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Introduction

The finite element method is often used for the numerical approximation of partial differential equations, see, e.g., [START_REF] Brenner | The mathematical theory of finite element methods[END_REF][START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. In many engineering applications, adaptive techniques based on a posteriori error estimators have become an indispensable tool to obtain reliable results. Nowadays there exists a vast amount of literature on locally defined a posteriori error estimators for problems in structural mechanics. We refer to the monographs [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Babuška | The finite element methods and its reliability[END_REF][START_REF] Neittaanmaäki | Reliable methods for computer simulation: error control and a posteriori error estimates[END_REF][START_REF] Verfurth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] for a good overview on this topic. In general, upper and lower bounds are established in order to guarantee the reliability and the efficiency of the proposed estimator. Most of the existing approaches involve constants depending on the shape regularity of the elements; but these dependencies are often not given. Only a small number of approaches gives rise to estimates with explicit constants, see, e.g., [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Braess | Equilibrated residual error estimator for edge elements[END_REF][START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF][START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF][START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF][START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF][START_REF] Luce | A local a posteriori error estimator based on equilibrated fluxes[END_REF][START_REF] Neittaanmaäki | Reliable methods for computer simulation: error control and a posteriori error estimates[END_REF][START_REF] Nicaise | An a posteriori error estimator for the Lamé equation based on equilibrated fluxes[END_REF]. However in practical applications the knowledge of such constants is of great importance, especially for adaptivity.

The finite element approximation of the Reissner-Mindlin system recently became an active subject of research due to its practical importance and its non trivial challenges to overcome. In particular, appropriated finite elements have to be used in order to avoid shear locking. Such elements are in our days well known and different a priori error estimates are available in the literature. On the contrary for a posteriori error analysis only a small number of results exists, we refer to [START_REF] Beirão Da Veiga | A-priori and aposteriori error analysis for a family of Reissner-Mindlin plate elements[END_REF][START_REF] Carstensen | Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element[END_REF][START_REF] Cartensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF][START_REF] Carstensen | Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method[END_REF][START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF][START_REF] Liberman | A posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate[END_REF][START_REF] Lovadina | A posteriori error analysis of the linked interpolation technique for plate bending problems[END_REF][START_REF] Hu | A posteriori error analysis of finite element methods for Reissner-Mindlin plates[END_REF]. Most of these papers enter in the first category mentioned before and to our knowledge only the paper [START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF] proposes an estimator where an upper bound is proved with a constant 1. Hence our goal is to give an estimator that is robust with respect to the thickness parameter t, with an explicit constant in the upper bound, that is also efficient and that is explicitly computable. For these purposes we use an approach based on equilibrated fluxes and H(div )-conforming elements. Similar ideas can be found, e.g., in [START_REF] Braess | Equilibrated residual error estimator for edge elements[END_REF][START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF][START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF][START_REF] Luce | A local a posteriori error estimator based on equilibrated fluxes[END_REF][START_REF] Nicaise | An a posteriori error estimator for the Lamé equation based on equilibrated fluxes[END_REF]. For an overview on equilibration techniques, we refer to [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF].

The outline of the paper is as follows: We recall, in Section 2, the Reissner-Mindlin system, its numerical approximation and introduce some useful quantities. Section 3 is devoted to some preliminary results in order to prove the upper bound. This one directly follows from these considerations and is given in full details in section 4. The lower bound developped in section 5 relies on suitable norm equivalences and by using appropriated H(div ) approximations of the solutions. Finally some numerical tests are presented in section 6, that confirm the reliability and the efficiency of our error estimator.

The boundary value problem and its discretization

Let Ω be a bounded open domain of R 2 with a Lipschitz boundary Γ that we suppose to be polygonal. We consider the following Reissner-Mindlin problem : Given g ∈ L 2 (Ω) defined as the scaled transverse loading function and t a fixed positive real number that represents the thickness of the plate, find (ω, φ)

∈ H 1 0 (Ω) × H 1 0 (Ω) 2 such that a(φ, ψ) + (γ, ∇v -ψ) = (g, v) for all (v, ψ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 , (1) 
where

γ = λ t -2 (∇ω -φ) and a(φ, ψ) = Ω Cε(φ)ε(ψ)dx. (2) 
Here, (• , •) stands for the usual inner product in (any power of) L 2 (Ω), the operator : denotes the usual term-by term tensor product and

ε(φ) = 1 2 (∇φ + (∇φ) T ).
C is the usual elasticity tensor given by

Cε(φ) = 2 µ ε(φ) + λ tr(ε(φ)) I.
The parameters µ, λ and λ are some Lamé coefficients defined according to the Young modulus E and the Poisson coefficient ν of the material. In the following, for shortness the L 

||φ|| ≤ c F |φ| 1 ∀φ ∈ H 1 0 (Ω) 2 .
By Korn's inequality [START_REF] Girault | Finite elements methods for Navier-Stokes equations, Theory and Algorithms[END_REF], a is an inner product on H 1 0 (Ω) 2 equivalent to the usual one. Indeed, defining the energy norm || • || C by

ψ 2 C = a(ψ, ψ) ∀ ψ ∈ H 1 0 (Ω) 2 ,
it can be shown (see annex 7.1) that

|ψ| 2 1 ≤ 1 µ ψ 2 C ∀ ψ ∈ H 1 0 (Ω) 2 . (3) 
Consequently, the continuous problem ( 1)-( 2) is well-posed.

Lemma 2.1

The problem ( 1)-( 2) has a unique solution (ω, φ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 . Proof: Defining the functional F ((ω, φ), (v, ψ)) = a(φ, ψ)+(γ, ∇v-ψ) with γ = λ t -2 (∇ωφ), let us establish its coerciveness, namely that there exists k > 0 such that

F ((ω, φ), [ω, φ]) ≥ k (|ω| 2 1 + |φ| 2 1 ), ∀(ω, φ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 . (4) 
Fix an arbitrary pair (ω, φ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 . First of all, (3) and the standard Cauchy-Schwarz inequality lead to

F ((ω, φ), (ω, φ)) ≥ µ|φ| 2 1 + λt -2 (1 -η)|ω| 2 1 + 1 - 1 η φ 2 , ∀η > 0.
Then we directly obtain

F ((ω, φ), (ω, φ)) ≥ µ 2 |φ| 2 1 + λt -2 (1 -η)|ω| 2 1 + µ 2 c 2 F + λt -2 1 - 1 η φ 2 , ∀η > 0. ( 5 
) Choosing now η = 2c 2 F λt -2 µ + 2c 2 F λt -2 < 1 in (5), we have F ((ω, φ), (ω, φ)) ≥ µ 2 |φ| 2 1 + µ λt -2 µ + 2 c 2 F λt -2 |ω| 2 1 .
3 This shows that (4) holds with k = min

µ 2 , µ λt -2 µ + 2 c 2 F λt -2 .
The conclusion follows from the Lax-Milgram lemma for which the other assumptions to fulfill are obvious.

Let us now consider a discretization of (1)-( 2) based on a conforming triangulation T h of Ω composed of triangles. We assume that this triangulation is regular, i.e., for any element T ∈ T h , the ratio h T /ρ T is bounded by a constant σ > 0 independent of T and of the mesh size h = max T ∈T h h T , where h T is the diameter of T and ρ T the diameter of its largest inscribed ball. We consider on this triangulation the classical conforming P 1 finite element spaces W h × Θ h defined by

W h = v h ∈ C 0 ( Ω); v h = 0 on ∂Ω and v h|T ∈ P 1 (T ) ∀T ∈ T h ⊂ H 1 0 (Ω), Θ h = W h × W h ⊂ H 1 0 (Ω) × H 1 0 (Ω). The discrete formulation of the Reissner-Mindlin problem is now to find (ω h , φ h ) ∈ W h ×Θ h such that a(φ h , ψ h ) + (γ h , ∇v h -R h ψ h ) = (g, v h ) for all (v h , ψ h ) ∈ W h × Θ h , (6) 
with

γ h = λt -2 (∇ω h -R h φ h ). (7) 
Here, R h denotes the reduction integration operator in the context of shear-locking with values in the so-called discrete shear force space Γ h which depends on the finite element involved [START_REF] Bathe | Mixed-interpolated elements for Reissner-Mindlin plates[END_REF][START_REF] Bathe | A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation[END_REF][START_REF] Duran | Error estimates for lower-order isoparametric quadrilateral finite elements for plates[END_REF][START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF][START_REF] Stenberg | An hp error analysis of MITC plate elements[END_REF]. We assume moreover that For all

ψ h ∈ Θ h , R h ψ h ∈ H 0 (rot, Ω),
where

H 0 (rot, Ω) = {v ∈ L 2 (Ω) 2 ; rot v ∈ L 2 (Ω) and v • τ = 0 on ∂Ω}, equipped with the norm v 2 H(rot,Ω) = v 2 Ω + rot v 2 Ω . Here, for any v = (v 1 , v 2 ) T ∈ L 2 (Ω) 2 , rot v = ∂v 2 /∂x -∂v 1 /
∂y and τ is the unit tangent vector along ∂Ω. In this work, R h is defined as the interpolation operator from Θ h on the H 0 (rot, Ω) conforming lower-order Nedelec finite element space [START_REF] Girault | Finite elements methods for Navier-Stokes equations, Theory and Algorithms[END_REF].

By the usual Helmholtz decomposition of any H 0 (rot, Ω) vector field [8, p. 299], there exists w ∈ H 1 0 (Ω) and β ∈ H 1 0 (Ω) 2 such that :

(R h -I)φ h = ∇w -β, (8) 
as well as a constant C > 0 such that

w 1 + β 1 ≤ C (R h -I)φ h H(rot,Ω) .
More precisely, we introduce the constant c R such that

|β| 1 ≤ c R rot(R h -I)φ h ,
which can be evaluated by [START_REF] Girault | Finite elements methods for Navier-Stokes equations, Theory and Algorithms[END_REF] c R = inf

q∈L 2 (Ω)
sup

v∈H 1 0 (Ω) 2 (div v, q) q |v| 1 -1
.

Given the exact solution (ω, φ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 as well as the approximated one (ω h , φ h ) ∈ W h × Θ h , the usual error e rot h is defined as

(e rot h ) 2 = |ω -ω h | 2 1 + |φ -φ h | 2 1 + λ -1 t 2 γ -γ h 2 + λ -2 t 4 rot(γ -γ h ) 2 + γ -γ h 2 -1 . (9) 
The residuals are also defined as follows

Res 1 (v) = (g, v) -(γ h , ∇v) for all v ∈ H 1 0 (Ω), (10) 
Res 2 (ψ) = -a(φ h , ψ) + (γ h , ψ) for all ψ ∈ H 1 0 (Ω) 2 . (11) 
Finally, let us now introduce, in the spirit of [START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF], the spaces N div (Ω) and H div (Ω) respectively defined by

H div (Ω) = {y ∈ L 2 (Ω, R 2 )| div y ∈ L 2 (Ω)}, N div (Ω) = {x ∈ L 2 (Ω, M 2 S )| div x ∈ L 2 (Ω, R 2 )},
where M 2 S is the space of symmetric tensors of second rank. We now fix an arbitrary y * ∈ H div (Ω) such that div y * = -Π h g, where Π h is the projection operator from L 2 (Ω) to the piecewise constant fonctions on the triangulation. Let us also fix x * ∈ N div (Ω) such that div x * = -γ h . Their existence and construction will be explained later on.

We finally need to introduce the following mesh-dependent norm. For all (ψ, v) ∈

H 1 0 (Ω) × H 1 0 (Ω) 2 , we define | (ψ, v)| 2 1,h = ∇ψ 2 + T ∈T h 1 t 2 + h 2 T ∇v -ψ 2 T . (12) 
For all functional F defined on H 1 0 (Ω) × H 1 0 (Ω) 2 , the dual norm associated with ( 12) is classically defined by

| F | -1,h = sup (ψ,v)∈H 1 0 (Ω)×H 1 0 (Ω) 2 \{0} F (ψ, v) | (ψ, v)| 1,h . (13) 

Preliminary results

The aim of this section is to prove four lemmas which will be used in the following of the paper.

Lemma 3.1 Let us consider (α, ε) ∈ (R * + ) 2 . Then we have λ(t -2 -α 2 ) ∇(ω -ω h ) -(φ -R h φ h ) 2 + λα 2 (1 -2ε) ∇(ω -ω h ) 2 ≤ λ -1 t 2 γ -γ h 2 -λα 2 1 - 2 ε φ h -R h φ h 2 -λα 2 1 - 1 ε -ε φ -φ h 2 .
Proof: We first write

∇(ω -ω h ) -(φ -φ h ) -(φ h -R h φ h ) 2 = ∇(ω -ω h ) 2 + φ -φ h 2 + φ h -R h φ h ) 2 -2(∇(ω -ω h ), φ -φ h ) -2(∇(ω -ω h ), φ h -R h φ h ) + 2(φ -φ h , φ h -R h φ h ).
Consequently, we have

λ -1 t 2 γ -γ h 2 = λ(t -2 -α 2 ) ∇(ω -ω h ) -(φ -R h φ h ) 2 + λα 2 ( ∇(ω -ω h ) 2 + φ -φ h 2 + φ h -R h φ h 2 ) + 2 λα 2 (φ -φ h , φ h -R h φ h ) -2λα 2 (∇(ω -ω h ), φ -φ h ) -2 λα 2 (∇(ω -ω h ), φ h -R h φ h ).
Using the three following Young inequalities

             -2(φ -φ h , φ h -R h φ h ) ≤ ε φ -φ h 2 + 1 ε φ h -R h φ h 2 , 2(∇(ω -ω h ), φ -φ h ) ≤ ε ∇(ω -ω h ) 2 + 1 ε φ -φ h 2 , 2(∇(ω -ω h ), φ h -R h φ h ) ≤ ε ∇(ω -ω h ) 2 + 1 ε φ h -R h φ h 2 ,
we get

λ(t -2 -α 2 ) ∇(ω -ω h ) -(φ -R h φ h ) 2 ≤ λ -1 t 2 γ -γ h 2 -λα 2 ∇(ω -ω h ) 2 + φ -φ h 2 + φ h -R h φ h 2 +λα 2 ε φ -φ h 2 + 1 ε φ h -R h φ h 2 + ε ∇(ω -ω h ) 2 + 1 ε φ -φ h 2 +ε ∇(ω -ω h ) 2 + 1 ε φ h -R h φ h 2 = λ -1 t 2 γ -γ h 2 -λα 2 1 - 2 ε φ h -R h φ h 2 -λα 2 1 - 1 ε -ε φ -φ h || 2 -λα 2 (1 -2ε) ∇(ω -ω h ) 2 .
This proves the lemma.

Lemma 3.2 we have γ -γ h 2 -1 ≤ 4 (µ + λ) φ -φ h 2 C + 2 Res 2 2 -1 . (14) 
Proof: First, it can be shown that for any ψ ∈ (H 1 0 (Ω)) 2 ,

ψ 2 C ≤ 2 (µ + λ)|ψ| 2 1 , so that (γ -γ h , ψ) = a(φ -φ h , ψ) + a(φ h , ψ) -(γ h , ψ) = a(φ -φ h , ψ) -Res 2 (ψ) ≤ φ -φ h C ψ C + Res 2 -1 |ψ| 1 ≤ (2 (µ + λ)) 1/2 φ -φ h C + Res 2 -1 |ψ| 1 .
Hence we get

γ -γ h 2 -1 ≤ (2 (µ + λ)) 1/2 φ -φ h C + Res 2 -1 2 ≤ 4 (µ + λ) φ -φ h 2 C + 2 Res 2 2 -1 . Lemma 3.3 φ -φ h 2 C + λ -1 t 2 γ -γ h 2 = Res 1 (ω -ω h + w) + Res 2 (φ -φ h + β) -a(φ -φ h , β),
where w and β are given by the Helmholtz decomposition [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF].

Proof: This result is similar to the one given in [START_REF] Cartensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF]. First, (1) and ( 8) lead to

(γ -γ h , (R h -I)φ h ) = (γ -γ h , ∇w -β) = (γ, ∇w) -(γ, β) -(γ h , ∇w -β) = (g, w) -a(φ, β) -(γ h , ∇w -β) = -a(φ -φ h , β) + (g, w) -a(φ h , β) -(γ h , ∇w -β).
A simple calculation shows that

φ -φ h 2 C + λ -1 t 2 γ -γ h 2 = a(φ -φ h , φ -φ h ) + (γ -γ h , (∇ω -∇ω h ) -(φ -φ h )) + (γ -γ h , (R h -I)φ h ) = (g, ω -ω h ) -a(φ h , φ -φ h ) -(γ h , ∇(ω -ω h )) +(γ h , φ -φ h ) -a(φ -φ h , β) + (g, w) -a(φ h , β) -(γ h , ∇w -β) = Res 2 (φ -φ h + β) + (g, ω -ω h + w) -(γ h , ∇(ω -ω h + w)) -a(φ -φ h , β) = Res 2 (φ -φ h + β) + Res 1 (ω -ω h + w) -a(φ -φ h , β). So we get φ -φ h 2 C + λ -1 t 2 γ -γ h 2 = Res 1 (ω -ω h + w) + Res 2 (φ -φ h + β) -a(φ -φ h , β). Lemma 3.4 1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 λ -1 t 2 γ -γ h 2 + 1 2 T ∈T h λ t 2 + h 2 T ∇(ω -ω h + w) -(φ -φ h + β) 2 T ≤ Res 1 (ω -ω h + w) + Res 2 (φ -φ h + β) + 1 2 β 2 C .
Proof: The proof is once again similar to the one in [START_REF] Cartensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF]. Because of ( 8), we first remark that γ -

γ h = λt -2 (∇ω -∇ω h -φ + φ h + ∇w -β),
so that we have for all

T ∈ T h ∇(ω -ω h + w) -(φ -φ h + β) 2 T ≤ λ -2 t 4 γ -γ h 2 T . Then, 1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 λ -1 t 2 γ -γ h 2 + 1 2 T ∈T h λ t 2 + h 2 T ∇(ω -ω h + w) -(φ -φ h + β) 2 T ≤ 1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 λ -1 t 2 γ -γ h 2 + 1 2 λ -1 t 2 T ∈T h γ -γ h 2 T ≤ λ -1 t 2 γ -γ h 2 + 1 2 a(φ -φ h + β, φ -φ h + β) + 1 2 a(φ -φ h , φ -φ h ) = λ -1 t 2 γ -γ h 2 + 1 2 φ -φ h 2 C + 2a(φ -φ h , β) + β 2 C + 1 2 φ -φ h 2 C = φ -φ h 2 C + λ -1 t 2 γ -γ h 2 + 1 2 β 2 C + a(φ -φ h , β).
From lemma 3.3, we get

1 2 φ -φ h + β 2 C + 1 2 φ -φ h 2 C + 1 2 λ -1 t 2 γ -γ h 2 + 1 2 T ∈T h λ t 2 + h 2 T ∇(ω -ω h + w) -(φ -φ h + β) 2 T ≤ Res 1 (ω -ω h + w) + Res 2 (φ -φ h + β) -a(φ -φ h , β) + 1 2 β 2 C + a(φ -φ h , β) = Res 1 (ω -ω h + w) + Res 2 (φ -φ h + β) + 1 2 β 2 C .
4 Reliability of the estimator Theorem 4.1 Let us consider 0 < ε < 1/2, as well as two parameters ν 1 > 0 and ν 2 > 0.

Moreover, let us define

A(ε) = max 3 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) + 4(µ + λ); 1 + t 2 λ(1 -2ε)
.

Then,

(e rot h ) 2 ≤ A 1 | Res 1 | 2 -1,h + A 2 Res 2 2 -1 + A 3 φ -φ h + β 2 C +A 4 φ h -R h φ h 2 H(rot,Ω) - T ∈T h A T 5 ∇(ω -ω h + w) -(φ -φ h + β) 2 T , (15) 
with

A 1 = ν 1 A(ε) 2 ; A 2 = ν 2 A(ε) 2 + 2; A 3 = 1 µ 1 ν 1 + 1 ν 2 -A(ε); A 4 = max 2 ε -1 1 -2ε ; 2 + 2A(ε)(µ + λ)c 2 R ; A T 5 = λA(ε) t 2 + h 2 T - 1 ν 1 (t 2 + h 2 T ) , ∀ T ∈ T h .
Proof: First of all, by using lemma 3.1 and the fact that 0 < ε < 1/2, we get

(e rot h ) 2 ≤ 1 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) φ -φ h 2 C + 1 + t 2 λ(1 -2ε) λ -1 t 2 γ -γ h 2 + 2 ε -1 1 -2ε φ h -R h φ h 2 + λ -2 t 4 rot(γ -γ h ) 2 + γ -γ h 2 -1 .
Then, because of lemma 3.2 as well as

λ -2 t 4 rot(γ -γ h ) 2 ≤ 2 µ φ -φ h 2 C + 2 rot(φ h -R h φ h ) 2 ,
we obtain

(e rot h ) 2 ≤ 3 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) + 4(µ + λ) φ -φ h 2 C + 2 rot(φ h -R h φ h ) 2 + 1 + t 2 λ(1 -2ε) λ -1 t 2 γ -γ h 2 + 2 ε -1 1 -2ε φ h -R h φ h 2 +2 Res 2 2 -1 .
By the definition of A(ε) as well as lemma 3.4, we get

(e rot h ) 2 ≤ A(ε) 2Res 1 (ω -ω h + w) + 2Res 2 (φ -φ h + β) + β 2 C -φ -φ h + β 2 C - T ∈T h λ t 2 + h 2 T ∇(ω -ω h + w) -(φ -φ h + β) 2 T + 2 ε -1 1 -2ε φ h -R h φ h 2 + 2 Res 2 2 -1 + 2 rot(φ h -R h φ h ) 2 .
We notice that

Res 1 (ω -ω h + w) ≤ | Res 1 | -1,h | (ψ, ω -ω h + w)| 1,h ∀ ψ ∈ H 1 0 (Ω) 2 , Res 2 (φ -φ h + β) ≤ Res 2 -1 |φ -φ h + β| 1 .
Introducing now the parameters ν 1 > 0 and ν 2 > 0 and using two times Young's inequality lead to

(e rot h ) 2 ≤ ν 1 A 2 (ε)| Res 1 | 2 -1,h + 1 ν 1 | (ψ, ω -ω h + w)| 2 1,h +ν 2 A 2 (ε) Res 2 2 -1 + 1 ν 2 |φ -φ h + β| 2 1 -A(ε) φ -φ h + β 2 C + A(ε) β 2 C + 2 ε -1 1 -2ε φ h -R h φ h 2 + 2 Res 2 2 -1 + 2 rot(φ h -R h φ h ) 2 - T ∈T h λA(ε) t 2 + h 2 T ∇(ω -ω h + w) -(φ -φ h + β) 2 T .
Finally, choosing ψ = φφ h + β, we get

| (ψ, ω -ω h + w)| 2 1,h = ∇(φ -φ h + β) 2 + T ∈T h 1 t 2 + h 2 T ∇(ω -ω h + w) -(φ -φ h + β) 2 T ,
and so (15) holds.

Corollary 4.2 Let us assume that t ≤ 3λc 2 F /µ, and let us define :

ζ = max 1 µ , 1 2 λ . ( 16 
)
Then,

(e rot h ) 2 ≤ 2ζ 3 µ + c 2 F µ (3 + 2 √ 3) + 4(µ + λ) | Res 1 | 2 -1,h + 2ζ 3 µ + c 2 F µ (3 + 2 √ 3) + 4(µ + λ) + 2 Res 2 2 -1 + max 7 + 4 √ 3 ; 2 + 3 µ + c 2 F µ (3 + 2 √ 3) + 4(µ + λ) 2(µ + λ)c 2 R φ h -R h φ h 2 H(rot,Ω) .
Proof: Assuming 1 -2ε > 0, the parameters ν 1 and ν 2 arising in the values of A 3 and A T 5 in [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF] are first chosen such that A 3 ≤ 0 and A T 5 ≥ 0 ∀T ∈ T h . Namely we take

ν 1 = ν 2 = 2 ζ/A(ε). Consequently, we obtain (e rot h ) 2 ≤ Ã1 | Res 1 | 2 -1,h + Ã2 Res 2 2 -1 + Ã4 φ h -R h φ h 2 H(rot,Ω) , (17) 
with Ã1 = 2ζA(ε);

Ã2 = 2ζA(ε) + 2; Ã4 = max 2 ε -1 1 -2ε ; 2 + 2A(ε)(µ + λ)c 2 R .
Now, in order to provide a result as sharp as possible, it remains to choose appropriately the parameter ε to make the coefficients Ã1 , Ã2 and Ã4 arising in [START_REF] Domínguez | A simple Matlab implementation of the Argyris element[END_REF] as small as possible.

Since we always have 1 ≤ 3/µ + 4(µ + λ), the assumption t ≤ 3λc 2 F /µ leads to

A(ε) = 3 µ + c 2 F 1 ε + ε -1 µ(1 -2ε) + 4(µ + λ).
At this stage we remark that the two functions A(ε) as well as

2 ε -1
1-2ε reach their minimum value for the same value of the argument ε, namely for ε = 2 -√ 3. So, by a simple calculation, corollary 4.2 holds. Now, it remains to bound each of the two residuals.

Lemma 4.3 Let N ∈ N * be such that max T ∈T h Y (T ) ≤ N, with Y (T ) = #{T ′ ∈ T h | T ′ ⊂ ω T }
and ω T = {K ∈ T h |K ∩ T = ∅} is the patch of elements surrounding T (consequence of the mesh regularity). Then there exists κ 2 > 0 only depending on the mesh regularity such that

| Res 1 | 2 -1,h ≤ 2 N κ 2 2 T ∈T h (t 2 + h 2 T ) γ h -y * 2 T + osc 2 (g), ( 18 
)
where osc(g) corresponds to an oscillating term.

Proof: For any v ∈ H 1 0 (Ω), let us consider v h = Jv where J : H 1 0 (Ω) → W h is defined such that (see, for example [START_REF] Ph | Approximation by finite element functions using local regularization[END_REF], known as the Clément operator)

∃ κ 1 > 0 ; ∀ T ∈ T h , ∇v h T ≤ κ 1 ∇v ω T . (19) 
Moreover, it can be shown [START_REF] Cartensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF] that there exists κ 2 > 0 and κ 3 > 0 such that for all T ∈ T h and for any ψ ∈ H 1 0 (Ω) 2 ,

∇(v -v h ) T ≤ κ 2 ( ∇v -ψ ω T + h T ∇ψ ω T ) , h -1 T v -v h T ≤ κ 3 ( ∇v -ψ ω T + h T ∇ψ ω T ) .
Then for all v ∈ H 1 0 (Ω), we get

Res 1 (v) = Res 1 (v -v h ) = (g, v -v h ) -(γ h , ∇(v -v h )) = (g + divy * , v -v h ) -(γ h -y * , ∇(v -v h )) = T ∈T h ((g + divy * , v -v h ) T -(γ h -y * , ∇(v -v h )) T ) ≤ T ∈T h h T t 2 + h 2 T g + divy * T × h -1 T t 2 + h 2 T v -v h T + T ∈T h t 2 + h 2 T γ h -y * T × 1 t 2 + h 2 T ∇(v -v h ) T .
So, we can write

Res 1 (v) ≤ T ∈T h h T t 2 + h 2 T g + divy * T × κ 3 t 2 + h 2 T ( ∇v -ψ ω T + h T ∇ψ ω T ) + T ∈T h t 2 + h 2 T γ h -y * T × κ 2 t 2 + h 2 T ( ∇v -ψ ω T + h T ∇ψ ω T ) ≤ T ∈T h κ 2 3 h 2 T (t 2 + h 2 T ) g + divy * 2 T + T ∈T h κ 2 2 (t 2 + h 2 T ) γ h -y * 2 T 1/2       2 T ∈T h 1 t 2 + h 2 T ∇v -ψ 2 ω T + h 2 T t 2 + h 2 T ∇ψ 2 ω T =S       1/2
.

Now recalling that max

T ∈T h Y (T ) ≤ N we have S ≤ N T ∈T h      1 t 2 + h 2 T ∇v -ψ 2 T + h 2 T t 2 + h 2 T ≤1 ∇ψ 2 T      ≤ N T ∈T h 1 t 2 + h 2 T ∇v -ψ 2 T + ∇ψ 2 T ≤ N ∇ψ 2 Ω + T ∈T h 1 t 2 + h 2 T ∇v -ψ 2 T S ≤ N| (ψ, v)| 2 1,h . So we get Res 1 (v) ≤ κ 2 3 T ∈T h h 2 T (t 2 + h 2 T ) g + divy * 2 T + κ 2 2 T ∈T h (t 2 + h 2 T ) γ h -y * 2 T 1/2 × √ 2N| (ψ, v)| 1,h . Consequently | Res 1 | 2 -1,h ≤ 2 N κ 2 3 T ∈T h h 2 T (t 2 + h 2 T ) g + divy * 2 T +κ 2 2 T ∈T h (t 2 + h 2 T ) γ h -y * 2 T .
Since div y * = -Π h g, we get g + divy * 2 T ≤ C h 2 T g 2 ω T and (18) holds.

Lemma 4.4 For Ψ ∈ H 1 0 (Ω) 2 , we have Res 2 (ψ) ≤ C -1/2 (x * -Cε(φ h )) ψ C . (20) 
Proof: Using standard Green formula, we easily obtain

Res 2 (ψ) = Ω (x * -Cε(φ h )) : ε(ψ) dx + Ω (γ h + div x * ) ψ dx,
Since C is a symmetric positive definite operator, we can define C 1/2 and C -1/2 such that

C 1/2 • C 1/2 = C and C 1/2 • C -1/2 = I.
Then the definition of x * directly yields

Res 2 (ψ) = Ω C -1/2 (x * -Cε(φ h )) : C 1/2 ε(ψ) dx,
and the Cauchy-Schwarz inequality finally leads to [START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF]. 

(e rot h ) 2 ≤ 4 ζ N κ 2 2 3 µ + c 2 F µ (3 + 2 √ 3) + 4(µ + λ) T ∈T h (t 2 + h 2 T ) γ h -y * 2 T +4 ζ 3 µ + c 2 F µ (3 + 2 √ 3) + 4(µ + λ) + 1 (µ + λ) C -1/2 (x * -Cε(φ h )) 2 + max (7 + 4 √ 3); 2 + 2 3 µ + c 2 F µ (3 + 2 √ 3) + 4(µ + λ) (µ + λ)c 2 R φ h -R h φ h 2 H(rot,Ω) +osc 2 (g).
Proof: The theorem is a direct consequence of corollary 4.2, lemma 4.3 and lemma 4.4.

Remark 4.6 In theorem 4.5, all constants are explicitly given. Indeed, even if c F and c R depend on the domain Ω whereas κ 2 and N depend on the used mesh, they can be evaluated or at least bounded, see [START_REF] Cartensen | Constants in Clément-interpolation error and residual based a posteriori error estimates in Finite Element Methods[END_REF] and section 6 below devoted to the numerical validations.

Remark 4.7

The assumption t ≤ 3λc 2 F /µ needed in corollary 4.2 is not restrictive since, in the Reissner-Mindlin model, t is expected to be a very small parameter, so that this property is naturally obtained.

Efficiency of the estimator

In order to prove the efficiency of the estimator, each part of it has now to be bounded by the error e rot h up to a multiplicative constant. In the following, the notation a b and a ∼ b means the existence of positive constants c 1 and c 2 , which are independent of the mesh size, of the plate thickness parameter t, of the quantities a and b under consideration and of the coefficients of the operators such that a c 2 b and c 1 b a c 2 b, respectively. The constants may in particular depend on the aspect ratio σ of the mesh.

Lemma 5.1 (R h -I)φ h 2 H(rot,Ω) λ -2 t 4 γ -γ h 2 Ω + |ω -ω h | 2 1 +|φ -φ h | 2 1 + λ -2 t 4 rot(γ -γ h ) 2 . Proof: Since (R h -I)φ h = λ -1 t 2 (γ -γ h ) -∇(ω -ω h ) + (φ -φ h ), we have R h -I)φ h ≤ λ -1 t 2 γ -γ h + |ω -ω h | 1 + φ -φ h ,
and with the Poincaré-Friedrichs inequality, we get

(R h -I)φ h 2 λ -2 t 4 γ -γ h 2 + |ω -ω h | 2 1 + |φ -φ h | 2 1 .
Moreover, we have

rot(φ h -R h φ h ) 2 λ -2 t 4 rot(γ -γ h ) 2 + |φ -φ h | 2 1 ,
so that lemma 5.1 holds.

Lemma 5.2 There exists a relevant choice of x * such that

C -1/2 (x * -Cε(φ h )) 2 γ h -γ 2 -1 + |φ h -φ| 2 1 . (21) 
Proof: First, there exists only one pair

(φ * h , φ * * h ) ∈ H 1 0 (Ω) 2 × Θ h solution of a(φ * h , ψ) = -(γ h , ψ) ∀ ψ ∈ H 1 0 (Ω) 2 , a(φ * * h , ψ h ) = -(γ h , ψ h ) ∀ ψ h ∈ Θ h .
Then, by Theorem 3.9 of [START_REF] Nicaise | An a posteriori error estimator for the Lamé equation based on equilibrated fluxes[END_REF] and a relevant construction of x * , for all T in T h we have

C -1/2 (x * -Cε(φ * * h )) T φ * h -φ * * h C,ω T .
Because of the mesh regularity, we also get the global estimate

C -1/2 (x * -Cε(φ * * h )) φ * h -φ * * h C . (22) 
Clearly

C -1/2 (x * -Cε(φ h )) = C -1/2 (x * -Cε(φ * * h )) + C 1/2 ε(φ * * h -φ h )
. By [START_REF] Girault | Finite elements methods for Navier-Stokes equations, Theory and Algorithms[END_REF] and the triangular inequality, we arrive at

C -1/2 (x * -Cε(φ h )) C -1/2 (x * -Cε(φ * * h )) + φ * * h -φ h C φ * h -φ * * h C + φ * * h -φ h C . (23) 
Now, it remains to bound each of the two terms of the right-hand side of (23). To begin with, let us consider ψ h ∈ Θ h . Thanks to the definition of φ * * h , we get

a(φ h -φ * * h , ψ h ) = (γ h , ψ h -R h ψ h ) = (γ h , ψ h ) -(γ h , R h ψ h ) = (γ h -γ, ψ h ) + a(φ h -φ, ψ h ) ( γ h -γ -1 + |φ h -φ| 1 )|ψ h | 1 .
By taking ψ h = φ hφ * * h , we obtain

φ * * h -φ h C γ h -γ -1 + |φ h -φ| 1 . (24) 
Then, by the triangular inequality, we get

φ * h -φ h C ≤ φ * h -φ C + φ -φ h C ,
and by the definition of φ * h , we have for all

ψ ∈ H 1 0 (Ω) 2 a(φ * h -φ, ψ) = (γ -γ h , ψ), so that φ * h -φ C γ -γ h -1 .
We then obtain

φ * h -φ h C ≤ γ -γ h -1 + φ -φ h C γ -γ h -1 + |φ -φ h | 1 . (25) 
Using ( 24) and ( 25) in ( 23), we get [START_REF] Frolov | Guaranteed functional error estimates for the Reissner-Mindlin plate problem[END_REF].

Lemma 5.3 There exists a relevant choice of y * such that

T ∈T h (t 2 + h 2 T ) γ h -y * 2 T t 2 γ -γ h 2 + γ -γ h 2 -1 + osc 2 (g), (26) 
where osc 2 (g) is an oscillating term.

Proof: Because of lemma 3.1 of [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF], we have for any T ∈ T h the equivalence

γ h -y * T ∼ h 1/2 T E⊂∂T (γ h -y * ) • ν T E ,
where ν T is the outward unit normal vector to T . Now we define y * as in [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF], by noticing that [START_REF] Braess | Equilibrated residual error estimator for edge elements[END_REF] implies that (γ h , ∇v h ) = (g, v h ) ∀v h ∈ W h , hence there exist fluxes g E ∈ P 1 (E), for all edges E such that

T γ h • ∇v h = T gv h + ∂T g T v h ∀v h ∈ P 1 (T ),
where g T = g E ν E ν T , ν E being a fixed normal vector to E. According to the definition of the BDM 1 elements there then exists a unique y * T ∈ P 1 (T ) 2 such that

y * T • ν E = g E ∀E ⊂ T.
Hence we define y * such that its restriction to each triangle T is equal to y * T . According to its definition y * belongs to H div (Ω) and moreover according to [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF], we have div y * = -Π h g.

Then by the use of theorem 6.2 from [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF] and the mesh regularity we get

γ h -y * T h 1/2 T E⊂∂T \∂Ω [γ h • ν E ] E E + T ′ ⊂ω T h T ′ div γ h + g T ′ ,
where [v] E denotes the jump of the quantity v through the edge E. Consequently

T ∈T h (t 2 + h 2 T ) γ h -y * 2 T T ∈T h h T (t 2 + h 2 T ) E⊂∂T \∂Ω [γ h • ν E ] E 2 E + T ∈T h T ′ ⊂ω T h 2 T ′ (t 2 + h 2 T ) divγ h + g 2 T ′ E⊂∂T \∂Ω h E (t 2 + h 2 E ) [γ h • ν E ] E 2 E + T ∈T h h 2 T (t 2 + h 2 T ) divγ h + g 2 T . (27) 
Using the classical edge bubble functions as well as elementwise inverse estimates, it is proved in [START_REF] Cartensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF], section 4.3 that :

E∈E(Ω)\∂Ω h E (t 2 + h 2 E ) [γ h • ν E ] E 2 E T ∈T h h 2 T (t 2 + h 2 T ) g -Π h g 2 T + γ -γ h 2 -1 + t 2 γ -γ h 2 . (28) 
Moreover, with the use of classical element bubble functions as well as elementwise inverse estimates, it is also proved in [START_REF] Cartensen | A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates[END_REF], section 4.1 that :

T ∈T h h 2 T (t 2 + h 2 T ) divγ h + Π h g 2 T t 2 γ -γ h 2 + γ -γ h 2 -1 + T ∈T h h 2 T (h 2 T + t 2 ) g -Π h g 2 T . (29) 
Now, from (27) associated to the standard triangular inequality :

divγ h + g T ≤ divγ h + Π h g T + g -Π h g T , Proof:
The proof is a direct consequence of lemma 5.1, 5.2 and 5.3.

Numerical validation

Here we illustrate and validate our theoretical results by a simple computational example.

Let Ω be the unit square ]0, 1[ 2 . We consider the exact solution (ω, φ) in Ω of the Reissner-Mindlin problem (1)-( 2) given by

φ =     1 -2x x 2 (1 -x) 2 1 -2y y 2 (1 -y) 2     exp - 1 x(1 -x) - 1 y(1 -y) ,
and

ω = 1 -(2µ + λ)λ -1 t 2 (a(x) + a(y)) exp - 1 x(1 -x) - 1 y(1 -y) , with a(z) = 6z 4 -12z 3 + 12z 2 -6z + 1 z 4 (1 -z) 4 .
The corresponding scaled transverse loading function g is given by

g = (2µ + λ) (c(x) + c(y) + 2 a(x) a(y)) exp - 1 x(1 -x) - 1 y(1 -y) with c(z) = 120z 10 -600z 9 + 1620z 8 -2880z 7 + 3504z 6 -2952z 5 z 8 (1 -z) 8 + 1708z 4 -656z 3 + 156z 2 -20z + 1 z 8 (1 -z) 8 .
This analytical solution is extended by 0 on ∂Ω to obtain (ω, φ) ∈ H 1 0 (Ω) × H 1 0 (Ω) 2 . Here we take t = 1/1024, λ = 1, µ = 1 and λ = 1. The meshes we use are uniform ones composed of n 2 squares, each of them being cut into 8 triangles as displayed on Figure 1 for n = 4. The refinement strategy is an uniform one so that the value of the mesh size h between two consecutive meshes is twice smaller. In order to validate the reliability of the estimator, we consider the "discrete error" given by

e rot h,dis = |ω -ω h | 2 1 + |φ -φ h | 2 1 + λ -1 t 2 γ -γ h 2 + λ -2 t 4 rot(γ -γ h ) 2 + ||P h γ -γ h || 2 -1,h ,
where P h γ stands for the piecewise P 1 -discontinuous interpolation of γ on the mesh T h . This discrete error is defined by approximating the H -1 (Ω) norm of γγ h arising in e rot h (see [START_REF] Carstensen | Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element[END_REF]) by its discrete locally computable version defined by

||P h γ -γ h || 2 -1,h = sup v h ∈W h |(P h γ -γ h , v h )| 2 |v h | 2 1 . ( 30 
)
tured that c R = 2π π -2 , see [16]). As expected by the theory, it can be observed that the This proves (3).

7.2 Evaluation of κ 2 for the triangulation of section 6

With the definitions given above, let us consider z an affine function on ω T , so that Jz = z on T . With v and v h defined in the proof of lemma 4.3 and the triangular inequality, we get

∇(v -v h ) T ≤ ∇(v -z) T + ∇J(v -z) T
From [START_REF] Durán | On mixed finite element methods for the Reissner-Mindlin plate model[END_REF], we get

∇(v -v h ) T ≤ (1 + κ 1 ) ∇(v -z) ω T .
Defining A = ∇z and considering ψ ∈ H 1 0 (Ω) 2 , we have

∇(v -v h ) T ≤ (1 + κ 1 ) ∇v -A ω T ≤ (1 + κ 1 ) ( ∇v -ψ ω T + ψ -A ω T ) .

Now, z is chosen such that

A = 1 |ω T | ω T ψdx.
By Poincaré inequality, there exists C ω T > 0, depending on the patch ω T , such that

ψ -A ω T ≤ C ω T h T ∇ψ ω T ∀ ψ ∈ H 1 0 (Ω) 2 .
So,

∇(v -v h ) T ≤ (1 + κ 1 ) ∇v -ψ ω T + (1 + κ 1 ) C ω T h T ∇ψ ω T ≤ (1 + κ 1 )max{1; C ω T } = κ 2 ( ∇v -ψ ω T + h T ∇ψ ω T ) . (31) 
Now, it remains to evaluate κ 1 as well as C ω T . Let η z be the nodal basis associated to W h . We have

J v = z∈N v z η z , ∀ v ∈ H 1 0 (Ω),
from what we deduce

∇ J v = z∈N (v z -v) ∇ η z , ∀ v ∈ H 1 0 (Ω).
Let us define N T = N ∩ T . We have

∇ J v T = z∈N T (v z -v) ∇ η z T ≤ z∈N T v z -v T ∇ η z T ≤ z∈N T v z -v ωz ∇ η z T But ∇ η z T ≤ ρ -1
T , and from [10, (5.12)], we get

v z -v ωz ≤ c(ω z , 2) ∇ v ωz .
With the triangulation involved, we have

c(ω z , 2) ≤ √ 2 h T π ,
and

∇ J v T ≤ 3 √ 2 π h T ρ T ∇ v ωz , so that κ 1 ≤ 3 √ 2 π h T ρ T .
For the involved triangulation h T /ρ T = 2 and hence

κ 1 ≤ 12 √ 2 π . ( 32 
)
Since from [START_REF] Cartensen | Constants in Clément-interpolation error and residual based a posteriori error estimates in Finite Element Methods[END_REF], we have C ω T = 3 π , ( 31) and ( 32) lead to

κ 2 ≤ 1 + 12 √ 2 π .
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 232 Figure 2: η h /e rot h,dis versus h.computed effectivity index is larger than one. Moreover, it converges towards a constant close to one when h goes towards zero, so that the proposed estimator is asymptotically exact.

the use of [START_REF] Luce | A local a posteriori error estimator based on equilibrated fluxes[END_REF] and [START_REF] Neittaanmaäki | Reliable methods for computer simulation: error control and a posteriori error estimates[END_REF] leads to [START_REF] Liberman | A posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate[END_REF].

Theorem 5.4 (Efficiency of the estimator) There exists a relevant choice of x * and of y * such that The computation of ||P h γγ h || 2 -1,h is now an easy task and simply corresponds to the determination of the largest eigenvalue of a classical generalized finite dimensional eigenvalue problem. In order to validate the reliability of the estimator according to theorem 4.5, the error estimator is defined by

and we plot on Figure 2 the evolution of the computed effectivity index η h /e rot h,dis versus h. Here, the values of x ⋆ as well as y ⋆ are respectively computed in the same manner as in [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF] and [START_REF] Nicaise | An a posteriori error estimator for the Lamé equation based on equilibrated fluxes[END_REF], in order to obtain relevant choices as required by theorem 5.4 to ensure the efficiency of the estimator. Practically, some fluxes g E through the edges E of each triangle of the mesh are needed, and have to be computed by solving local linear problems. In fact, in our tests, these values are explicitely defined. For y * , we use g E = {{γ h • ν E }}, where {{γ h • ν E }} denotes the averaged value on the triangles on each side of E of γ h • ν E evaluated at the middle of E. For x * , we use g E = x∈N (T ) {{Cε(φ h )}}(x)ν E λ x . Here, {{Cε(φ h )}}(x) is the averaged value over the triangles surrouding the node x of the piecewise constant function on each triangle Cε(φ h ), and λ x stands for the classical P 1 -Lagrange basis function associated with the node x. Moreoever, for the construction of x * , the Argyris basis functions have to be used (see section 4 of [START_REF] Nicaise | An a posteriori error estimator for the Lamé equation based on equilibrated fluxes[END_REF] as well as [START_REF] Domínguez | A simple Matlab implementation of the Argyris element[END_REF] for the practical implementation).

From (16) we have ζ = 1. The Poincaré-Friedrichs constant c F is here equal to 1/( √ 2π) since Ω is the unit square. Because of the kind of meshes used (see Figure 1), we have N = 8 and κ 2 = 1 + 12 √ 2π (see annex 7.2). Finally, it can be proved [START_REF] Horgan | On inequalities of Korn, Friedrichs and Babuška-Aziz[END_REF] that on the unit square, c R ≤ 2 1 2-√ 2 , hence below we take this upper bound for c R (while it is conjec-