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Counting packings of generic subsets in finite groups

Roland Bacher

November 3, 2010

Abstract1: A packing of subsets S1, . . . ,Sn in a group G is a sequence

(g1, . . . , gn) such that g1S1, . . . , gnSn are disjoint subsets of G. We give a

formula for the number of packings if the group G is finite and if the subsets

S1, . . . ,Sn satisfy a genericity condition.

1 Introduction

A (left-)packing of n non-empty subsets S1, . . . ,Sn in a group G is an element
(g1, . . . , gn) ofG

n such that the left-translates g1S1, g2G2, . . . , gnGn of the sets
Si are disjoint. IfG is a finite group withN elements, the number of packings
of S1, . . . ,Sn is bounded by Nn and thus finite. The sets S1,S2, . . . are
labelled by their indices. In particular, permuting the elements g1, . . . , gn of
a packing (g1, . . . , gn) ∈ Gn of S1 = S2 = · · · = Sn yields a different packing.
Moreover, in the case where S1 for example is of the form S1 = HS1 for
some subgroup H of G, a packing (g1, . . . , gn) gives rise to ♯(H) distinct
packings (hg1, g2, . . . , gn), h ∈ H.

Given (a1, . . . , an) ∈ Gn, remark that there is an obvious one-to-one map
between packings of S1, . . . ,Sn ⊂ G and packings of a1S1, . . . , anSn ⊂ G.

This paper deals with enumerative properties of left-packings. Using the
involutive antiautomorphism g 7−→ g−1, its content can easily be modified
in order to deal with right-packings S1g1, . . . ,Sngn.

Counting packings of arbitrary subsets S1, . . . ,Sn in finite groups is prob-
ably difficult. There are however easy upper and lower bounds:

Proposition 1.1. Let α = α(G;S1, . . . ,Sn) denote the number of packings
of subsets S1, . . . ,Sn in a finite group G with N elements. Given an addi-
tional subset Sn+1 of G, we denote by α̃ = α̃(G;S1, . . . ,Sn,Sn+1) the number
of packings of S1, . . . ,Sn,Sn+1. We have

(

N − ♯(Sn+1)

n
∑

i=1

♯(Si)

)

α ≤ α̃ ≤

(

N −
n
∑

i=1

♯(Si)

)

α .

1Keywords: Packings in groups, additive combinatorics, additive number theory, Stir-

ling number, enumeration of hypertrees Math. class: 05C30, 11B73, 11P99
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In particular, we have

α̃ =

(

N −
n
∑

i=1

♯(Si)

)

α (1)

if Sn+1 is a singleton.

A family S1, . . . ,Sn of subsets in a group G with identity element e is
generic if for every sequence i1, . . . , ik of k ≤ n distinct elements in {1, . . . , n}
and for every choice of elements gij ∈ S−1

ij
Sij \ {e}, we have

gi1gi2 · · · gik 6= e .

Otherwise stated, a subset S1, . . . ,Sn of a group G is generic if every non-
trivial relation, written as a word with letters in the alphabets Gi = S−1

i Si \
{e}, in the subgroup generated by the sets G1, . . . ,Gn involves at least two
elements in one of the sets G1, . . . ,Gn.

In the case of an additive abelian group G, the genericity condition boils
down to the fact that the subset (S1 − S1) × · · · × (Sn − Sn) of the group
Gn intersects the subgroup {(x1, . . . , xn) ∈ Gn |

∑n
i=1 xi = 0} of Gn only in

the identity element (0, . . . , 0).

Remark 1.2. A generic family S1, . . . ,Sn of subsets in the additive group
Z with prescribed cardinalities si = ♯(Si) can be constructed by starting with
S1 = {0, . . . , s1−1} and by defining Si recursively as Si = {0, ki, 2ki, . . . , (si−
1)ki} where ki is an arbitrary natural integer strictly larger than

∑i−1
j=1max(Sj)−

min(Sj). A generic family is thus for example given by the sets S1 =
{0, 1},S2 = {0, 2}, . . . ,Si = {0, 2i−1}, . . . ,Sn = {0, 2n−1}.

Reducing such a generic family modulo a natural integer N yields a
generic family in the finite group Z/NZ except if N is a divisor of a non-zero
integer in the finite set {

∑n
i=1 Si − Si}.

The aim of this paper is to describe a universal formula for the number
of packings for a generic family of subsets S1, . . . ,Sn in a finite group G.
The number of associated packings depends then only on the cardinalities
of G and S1, . . . ,Sn. A trivial example is given by n subsets reduced to
singletons. The associated number of packings in a finite group with N
elements is then easily seen to be given by n!

(

N
n

)

= N(N−1) · · · (N−n+1).
The study of generic packings in groups is, as far as I am aware, a

new addition to the already large set of classical notions of packings. Well-
known and well-studied examples are Euclidean lattice-packings and sphere-
packings in metric spaces. The corresponding theory has however a different
flavour since one tries to pack a huge (often infinite) number of spheres as
tightly as possible. Packings of generic families in finite groups are not dense
at all: Typically the cardinalities of the sets Si ⊂ G of a generic family are
very small compared to the cardinality N of G and we are not interested
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in density but in enumerative properties. Another source of packing-related
notions is additive and elementary number theory: The existence of an
infinity of twin primes for example is obviously equivalent to the question
whether the set P ∩ (2+P) is infinite with P ⊂ Z denoting the set of prime
numbers.

Concerning the dual notion of packings, the following question is natural:
Is there an interesting notion for generic packings in arbitrary groups?

The rest of the paper is organized as follows: Section 2 contains the
main result, Theorem 2.1. It expresses the number of packings of a generic
family S1, . . . ,Sn in a finite group in terms of a formal power series U =
U(x, σ1, σ2, . . . ) ∈ A[[x]] with coefficients in the ring A = Z[σ1, σ2, . . . ]
of polynomials in elementary symmetric functions σ1, σ2, . . . defined by
∑∞

k=0 σkt
k =

∏n
j=1(1 + ♯(Sj)t). The series U is given explicitely by for-

mula (4) and involves combinatorial integers ti,j(n) (defined recursively by
formula (3)) which extend Stirling numbers of the first kind. The first few
coefficients of U are given by

1− σ2x− ((1− σ1)σ3 + σ4)x
2

−((2− 3σ1 + σ2
1)σ4 + (5− 3σ1)σ5 + 3σ6)x

3

−((6− 11σ1 + 6σ2
1 − σ3

1)σ5 + (26 − 26σ1 + 6σ2
2)σ6

+(35− 15σ1)σ7 + 15σ8)x
4 + . . .

with omitted terms divisible by x5. Theorem 2.1 and Proposition 1.1 imply
easily that U satisfies the functional equation

(1− σ1x)U(x, σ1, σ2, σ3, . . . ) = U(x, 1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) . (2)

Section 3 discusses the combinatorics of packings associated to arbitrary
(not necessarily generic) families S1, . . . ,Sn of subsets in a group.

In Section 4, we refine the results of section 3 by applying them to
generic packings. The underlying combinatorics are then simpler and imply
the existence of a formal power series Ũ(x, σ1, σ2, . . . ) such that the formula

NnŨ(N−1, σ1, σ2, . . . )

(with σ1, σ2, . . . defined by
∑∞

k=0 σkt
k =

∏n
j=1(1+♯(Sj)t)) gives the number

of packings for a generic family S1, . . . ,Sn of n non-empty subsets in a finite
group with N elements. Although this approach does not yield an explicit
formula for Ũ it gives some useful information on the coefficients of Ũ .
Moreover, such a series Ũ is unique and satisfies the functional equation (2)
as an easy consequence (equivalent to identity (1) of Proposition 1.1) of its
very definition.

Section 5 starts with establishing the uniqueness of a solution to the
functional equation (2) under certain conditions satisfied by the series Ũ
considered in Section 4. Since our formulae for the series U satisfy these
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conditions also, it is enough to show that U satisfies the functional equation
(2) in order to prove that it coincides with Ũ . This completes the proof of
Theorem 2.1.

Section 6 uses Theorem 2.1 and its proof for computing the Moebius
function of the poset of finite labelled hypertrees.

Section 7 illustrates the main theorem and its proof by giving a formula
for the weighted number of labelled hypertrees with weights given by the
Moebius function computed in Section 6.

Section 8 deals with computational aspects and examples.
The paper ends with section 9 describing a few experimental observation

concerning arithmetic and analytic properties of the coefficients involved in
U .

2 Main result

We consider the set ti,j(n) of strictly positive integers depending on n ∈
{1, 2, . . . }, indexed by i ∈ {n+1, . . . , 2n}, j ∈ {0, 1, . . . , 2n− i} and defined
recursively by t2,0(1) = 1 and

ti,j(n) = (i− 2)ti−1,j(n − 1) + ti−1,j−1(n− 1) + (i− 3)ti−2,j(n − 1) (3)

for n ≥ 2. We set ti,j(n) = 0 in all other cases, ie. if i ≤ n or j < 0 or
i+ j > 2n.

Given a natural integer n ≥ 1, the set of all
(

n+1
2

)

non-zero integers
ti,j(n) can be organized into a triangular array T (n) with T (n) determining
T (n + 1) recursively by formula (3) reminiscent of the recurrence relation
(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

for binomial coefficients. The first six triangular arrays
T (1), . . . , T (6) are given by

1
1 1
1

2 3 1
5 3
3

6 11 6 1
26 26 6
35 15
15

24 50 35 10 1
154 200 80 10
340 255 45
315 105
105

120 274 225 85 15 1
1044 1604 855 190 15
3304 3325 1050 105
4900 2940 420
3465 945
945

Observe that the first rows of T (1), T (2), . . . coincide, up to signs, with
Stirling numbers of the first kind. This is of course an easy consequence of
the recurrence relation (3).
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We consider the formal power series U ∈ A[[x]] with coefficients in the
ring A = Z[σ1, σ2, σ3, . . . ] of integral polynomials in σ1, σ2, . . . defined by

U(x, σ1, σ2, . . . ) = 1−
∞
∑

n=1

xn
2n
∑

i=n+1

σi

2n−i
∑

j=0

ti,j(n)(−σ1)
j . (4)

Theorem 2.1. The number of packings of a generic family S1, . . . ,Sn of
n non-empty subsets in a finite group G with N elements is given by the
formula

NnU(N−1, σ1, σ2, . . . ) (5)

where
n
∑

i=0

σit
i =

n
∏

j=1

(1 + ♯(Sj)t)

and where the series U(x, σ1, σ2, . . . ) is given by formula (4).

Remark that formula (5) of Theorem 2.1 is polynomial in N for fixed
complex numbers σ1, σ2, . . . such that σn+1 = σn+2 = · · · = 0. Indeed,
the coefficient of xn in U(x, σ1, σ2, . . . ) belongs to the ideal generated by
σn+1, σn+2, . . . , σ2n ∈ Z[σ1, σ2, . . . ].

The proof of Theorem 2.1 is based on combinatorial properties of generic
packings and on a functional equation for U described by the following result
which is an almost obvious consequence of Theorem 2.1 and equality (1) in
Proposition 1.1.

Proposition 2.2. Suppose that Ũ ∈ C[[x, σ1, σ2, . . . ]] gives the number of
packings NnŨ(N−1, σ1, σ2, . . . ) with

∑n
i=0 σit

i =
∏n

j=1(1+ ♯(Sj)t) for every
generic family of n non-empty subsets S1, . . . ,Sn ⊂ G in a finite group G
with N = ♯(G) elements.

We have then

(1− σ1x)Ũ(x, σ1, σ2, σ3, . . . ) = Ũ(x, σ̃1, σ̃2, σ̃3, . . . ) (6)

where σ̃i = σi−1 + σi, using the convention σ0 = 1.

Proof Equation (6) corresponds to equation (1) if σ1, σ2, . . . are sym-
metric elementary functions of a finite set of natural integers. The general
case follows by remarking that the algebra of symmetric polynomials is a
free polynomial algebra on the set of elementary symmetric polynomials. 2

Remark 2.3. Iterating the identity (6) n times with Ũ = U given by formula
(4) we have

U(x, σ1, σ2, . . . )

n−1
∏

j=0

(1− (σ1 + j)x) = U(x, σ̃1, σ̃2, σ̃3, . . . )
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where

σ̃k =

min(k,n)
∑

j=0

(

n

j

)

σk−j .

A particular case is the specialization

U

(

x,

(

n

1

)

,

(

n

2

)

,

(

n

3

)

, . . .

)

=

n−1
∏

j=1

(1− jx)

associated to generic families S1, . . . ,Sn given by n singletons.

3 Combinatorics of packings for arbitrary families

S1, . . . ,Sn of subsets in a group G

Proof of Proposition 1.1 Let S1, . . . Sn be n subsets in a finite group G
with N elements and let Sn+1 be an additional subset of G. A packing of
S1, . . . ,Sn given by (g1, . . . , gn) ∈ Gn extends to a packing (g1, . . . , gn, gn+1) ∈
Gn+1 of S1, . . . ,Sn+1 if and only if gn+1 ∈ G\

(

∪n
i=1giSi(Sn+1)

−1
)

where S−1

denotes the set of inverses. Since giSi(Sn+1)
−1 contains at most ♯(Sn+1)♯(Si)

elements, we have the first inequality.
Consider now a fixed element x ∈ Sn+1. We have

♯
(

∪n
i=1giSi(Sn+1)

−1
)

≥ ♯
(

∪n
i=1giSix

−1
)

= ♯ (∪n
i=1giSi)

Since (g1, . . . , gn) is a packing, we have

♯ (∪n
i=1giSi) =

n
∑

i=1

♯(Si)

showing the second inequality.
Equality (1) is obvious for ♯(Sn+1) = 1. 2

We fix a group G and a family S1, . . . ,Sn of n non-empty subsets in
G. Given an element g = (g1, . . . , gn) of G

n, we consider the corresponding
intersection graph I(g) with vertices 1, . . . , n and edges {i, j} between dis-
tinct vertices i, j if giSi ∩ gjSj 6= ∅ in G. Observe that g = (g1, . . . , gn) in
Gn defines a packing if and only if I(g) is the trivial graph with n isolated
vertices.

Given a finite simple graph Γ with vertices 1, . . . , n and edges E(Γ), we
consider the sets

RΓ = {(g1, . . . , gn) ∈ Gn | giSi ∩ gjSj 6= ∅ for every {i, j} ∈ E(Γ)} .

An element g in Gn belongs thus to RΓ if and only if Γ is a subgraph of
the intersection graph I(g).
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We denote by EΓ the equivalence classes of RΓ defined by (g1, . . . , gn) ∼
(h1, . . . , hn) if gih

−1
i = gjh

−1
j for every edge {i, j} of Γ. Two elements g =

(g1, . . . , gn) and h = (h1, . . . , hn) of RΓ represent thus the same equivalence
class of EΓ if and only if the function i 7−→ gih

−1
i is constant on (vertices of)

connected components.

Proposition 3.1. Suppose that G is a finite group having N elements. We
have then

♯(RΓ) = ♯(EΓ)N
c(Γ)

where c(Γ) denotes the number of connected components of Γ.

Proof We set c = c(Γ) and we denote the connected components of Γ
by Γ1, . . . ,Γc. We get a free action of Gc on RΓ by considering

(a1, . . . , ac) · (g1, . . . , gn) 7−→ (a−1
γ(1)g1, . . . , a

−1
γ(n)gn)

where γ(i) ∈ {1, . . . , c} is defined by the inclusion of the vertex i in the
γ(i)−th connected component Γγ(i) of Γ. This action is transitive and ele-
ments of EΓ are thus in one-to-one correspondence with orbits of this action
on the set Gn. 2

Remark 3.2. Fixing an element (g1, . . . , gn) representing an equivalence
class of EΓ and choosing elements ai,j ∈ Si, aj,i ∈ Sj such that giai,j = gjaj,i
for every edge {i, j} in a spanning forest of Γ, one sees that EΓ consists of
at most (maxi ♯(Si))

2c−2 distinct equivalence classes.

Proposition 3.3. The number α = α(G;S1, . . . ,Sn) of packings of a family
S1, . . . ,Sn in a finite group G with N elements is given by

α =
∑

Γ∈B

(−1)e(Γ)♯(EΓ)N
c(Γ)

where the sum is over the Boolean poset B of all 2(
n

2) simple graphs with
vertices 1, . . . , n and where e(Γ) = ♯(E(Γ)), respectively c(Γ), denotes the
number of edges, respectively connected components, of a graph Γ ∈ B.

Proof Proposition 3.1 shows that it is enough to prove the equality

α =
∑

Γ∈B

(−1)e(Γ)♯(RΓ) .

An element g = (g1, . . . , gn) ∈ Gn defines a packing if and only if its inter-
section graph I(g) is trivial. It provides thus a contribution of 1 to α in this
case since it is only involved as an element of RΓ if Γ is the trivial graph
with isolated vertices 1, . . . , n and no edges.

An element g = (g1, . . . , gn) ∈ Gn with non-trivial intersection graph
I(g) containing e ≥ 1 edges yields a contribution of 0 to α since contributions
coming from the 2e−1 subgraphs of I(g) containing an even number of edges
cancel out with contributions associated to the 2e−1 subgraphs having an
odd number of edges. 2
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Remark 3.4. Introducing

αΓ = {g ∈ Gn | I(g) = Γ} ,

we have α = αT where T denotes the trivial graph with n isolated vertices
1, . . . , n. The above proof of Proposition 3.3 computes α by applying Moebius
inversion (more precisely, its dual form, see Proposition 3.7.2 of [4])

α =
∑

Γ∈B

µ(Γ)♯(RΓ)

(with µ(Γ) = (−1)e(Γ) denoting the Moebius function of the Boolean lattice
B of all simple graphs on 1, . . . , n) to the numbers

♯(RΓ) =
∑

Γ⊂Γ′

αΓ′

given by Proposition 3.1.

4 Proving the existence of U

We consider a fixed generic family of n non-empty finite subsets S1, . . . ,Sn

in a finite group G having N elements.
In this section we prove the existence of a series Ũ(x, σ1, σ2, . . . ) such

that the number of associated packings is given by

NnŨ(N−1, σ1, σ2, . . . )

(see equation 5) with σ1, σ2, . . . defined by
∑n

i=0 σit
i =

∏n
j=1(1 + ♯(Sj)t).

We recall that a simple graph Γ is a block graph (or a cordal and diamond-
free graph) if all its cycles occur in maximal cliques (ie. in maximal com-
plete subgraphs) of Γ. Block graphs can be identified with hyperforests, see
Section 7. Examples are given by forests and disjoint unions of complete
graphs.

Proposition 4.1. All intersection graphs I(g), g ∈ Gn associated to a
generic family S1, . . . ,Sn ⊂ G are block graphs.

Proof Consider an oriented cycle formed by k cyclically consecutive
vertices i1, i2, . . . , ik−1, ik, ik+1 = i1 of I(g). For every j ∈ {1, . . . , k} there
exist thus two (not necessarily distinct) elements aij , bij ∈ Sij such that
gijaij = gij+1

bij+1
. This implies the relation

gi1ai1(gi2bi2)
−1 · · · gikaik(gi1bi1)

−1 = e . (7)

Setting cij = b−1
ij

aij , relation (7) is equivalent to the relation ci1 · · · cik = e

with cij ∈ S−1
ij

Sij . Genericity of the family S1, . . . ,Sn shows aij = bij for all
j and the sets gijSij intersect in the common element gi1ai1 = · · · = gikaik .
All vertices i1, . . . , ik of I(t) are thus adjacent and contained in a maximal
clique of I(t). 2
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Lemma 4.2. The intersection giSi ∩ gjSj associated to an edge {i, j} in
an intersection graph I(g) is reduced to a unique element if S1, . . . ,Sn is a
generic family of G.

Proof Otherwise there exist two distinct elements ai, bi ∈ Sj and two
distinct elements aj, bj ∈ Sj such that giai = gjaj and gibi = gjbj . This
implies the relation a−1

i bib
−1
j aj = e in contradiction with the definition of

genericity. 2

Proposition 4.3. Let S1, . . . ,Sn be a generic family of subsets in a group
G and let Γ be a block graph with vertices 1, . . . , n.

We have

♯(EΓ) =
n
∏

j=1

(♯(Sj))
dh(j)

where dh(j) denotes the number of non-trivial maximal cliques containing j.

Proof Let g ∈ Gn represent a class of EΓ. The proof of Proposition 4.1
and Lemma 4.2 show that each maximal clique of Γ with vertices i1, . . . , ik
corresponds to a unique element a =

⋂k
j=1 gijSij of G. This defines maps

g −→ g−1
ij

a which depend only on the class of g in EΓ and extend to a map

from EΓ to
∏n

j=1 S
dh(j)
j which is one-to-one. 2

Proposition 4.4. There exists a series Ũ ∈ Z[x, σ1, σ2, . . . ] such that the
number of packings of a generic family S1, . . . Sn of n non-empty subsets in
a finite group G with N elements is given by

NnŨ(N−1, σ1, σ2, . . . )

where
∑n

i=0 σit
i =

∏n
j=1(1 + ♯(Sj)t).

Moreover, every monomial in σ1, σ2, . . . contributing to the coefficient
xk of Ũ is divisible by an element of the set {σk+1, · · · , σ2k} and is of degree
at most 2k with respect to the grading given by deg(σi) = i for i = 1, 2, . . . .

Proof Using Moebius inversion in the poset of block graphs (ordered by
inclusion) with n labelled vertices 1, . . . , n, one gets an expression for the
number of packings which involves only symmetric functions of ♯(S1), . . . , ♯(Sn)
by Proposition 4.3. The contribution to Nn−k for k ≥ 1 comes only from
block graphs involving k + c non-isolated vertices in exactly c non-trivial
connected components. Such a block graph contributes a monomial divisi-
ble by σk+c. Since c ≤ k+c

2 , the degree of such a monomial contribution is
maximal and equals 2k if and only if Γ is a forest consisting of k disjoint
edges involving 2k vertices. 2

Proposition 4.5. Let Ũ ∈ Z[[x, σ1, σ2, . . . ]] be a series such that NnŨ(N−1, σ1, σ2, . . . )
is the number of packings for every generic family S1, . . . ,Sn of n non-empty
subsets in a finite group G with N elements. Then Ũ is unique and satisfies
the functional equation (6) of Proposition 2.2.
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Proof If Ũ1 6= Ũ2 are two such series, the difference

D =

∞
∑

n=0

Dnx
n = Ũ1(x, σ1, σ2, σ3, . . . )− Ũ2(x, σ1, σ2, σ3, . . . )

is not identically zero. Thus there exists an integer n such that the poly-
nomial Dn ∈ C[σ1, σ2, . . . , σ2n] is non-zero. The definition of Ũi shows that
the symmetric polynomial Pn(s1, . . . , s2n) obtained by the polynomial sub-
stitution given by

∑2n
k=0 σkt

k =
∏2n

j=1(1 + sjt) in Dn is identically zero for
all s1, . . . , s2n ∈ N. This implies Pn(s1, . . . , s2n) = 0 and Dn = 0 since P
determines Dn ∈ C[σ1, . . . , σ2n] uniquely.

Proposition 2.2 states that Ũ satisfies the functional equation (6). 2

5 Proof of Theorem 2.1

Proposition 5.1. There exists at most a unique series Ũ ∈ Z[[x, σ1, σ2, . . . ]]
with the following properties:

(i) Ũ satisfies the identity (6) of Proposition 2.2,
(ii) Ũ is of the form Ũ = 1 +

∑∞
n=1 anx

n with an ∈ Z[σ1, σ2, . . . ] a
polynomial of degree ≤ 2n with respect to the grading deg(σi) = i and an is
an element of the ideal generated by σn+1, σn+2, σn+3, . . . .

Proof Consider D = Ũ1 − Ũ2 =
∑∞

n=1 Dnx
n for two different series

Ũ1, Ũ2 satisfying the conditions of Proposition 5.1. Let n ≥ 1 be the smallest
integer such that Dn 6= 0. Let m ≥ n+ 1 be the smallest integer such that
Dn =

∑2n
k=m σkCn,k with Cn,k ∈ C[σ1, σ2, . . . ] and Cn,m 6= 0. Since Dn is

of degree ≤ 2n with respect to the grading given by deg(σi) = i, we have
Cn,m ∈ C[σ1, . . . , σ2n−m] ⊂ C[σ1, . . . , σn−1].

Equation (6) and minimality of n imply

Dn(1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) = Dn(σ1, σ2, σ3, . . . )

or equivalently

2n
∑

k=m

(σk−1+σk)Cn,k(1+σ1, σ1+σ2, σ2+σ3, . . . ) =
2n
∑

k=m

σkCn,k(σ1, σ2, σ3, . . . ) .

Comparison of both sides modulo the ideal I generated by σm, σm+1, σm+2, . . .
gives

Cn,m(1 + σ1, σ1 + σ2, σ2 + σ3, . . . ) = 0

contradicting Cn,m 6= 0. 2.

Proposition 5.2. The series U defined by formula (4) satisfies equation
(6) of Proposition 2.2.
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Proof Remark first that both series (1 − σ1x)U(x, σ1, σ2, . . . ) − 1 and
U(x, 1 + σ1, σ1 + σ2, . . . )− 1 are linear in σ2, σ3, . . . . Considering the coeffi-
cient of σiσ

j
1x

n of both series, equation (6) amounts to the identity

ti,j(n) + ti,j−1(n− 1) =

n
∑

k=j

(−1)k+j

(

k

j

)

(ti,k(n) + ti+1,k(n))

or equivalently to

ti,j(n) + ti,j−1(n− 1) =
∑

k

(−1)k+j

(

k

j

)

(ti,k(n) + ti+1,k(n)) (8)

where
∑

k f(k) =
∑

k∈Z f(k) since
(

k
j

)

(ti,k(n) + ti+1,k(n)) = 0 for k < j or
k ≥ n. We prove (8) by induction on n. Setting ti,j(0) = 0 it holds for n = 1
and n = 2. Applying the recursion relation (3) which holds for all i, j ∈ Z if
n ≥ 2 to the right-hand side

R =
∑

k

(−1)k+j

(

k

j

)

(ti,k(n) + ti+1,k(n))

of (8) we get

R =

n
∑

k=j

(−1)k+j

(

k

j

)

(

(i− 2)ti−1,k(n− 1) + ti−1,k−1(n− 1) + (i− 3)ti−2,k(n − 1)

+(i− 1)ti,k(n− 1) + ti,k−1(n− 1) + (i− 2)ti−1,k(n− 1)
)

= L+ C

where

L = (i− 2)
∑

k

(−1)k+j

(

k

j

)

(ti−1,k(n− 1) + ti,k(n − 1))

+
∑

k

(−1)k+j−1

(

k

j − 1

)

(ti−1,k(n− 1) + ti,k(n− 1))

+(i− 3)
∑

k

(−1)k+j

(

k

j

)

(ti−2,k(n− 1) + ti−1,k(n− 1))

11



and

C = −
∑

k

(−1)k+j−1

(

k

j − 1

)

(ti−1,k(n− 1) + ti,k(n− 1))

+
∑

k

(−1)k+j

(

k

j

)

(ti−1,k−1(n− 1) + ti,k−1(n− 1))

+
∑

k

(−1)k+j

(

k

j

)

(ti,k(n− 1) + ti−1,k(n− 1))

=
∑

k

(−1)k+j

(

k

j − 1

)

(ti−1,k(n− 1) + ti,k(n− 1))

+
∑

k

(−1)k+j

(

k

j

)

(ti−1,k(n− 1) + ti,k(n− 1))

−
∑

k

(−1)k+j

(

k + 1

j

)

(ti−1,k(n− 1) + ti,k(n− 1))

=
∑

k

(−1)k+j

((

k

j − 1

)

+

(

k

j

)

−

(

k + 1

j

))

(ti−1,k(n− 1) + ti,k(n− 1))

= 0

Using induction on n and applying (8) we get

L = (i− 2)(ti−1,j(n− 1) + ti−1,j−1(n− 2))

+(ti−1,j−1(n− 1) + ti−1,j−2(n− 2))

+(i− 3)(ti−2,j(n− 1) + ti−2,j−1(n− 2))

We have thus

L = (i− 2)ti−1,j(n− 1) + ti−1,j−1(n− 1) + (i− 3)ti−2,j(n− 1)

+(i− 2)ti−1,j−1(n − 2) + ti−1,j−2(n− 2) + (i− 3)ti−2,j−1(n− 2)

and applying (3) we get

L = ti,j(n) + ti,j−1(n− 1)

which is the left-hand-side involved in (8). 2

Proof of Theorem 2.1 By Proposition 5.2, the series U defined by
formula (4) satisfies condition (i) of Proposition 5.1. It satisfies condition
(ii) by construction. By Proposition 4.5 it coincides with the series Ũ given
by Proposition 4.4. 2

6 The Moebius function for the poset of block

graphs

Let P be a poset (partially ordered set) with a unique minimal element
m such that {y ∈ P | y < x} is finite for all x ∈ P. This allows the

12



definition of a Moebius function µ given recursively by µ(m) = 1 and µ(x) =
−
∑

y<x µ(y) for all x > m. Given a function f : P −→ C with finite support,
the value f(m) can then be recovered from the function g(x) =

∑

y≥x f(y)
using Moebius inversion

f(m) =
∑

x∈P

µ(x)g(x) ,

see Proposition 3.7.2 of [4] (we use only the values µ(m,x) of the Moebius
function and write µ(x) = µ(m,x) in analogy with the usual, well-known
number-theoretic Moebius function of natural integers). Moebius inversion
was the main ingredient in the proof of Proposition 4.4. We did however
not compute the Moebius function for the poset HF (with HF standing
for HyperForest, see Remark 6.2 and Section 7) of all block graphs (ordered
by inclusion) with vertices 1, 2, 3, 4, . . . and finitely many edges. The poset
HF has a minimal element given by the trivial graph having only isolated
vertices. The subset

{Γ′ ∈ HF | Γ′ ⊂ Γ}

of all block subgraphs of a fixed block graph Γ ∈ HF with n edges contains
at most 2n elements given by removing suitable subsets of edges from Γ. The
poset HF has thus a Moebius function which is described by the following
result.

Proposition 6.1. The Moebius function µ(Γ) on a vertex-labelled block
graph Γ with respect to the poset HF of all vertex-labelled block graphs having
finitely many edges is given by

µ(Γ) =
∏

j≥2

(−(j − 2)!)κj

where κj denotes the number of maximal cliques with j vertices in Γ.

Remark 6.2. The poset HF coincides with the poset of all hyperforests
(ordered by inclusion) having vertices N and a finite number of hyperedges.
It is in fact a lattice with wedge Γ1 ∧ Γ2 given by the intersection and join
Γ1∨Γ2 given by the smallest block graph containing Γ1 and Γ2 as subgraphs.

Proof Remark first that the order relation on the poset of all (vertex-
labelled) block subgraphs of Γ is the product over all order-relations on
block graphs induced by maximal cliques of Γ. We have thus µ(Γ) =
∏

j≥2(µ(Kj))
κj where Kj is a complete subgraph on j labelled vertices and

where κj is the number of maximal cliques with j vertices in Γ.
In order to compute µ(Kj), the combinatorial description for the exis-

tence of a suitable series Ũ given by the proof of Proposition 4.4 shows
that µ(Kj+1) is given by the coefficient of σj+1x

j in U . By Theorem
2.1 whose proof does not depend on Proposition 6.1 this coefficient equals
−tj+1,0(j) = −(j − 2)! where the last identity follows easily from formula
(3) defining ti,j(n) recursively. 2

13



Remark 6.3. It would be interesting to have a simple direct proof that
µ(Kn) = −(n− 2)! for a complete graph Kn with n ≥ 2 vertices in the poset
HF .

7 Enumeration of weighted hypertrees

A hypergraph is a generalized graph with edges replaced by hyperedges de-
fined as finite subsets of at least two vertices. Calling n−simplex a hyperedge
with n + 1 vertices, allowing simplices reduced to one vertex and adding a
closure property we get the definition of a simplicial complex.

A path in a hypergraph is a finite sequence v0, v1, . . . , vn of vertices
such that vi−1 and vi belong to a common hyperedge for i = 1, . . . , n.
A hypergraph is connected if every pair v,w of vertices can be joined by
a path v0 = v, v1, . . . , vn = w. A cycle of a hypergraph is a cyclic path
v0, v1, . . . , vn−1, vn = v0 of n distinct vertices such that the n ordinary edges
{vi, vi+1}, i = 0, . . . , n−1 belong to n distinct hyperedges. A hyperforest is a
hypergraph without cycles. A connected hyperforest is a hypertree. Associ-
ating to every maximal clique of a block graph the hyperedge with the same
vertices we get a one-to-one map between block graphs and hyperforests.

We recall that Stirling numbers of the second kind S2(n, k), defined by
the equality

et(e
x−1) =

∞
∑

n=0

xn

n!

(

n
∑

k=0

S2(n, k)t
k

)

,

count the number of partitions of {1, . . . , n} into k non-empty subsets. The
following result, first proven by Husimi, see [2] or [1] generalizes Cayley’s
theorem (corresponding to the case k = n−1 of ordinary trees) to hypertrees.

Theorem 7.1. (Husimi) The number of hypertrees with k hyperedges and
n labelled vertices is given by

nk−1S2(n − 1, k) .

Identifying hypertrees with the corresponding block graphs and introduc-
ing the resulting Moebius function µ(T ) =

∏

j≥2(−(j− 2)!)κj of a hypertree
having κj hyperedges involving j vertices for j ≥ 2 we have the following
result:

Theorem 7.2. We have

(−1)n
∑

T∈T (n,k)

µ(T ) = nk−1S1(n− 1, k)

where T (n, k) denotes the set of all labelled hypertrees with n vertices and k
hyperedges and where S1(n, k) denotes the Stirling number of the first kind
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defined by

n
∑

k=0

S1(n, k)x
k = x(x− 1)(x − 2) · · · (x− n+ 1) =

n−1
∏

j=0

(x− j) .

Proof Each hypertree T with vertices 1, . . . , n consisting of k hyperedges

yields a contribution of µ(T )
∏n

i=1 s
degh(i)
i (with degh(i) denoting the number

of hyperedges containing the vertex i) to the coefficient (−1)ktn,k−1(n−1) =
−(−1)nS1(n− 1, k) of the monomial σnσ

k−1
1 xn−1 in U and all contributions

are of this form. Setting s1 = s2 = · · · = sn = 1 yields the result. 2

8 Computational aspects and examples

The computation of U(x, σ1, σ2, . . . ) up to o(xn) is straightforward using the
recurrence relation (3). For a given fixed numerical value of σ1, the following
trick reduces memory requirement and speeds the computation up: Setting

cn(σ1) = (γn+1(σ1, n), γn+2(σ1, n), . . . , γ2n(σ1, n))

with γi(σ1, n) =
∑n−1

j=0 ti,j(n)(−σ1)
j we have

U(x, σ1, σ2, . . . ) = 1−
∞
∑

n=1

〈cn(σ1), (σn+1, . . . , σ2n)〉x
n

where 〈a, b〉 =
∑n

i=1 aibi for a = (a1, . . . , an) and b = (b1, . . . , bn). The coef-
ficients γi(σ1, n) of cn(σ1) can be computed from the coefficients of cn−1(σ1)
by the formula

γi(σ1, n) = (i− 2− σ1)γi−1(σ1, n− 1) + (i− 3)γi−2(σ1, n− 1)

with missing coefficients omitted in the case of i = n+ 1 or i = 2n.
The coefficients of the first vectors c1(0), c2(0), c3(0), . . . are given by the

rows of
1
1 1
2 5 3
6 26 35 15

24 154 340 315 105 ,

see A112486 of [3].

8.1 The examples U(x,−1,−1,−1, . . . ) and U(x, 0,−1,−1,−1, . . . )

The series
U(x,−1,−1,−1,−1, . . . )− 1
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is the generating series of the sequence

S(n) =
∑

i,j

ti,j(n)

enumerating the sums of the triangles T (n) defined by the integers ti,j(n).
We have

(1 + x)U(x,−1,−1,−1,−1, . . . )

= U(x, 0,−2,−2,−2,−2, . . . )

= 2U(x, 0,−1,−1,−1,−1, . . . )− 1

where U(x, 0,−1,−1,−1, . . . )−1 corresponds to the generating series of the
sequence

s(n) =

2n
∑

i=n+1

ti,0(n)

starting as

1, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, . . . ,

cf. A112487 of [3], and obtained by summing the integers of the first column
of the triangles T (1), T (2), . . . . In particular, we have 2s(n) = S(n−1)+S(n)
or equivalently

2
2n
∑

i=n+1

ti,0(n) =
2n
∑

i=n+1

2n−i
∑

j=0

ti,j(n) +
2n−2
∑

i=n

2n−2−i
∑

j=0

ti,j(n− 1)

for all n ≥ 2.

8.2 A family of rational examples

Proposition 8.1. Let σ1, σ2, . . . be a sequence of complex numbers of the
form σn = (−1)nP (n) for all n ≥ A where A is some natural integer and
where P (s) ∈ C[s] is a polynomial. Then U(x, σ1, σ2, . . . ) is a rational series.

Proof Let d denote the degree of P . Applying identity (6) of Proposition
2.2 iteratively d+1 times we get a series of the form U(x, σ̃1, σ̃2, . . . , σ̃A+d+2, 0, 0, 0, . . . )
which is a polynomial. 2

As an illustration we consider the series U(x, y, 1,−1, 1, . . . ). Proposition
2.2 shows

(1− xy)U(x, y, 1,−1, 1,−1, . . . ) = (U(1 + y, 1 + y, 0, 0, . . . ) = 1− (1 + y)x .

We have thus U(x, y, 1,−1, 1, . . . ) = 1− x
1−xy

.
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8.3 Coefficients of U(x, σ1, P (2), P (3), P (4), . . . )

Proposition 8.2. Let P (s) ∈ C[s] be a polynomial of degree d. There exist
constants α0, . . . , αd ∈ C such that

[xn]U(x, σ1, P (2), P (3), P (4), . . . ) =
d
∑

h=0

αh[x
n+h]U(x, σ1, 1, 1, 1, 1, 1, . . . )

for all n ≥ 1 with [xn]U denoting the coefficient of xn in the series U .

Proof The proof is by induction on d and holds certainly for d = 0.
Setting γi(n) =

∑2n
j=n+1 ti,j(n)(−σ1)

j we have

0 = −idγi(n+ 1) + id(i− 2− σ1)γi−1(n) + id(i− 3)γi−2(n)

= −idγi(n+ 1) + (i− 1)d+1γi−1(n) + (i− 2)d−2γi−2(n) +

+Q1(i− 1)γi−1(n) +Q2(i− 2)γi−2(n)

where Q1 and Q2 are polynomials of degree ≤ d.
Summing over i (for a fixed integer n) and using induction on d implies

the result. 2

9 Modular properties

Proposition 9.1. The series U(x, σ1, σ2, . . . ) ∈ Fp[[x]] is rational if σ1, σ2, . . .
is an ultimately periodic sequence of elements in Fp.

Proof Since we work over Fp, one can restrict the indices i, j of the
coefficients ti,j(n) to finite subsets. This implies that the coefficients of
U(x, σ1, . . . ) are ultimately periodic. 2

The easiest non-trivial case of Proposition 9.1 is perhaps given by the
generating series U(x, 0,−1,−1,−1, . . . )− 1 associated to the sequence

s(n) =
2n
∑

i=n+1

ti,0(n) = 1− U(x, 0,−1,−1,−1, . . . )

obtained by summing all coefficients in the first column of the triangular
arrays T (1), T (2), . . . .

Experimentally, there exists seemingly a sequence

α0 = −1, α1 = 2, α2 = 0, α3 =
1

3
, α4 =

5

18
, α5 =

149

540
, α6 =

553

2025
,

α7 =
1849741

6804000
, α8 =

775167119

2857680000
, α9 =

325214957371

1200225600000
, . . .

of rational numbers such that

(

1 + xp−1
)

∞
∑

n=1

s(n)xn ≡

p−1
∑

n=0

αnx
p−n (mod p)
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for every prime number p.
The rational sequence α0, α1, . . . has experimentally an asymptotic ex-

pansion given by

αn ∼
∞
∑

k=1

kk−n

k!

(

2

e2

)k

.

In particular, it seems to converge to

2

e2
= .27067056647322538378799 . . . .

The generating series
∑∞

n=0 αnx
n seems to have a positive real root approx-

imatively given by

.469988171695013162992878063240573355384683977952459810170161 .

The error term

ǫn = αn −
∞
∑

k=1

kk−n

k!

(

2

e2

)k

seems to be of the form

ǫn ∼
(−1)n+1

s(n+ 1)
C(n)

with C(n) = γ0 −
1

12n2 + γ4
n4 + γ6

n6 + · · · ∈ R[ 1
n2 ] where

γ0 ∼ 3.25889135327093

γ4 ∼ −.0120865999417078

γ6 ∼ .0312295100177430

More (probably correct) digits for γ0 are given by

3.25889135327092945459791735692 .

Remark 9.2. The constant γ0 appearing in the error term C(n) seems also
to be related to the maximal index mn such that tmn,0(n) = maxi(ti,0(n))
with mn given asymptotically by γ0

2 and it seems also to be involved in the
asymptotics of s(n), given experimentally by

s(n) ∼
(nγ0

e

)n∑

k≥1

γ̃kn
−k

where γ0 ∼ 3.258891 . . . is as above and where

γ̃1 ∼ .553942974899091

γ̃2 ∼ .239725616524017

γ̃3 ∼ .099867601803607 .
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