the disk, the nearly stagnant flow develops vortices due to the
large accumulation of electrostatic isopotential lines.The authors have analyzed how to
identify an effective disk size which accounts for this charge renormalization.
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4.1.3 Electrical conductivity

The Primitive Model described in section 2 has been the basis of modern theory of
transport in electrolyte solutions. In particular, it allowed to go beyond the Debye-
Hückel-Onsager limiting laws. Brownian dynamics simulations and integral equations
based on the Mean Spherical Approximation (MSA) demonstrated the necessity to in-
clude hydrodynamic interactions between ions to describe the conductivity up to molar
concentrations20. Complex mixtures of ions, including micellar suspensions22 have
also been investigated at this level of description (explicit microions and HI tensor).
It was found, for example, that HI tend to increase the self-diffusion coefficient of
macroions85.

Dahirel et al. have also used a coarse-graining procedure to average out the degrees
of freedom of the microions86. BD simulations with explicit microions are used to
compute 1) the PMF between two macroions and 2) the effective diffusion coefficients
for a single macroion infinitely diluted in a bath of microions. These two ingredients
are then used in BD simulations of an effective one-component system of macroions, to
compute the self-diffusion coefficient of macroions at finite macroions concentration. It
is important to consider not only the static effect of the microions (PMF), but also their
dynamical influence on the macroions, because the electrostatic friction considerably
lowers the diffusion coefficient of the macroions, even when the concentration of the
latter is small. This approach has recently been extended to include the effect of HI, and
investigate the self-diffusion and mutual diffusion of macroions, their electrophoretic
mobility and the conductivity of colloidal suspensions87.

4.1.4 Acoustophoresis

Another interesting coupling between solvent and ionic flows is the acoustophoretic
effect, predicted by Debye in 193388. It occurs when an ultrasonic wave is applied to
an electrolyte solution: Local charge separation results in the generation of an electric
field. While Debye’s treatment was based on point particles, later studies at the MSA
level allowed to estimate the effect of the finite ionic size and of the HI on the so-called
ionic vibration potential (IVP) in electrolytes and colloidal vibration potential (CVP)
in colloidal suspensions89. It is very useful to combine data from acoustophoresis and
conductivity, because the relative contribution of the micro and macroions is not the
same in both experiments. There is however room for improvement in the models, and
numerical simulations with one of the mesoscopic methods described in the present
paper will certainly provide valuable insight in this field. Such simulations might also
provide the basis for a better understanding of the seismo-electric effect used for un-
derground exploration90.

4.2 DNA translocation through nanopores
Recent experiments have analyzed the translocation of DNA through nano-holes in
a membrane. The use of the lattice-Boltzmann method has allowed to identify the
different contributions to the mobility of the DNA91. It was shown that such a descrip-
tion is sufficient to capture the low charge and high charge regimes of DNA, and to
recover Manning condensation in equilibrium. The authors first regarded DNA as a
uniformly charged rigid rod. Such an assumption allowed them to identify the role of
the cylinder-to-pore cross section when translocation is driven by an applied electric
field perpendicular to the perforated membrane. The dynamic approach underlying the

15



lattice Boltzmann method allowed the authors to identify the different contributions
to the electric current and to distinguish steady-state from transient effects, something
that was problematic in earlier atomistic simulations92 and in experiments93. At high
salt concentration, there is a decrease in the ionic current upon translocation, which
is progressively smaller as the overall DNA charge increases. However, the situation
changes at low salt concentrations, when the double layer becomes of the same order
as the free space between the DNA molecule and the edge of the translocation channel.
As shown in 3.a the electric current decreases when the DNA enters the pore if the dou-
ble layer is narrower than the pore size, while for a lower salt concentration an increase
is observed, as displayed in fig. 3.b. In both cases the effect becomes more marked as
the DNA charge increases. Such a dependence of the diffusive ionic current arises as a
result of the competition between the decrease in available cross section, which leads
to a corresponding decay in the current, and the local deformations in the electrostatic
field around the pore which favors the transport of ions across the pore. In general, the
net current depends on the thickness of the double layer, which tends to increase the
electric current, and on the partial blockage of the hole by the DNA, which tends to
decrease the net electric current.

Figure 3: Diffusive ionic current, Idiff normalized by the electrolyte current, I0 as a
charged rod of surface charge density σ and length lc passes through a membrane pore
of diameter d larger than the rod section. The position of the rod is characterized by the
distance x of its center of mass to the membrane surface. a) high ionic strength, κd = 1;
b) low ionic strength, κd = 0.02. ( Figure reproduced from Ref.91 with permission
from ACS).

The flexibility of the approach allowed the authors to consider the effect of dis-
tributing the charge along the DNA molecule following a helical distribution in the
present of a charged “probe” in the channel wall. In this case, the current through the
pore follows the charge distribution, with a period equal to half the translocated DNA
pitch. The amplitude of the signal can be modulated with the applied field, and its
modulation is optimized for double layer widths smaller than the pitch and of the same
order than the charged patch. The translocation of a flexible polymer chain under the
action of an applied electric field has also been addressed94,95 , assuming that the effect
of the external force can be accounted for as an effective force localized at the hole. A
complete analysis including flexibility and full electrokinetic coupling is still missing.
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4.3 Solid-fluid interactions
The relevance of molecular structure and electrolyte specificity on the dynamical re-
sponse to applied forces has been investigated using extensive molecular dynamics
simulations. Using an implicit solvent approach, with fully resolved ions, it has been
possible to study the electro-osmosis near an atomically resolved solid substrate24. The
numerical results showed that there is a connection between the dynamics of ions in
the presence of a solid wall and the traditional Helmholtz-Smoluchowski theory (HS)
which predicts the liquid velocity profile, u(z) = u(0)+ ε0εrE

η
[ψ(z)−ψ(0)], under the

action of an applied electric field, E parallel to the solid interface, where η stands
for the liquid viscosity and ψ is the electrostatic potential, which varies only within
the double-layer. Moreover, deviations from the standard theory arise from surface
heterogeneities, because charge correlations on a homogeneous solid surface does not
invalidate HS. The analysis of the effective friction that a flowing electrolyte exerts
on different types of solid substrates indicated that the interaction can be dominated by
the hydrodynamic friction for moderate surface charge and/or low valency electrolytes,
while for highly charged substrate and/or multivalent ions the direct electrostatic fric-
tion dominates24. These results generalize earlier ones obtained from Brownian dy-
namics simulations, in the absence of solvent, which had shown that the electrofriction
between counterions and the ions constituting the charged surface have a pronounced
effect in the mobility reduction of the former. The immobilization of a fraction of the
counterions leads to a dynamic decrease of the effective charge of the solid substrate96.

The interplay between hydrodynamic, excluded-volume and electric friction in-
duced by surface corrugations leads to effective dynamical charges smaller than the
equilibrium ones97, in accordance with experimental observations which find discrep-
ancies between the equilibrium charge measured on a solid surface through titration and
the one derived from the zeta potential measured for example in electro-osmotic exper-
iments. The dispersion interaction of the solvent and ions with the substrate has also
an important impact on the electrokinetic response of the electrolyte98. In this respect,
molecular dynamics simulations have also been useful to disentangle the effect of the
solvent wettability and hence, the effective slip of the fluid at the solid surface. Slip
induced by the substrate hydrophobicity induces a larger zeta potential when a pressure
gradient is applied on an electrolyte solution confined in a charged slit. The variations
of the effective zeta potential with the ionic strength differs qualitatively, depending
on whether the substrate is hydrophilic or hydrophobic, and hence correlates with the
effective slip length (which increases with the substrate hydrophobicity). While for
hydrophilic substrates the zeta potential can be easily related to the substrate charge,
this is not the case on hydrophobic walls, leading to increases in its value of one order
of magnitude for moderate slip lengths99. As a result, slip can significantly enhance
electrokinetic phenomena and that such a behaviour can be tailored both by modifying
the substrate hydrophobicity and geometry19. The possibility to induce giant electro-
osmotic and electrophoretic effects, as well as other coupled phoretic phenomena100 is
potentially interesting for microfluidic applications, and experimental results indicate
that such applications may be viable.

Further molecular dynamics studies have shed light on the anomalous electrokinetic
phenomena induced by the molecular structure of the electrolyte layer close to the
solid surface. It has been shown that if the degree of affinity between the ions and
the solid substrate is asymmetric between anions and cations, the ionic structure is
subsequently altered leading to changes in the effective ζ−potential which affects the
observed electroosmotic flow101 . In narrow channels, ion immobilization arising from
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the molecular interaction with the solid substrate has also been reported to lead under
some circumstances to electro-osmotic flow reversal102.

4.4 Electrokinetics at liquid/liquid interfaces
Solid-liquid interfaces are not the only ones relevant for electrokinetics. Experimental
evidence of charge separation at oil/water interfaces has recently been reported, includ-
ing data obtained from scattering techniques that probe the interfacial ionic profiles on
the microscopic scale103. This spontaneous charge separation is driven by the differ-
ential solvation properties of the ions, with e.g. a hydrophilic cation and a hydrophobic
anion. This mechanism was also invoked to explain the metastability of crystals of
µm-sized water droplets in oil: The charge separation at the interface results in an ef-
fective charge for the droplets, and a long-range repulsion across the low permittivity
oil phase15. This separation was then exploited to tune effective interaction between
colloids104.

From a dynamical point of view, the electrophoretic mobility of droplets and bub-
bles has attracted much attention, in particular because the polarity of the interface
deduced from these macroscopic experiments, i.e. a negative surface for air bubbles in
water, seems in contradiction with microscopic surface-sensitive techniques and simu-
lations105. Electric fields can be used to induce the motion of liquid droplets, e.g. for
lab-on-chip manipulations106, and the coalescence of oppositely charged droplets107.
In the latter case, large electric fields cause the droplets to bounce off each other, be-
cause of the dynamic coupling between electrostatic and capillary forces108.

Simulating such charged fluid-fluid interfaces is particularly challenging. It re-
quires the description of the two solvents and several types of ions, and it should ac-
count for several features: the immiscibility of the solvents, the species-dependent
affinity of the ions for both solvents, and electrostatics. The hydrodynamic behaviour
of these systems is governed by the coupled capillary, electrostatic and solvation forces.
The hybrid Lattice-Boltzmann / link-flux approach (see section 3.4.3) introduced for
electrolyte solutions has been recently extended to tackle these complex systems67.
The fluid is treated as a mixture characterized by a local composition φ = ρo−ρw

ρo+ρw
∈

[−1,1], with ρo and ρw the local oil and water densities. Phase separation results from
the free energy of mixing, assumed to be of the Landau-Ginzburg form:

F mix =
∫

dr
[
−1

2
Bφ

2 +
1
4

Bφ
4 +

1
2

K(∇φ)2
]

. (3)

The first two terms correspond to the bulk phase behaviour, with minima for φ = ±1,
while the last reflects the cost of sustaining interfaces. Ions contribute to the free energy
of the system with an ideal, a solvation and an electrostatic term:

F ions =
∫

dr ∑
α=±

ρα(r)
[
kBT (lnρα(r)−1)−µα +V solv

α (r)+
zα e
2

ψ(r)
]

(4)

where z± = ±1 is the valency of the ions, µα is a reference chemical potential and
the electrostatic potential ψ is solution of the Poisson equation ∇ · [ε(r)∇ψ(r)] =
− [ρ+(r)−ρ−(r)]e. Both the solvation potentials V solv

α (r) and permittivity ε(r) de-
pend on the local composition φ(r) of the fluid. The derivatives of the free energy
with respect to ρ± and φ provide the local chemical potentials, whose gradients are
the source of ionic and solvents fluxes (from the generalized Fick’s law and the Cahn-
Hilliard equation), and of thermodynamic forces, according to the Gibbs-Duhem equal-
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ity: fth
V =−∇P = φ∇µφ +ρ+∇µex

+ +ρ−∇µex
− . These forces accelerate the fluid, which

in turn contributes convective fluxes changing the local composition.
This free-energy based approach allows one to recover the analytical predictions

obtained for a system in equilibrium in the linearized regime for a sharp, planar oil/water
interface by Onuki109 and van Roij et al.110. The difference in ionic solvation free en-
ergies ∆µ± = µo

±− µw
± results in the partitioning of the salt, with a salt concentration

ratio ρo
s /ρw

s = e−β∆µav where ∆µav = (∆µ+ + ∆µ−)/2, and in a potential difference
across the interface, the Donnan potential ψD = ψo −ψw = (∆µ−−∆µ+)/2e. The
interface behaves qualitatively as a planar capacitor subject to a potential difference
ψD. Simulations show that the linearized Poisson-Boltzmann (LPB) theory provides
a good description of the surface charge density and the ionic adsorption even in the
moderately non-linear regime (βeψD ≥ 1). This somewhat surprising result could be
traced back to a compensation of errors. In this regime, the analytical LPB theory
predicts smoother ionic profiles than the non-linear PB result for a sharp interface.
However, the sharp interface model implies an unphysical jump in the ionic densities
and overestimates the surface charge density with respect to the simulations with a
smooth interface. As shown in 4 the ionic profiles obtained by re-exponentiating the
LPB electrostatic potential is in good agreement with the simulation results, except in
the very close vicinity of the interface.

Figure 4: Equilibrium ionic profiles at a planar oil/water interface, in the case of hy-
drophobic anions and hydrophilic cations (for the details of the system parameters, see
Ref.67). ρw corresponds to the ionic density in the bulk phases and ∆x stands for the
lattice spacing. Simulation results (symbols) for cations and anions are compared to an
analytical result for an infinitely thin interface (see text and Ref.67). The insert shows
the local composition φ and electrostatic potential ψ .

This simulation method is however not limited to the linearized regime, nor to
equilibrium. It can be considered as a numerical solver for the coupled Navier-Stokes
/ time-dependent density functional theory (DFT) equations, and opens the way for the
simulation of the complex phenomena occurring at a charged liquid-liquid interface
described above. Preliminary results indicate that it is possible to describe both the
transient and stationary electro-osmotic flow generated by an electric field applied par-
allel to a planar charged oil/water interface.There is then no net external force, but the
two fluids are accelerated in opposite directions, and the steady-state velocity profile
results from the balance between electric forces and viscous dissipation at the interface.
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4.5 Dispersion of charged tracers by an electro-osmotic flow
The diffusion of tracers in inhomogeneous flows results in their dispersion: A tracer
pulse broadens under the combined effect of advection by the flow and diffusion in
the direction perpendicular to the streamlines. Electro-osmotic flows (EOF) are inho-
mogeneous mainly in the vicinity of the surface, as can immediately be inferred from
the Helmholtz-Smoluchowski equation. This feature explains the less pronounced dis-
persion of tracer pulses in EOF compared to Poiseuille flows generated by pressure
gradients, and their usefulness for applications to separation science and analytical
chemistry. The approach pioneered by Taylor and Aris111,112 makes it possible to
quantify electrolyte separation in electro-osmotic flows, as in the case of Taylor dis-
persion in microfluidic environments113,114. Such an understanding provides insight
into the competing mechanisms that give rise to electrolyte dispersion in flows in chan-
nels115. Particularly interesting is the fact that tracers of different charge are dispersed
differently by the same EOF, because they do not probe the same part of the flow. The
dispersion of charged tracers by an EOF in a salt-free slit pore has been recently ad-
dressed using the hybrid LB approach presented in section 3.4.3, and the moment prop-
agation method61 to compute the Velocity Autocorrelation Function (VACF), Zk(t), of
tracers with valency zk

66.
From the VACF, one computes the time-dependent diffusion coefficient in the di-

rection perpendicular to the flow, D⊥
k (t) =

∫ t
0 dt ′Z⊥k (t ′), which describes how tracers

probe the different parts of the slit pore. This function decays faster for co-ions than
for neutral tracers, because the characteristic decay time scales as L2/D with L the
width of the slab accessible to the tracer. The latter is smaller for co-ions than neutral
species, since co-ions are repelled from the surfaces and confined to a smaller volume.
Counterions also exhibit a faster decay at short times, since they are confined to the
diffuse layer close to the surface, but a slower decay is observed at longer times. This
corresponds to the motion from one diffuse layer to the one on the opposite surface,
which requires to overcome an electrostatic barrier and is thus slower than the diffusion
of neutral species over the same distance.

When the observation time is large compared to the characteristic time to explore
the direction normal to the charged surfaces (and thus to the flow), the relevant quan-
tities are the average velocity of each tracer in the direction of the flow and the dis-

persion coefficient. They are obtained from the VACF as v̄k = limt→∞

√
Z‖k (t) and

Dk =
∫

∞

0 dt
[
Z‖k (t)−Z‖k (∞)

]
, respectively. The simulations, in agreement with approx-

imate analytical results, indicate that the average velocity is larger (resp. smaller) for
co-ions (resp. counterions) than for neutral tracers. This may seem paradoxical, since
the direct effect of an electric field on the co-ions is to drive them in the direction
opposite to the EOF, whose direction corresponds to the electric force on the excess
of counterions. The explanation lies in the fact that for small ions in water, the elec-
trophoretic velocity βDzkE is small compared to the EOF whose typical velocity is
uEOF = eE/2πη lB, with η the viscosity and lB the Bjerrum length. Then, the EOF
velocity is larger in the center of slit, where most co-ions are found and smaller near
the surfaces, where most counterions are located. This explains the behaviour of these
species compared to neutral ones, which probe the whole slit with the same weight.
The different localization also explains why the dispersion coefficient is larger (resp.
smaller) for counterions (resp. co-ions) than for neutral species, since the flow is more
inhomogeneous near the surfaces than in the center of the slit. Using this approach,
it has also been possible to investigate quantitatively the dispersion coefficient, which
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Figure 5: (a) Dispersion coefficient of charged tracers by an electro-osmotic flow in a
salt-free, negatively charged slit of width L, under and applied electric field E parallel
to the surfaces. Results are given for anions (+), neutral tracers (2) and cations (◦),
for two surface charge densities, αL. The inset shows the dispersion factor f defined
from the quadratic dependence of Dk with E (see text), as a function of the surface
charge density. Lines are results of an approximate analytical theory. ( Figure repro-
duced from Ref.66 with permission of IOP). (b) Diffusion of charged tracers in a model
porous medium consisting of a compact FCC lattice of negatively charged spheres ( see
Ref.67). The effective diffusion coefficient of tracers with different charge (neutral ◦,
cationic 2 and anionic � tracers) is reported normalized by the molecular diffusion co-
efficient, as a function of the ratio between the electrolyte Debye length, κ

−1
b , and the

sphere radius, R. The inset shows the characteristic time to explore the pores for each
tracer.
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was found to vary as Dk = Dk
[
1+ f (αL,zk)×Pe2

]
, with Pe = uEOF L/Dk the Péclet

number, Dk the molecular diffusion coefficient of species k, and f a function of the
tracer charge zk, of the distance between surface L and of a screening length α−1 ana-
loguous to the Debye length. Such variations can be seen in 5.a; the inset of this figure
also reports the dispersion factor f (αL,zk).

Moment propagation has also been used to investigate the diffusion of charged
tracers through charged porous media67. 5.b reports the effective diffusion coefficient
of charged tracers through the pores of a compact FCC lattice of negatively charged
spheres. Results are given as a function of the ionic stength of the saturating fluid,
expressed in terms of the ratio between the Debye length and the radius of the spheres.
These pore-scale simulations allowed to relate the effective diffusion coefficient to the
microscopic pathways followed by tracers of different charge. Cations are confined to
the diffuse layers in the vicinity of the surfaces, and explore a small, connected fraction
of the pores, while anions are mainly located near the center of large pores and must
overcome an electrostatic barrier to go from one pore to the next. This interpretation
is also confirmed by the characteristic time scale required for each tracer to explore its
accessible porosity (see insert of 5b).

5 Outlook
In this article we have focused on the different modelling approaches to tackle dynam-
ical phenomena in charged heterogeneous materials. The study of electrokinetics in
these materials poses a number of challenges due to the different length and time scales
involved The methods described are complementary in their goals, and provide a set
of simulation tools to address a variety of phenomena, ranging from the fundamental
understanding of boundary conditions and the role of ion correlations to the analysis
of long-range pattern formation mediated by electric and flow coupling. These new
methods, which capture the coupling of solvent flow with electrolyte diffusion and mi-
gration have proven a valuable tool to understand the interplay between these different
phenomena. In the selected examples, we have shown that such a dynamic coupling
is a key factor to understand some of the features observed experimentally, and that a
proper handling of these phenomena is necessary to describe the dynamics in hetero-
geneous charged materials. The insight gained and the methods developed in recent
years provide a useful starting point to explore a wide range of challenging problems.
This includes for example the relevance of electrokinetics in cellular processes, such as
the effects of charge transport in biological membranes and their role in the stability of
such structures, or the electro-osmotic effects related to transport through ion channels.
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