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A RECOMBINATION ALGORITHM FOR THE DECOMPOSITION OF MULTIVARIATE RATIONAL FUNCTIONS

In this paper we show how we can compute in a deterministic way the decomposition of a multivariate rational function with a recombination strategy. The key point of our recombination strategy is the used of Darboux polynomials. We study the complexity of this strategy and we show that this method improves the previous ones. In appendix, we explain how the strategy proposed recently by J. Berthomieu and G. Lecerf for the sparse factorization can be used in the decomposition setting. Then we deduce a decomposition algorithm in the sparse bivariate case and we give its complexity.

Introduction

The decomposition of univariate polynomials has been widely studied since 1922, see [START_REF] Ritt | Prime and composite polynomials[END_REF], and efficient algorithms are known, see [AT85, BZ85, KL89, Gat90a, Gat90b, Gie88, Klü99]. There also exist results and algorithms in the multivariate case [START_REF] Dickerson | Polynomial decomposition algorithms for multivariate polynomials[END_REF][START_REF] Gathen | Functional decomposition of polynomials: the tame case[END_REF][START_REF] Giesbrecht | Some results on the functional decomposition of polynomials[END_REF][START_REF] Zur Gathen | Multivariate polynomial decomposition[END_REF]. The decomposition of rational functions has also been studied, [Gie88, Zip91, AGR95, GW95]. In the multivariate case the situation is the following: Let f (X 1 , . . . , X n ) = f 1 (X 1 , . . . , X n )/f 2 (X 1 , . . . , X n ) ∈ K(X 1 , . . . , X n ) be a rational function, where K is a field and n ≥ 2. It is commonly said to be composite if it can be written f = u(h) where h(X 1 , . . . , X n ) ∈ K(X 1 , . . . , X n ) and u ∈ K(T ) such that deg(u) ≥ 2 (recall that the degree of a rational function is the maximum of the degrees of its numerator and denominator after reduction), otherwise f is said to be non-composite. In this paper, we give an algorithm which computes a noncomposite rational function h ∈ K(X 1 , . . . , X n ) and a rational function u ∈ K(T ) such that f = u(h).

In [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF], the author shows that we can reduce the decomposition problem to a factorization problem and gives a probabilistic and a deterministic algorithm. The probabilistic algorithm is nearly optimal: it performs Õ(d n ) arithmetic operations. The deterministic one computes O(d 2 ) absolute factorizations and then performs Õ(d n+ω+2 ) arithmetic operations, where d is the degree of f and ω is the feasible matrix multiplication exponent as defined in [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 12]. We recall that 2 ≤ ω ≤ 2.376. As in [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF], we suppose in this work that d tends to infinity and n is fixed. We use the classical O and Õ ("soft O") notation in the neighborhood of infinity as defined in [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 25.7]. Informally speaking, "soft O"s are used for readability in order to hide logarithmic factors in complexity estimates. In this paper we improve the complexity of the deterministic algorithm. With this algorithm we just compute two factorizations in K[X 1 , . . . , X n ] and then we use a recombination strategy. Under some hypotheses this new method performs Õ(d n+ω-1 ) arithmetic operations.

The decomposition of multivariate rational functions appears when we study the kernel of a derivation, see [START_REF] Ollagnier | Algebraic closure of a rational function[END_REF]. In [START_REF] Ollagnier | Algebraic closure of a rational function[END_REF] the author uses Darboux polynomials and gives an algorithm which works with Õ(d ωn ) arithmetic operations. In this paper, we are also going to use Darboux polynomials (see Section 1 for a definition) and we add a recombination strategy. Roughly speaking, we are going to factorize the numerator and the denominator and then thanks to a property of Darboux polynomials we are going to show that we can recombine the factors and deduce the decomposition.

The decomposition of multivariate rational functions also appears when we study intermediate fields of an unirational field and the extended Lüroth's Theorem, see [START_REF] Gutierrez | Unirational fields of transcendence degree one and functional decomposition[END_REF][START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF], and when we study the spectrum of a rational function, see [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF] and the references therein.

The study of decomposition is an active area of research: for a study on multivariate polynomial systems see e.g. [START_REF] Faugère | An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography[END_REF][START_REF] Faugère | Decomposition of generic multivariate polynomials[END_REF], for a study on symbolic polynomials see e.g. [START_REF] Watt | Algorithms for the functional decomposition of laurent polynomials[END_REF], for a study on Laurent polynomials see e.g. [START_REF] Watt | Functional decomposition of symbolic polynomials[END_REF], for effective results on the reduction modulo a prime number of a non-composite polynomial or a rational function see e.g. [CN10, BDN09, BCN], for combinatorial results see e.g. [START_REF] Gathen | Counting decomposable multivariate polynomials[END_REF].

In this paper, we improve the strategy proposed in [START_REF] Ollagnier | Algebraic closure of a rational function[END_REF]. As in [START_REF] Ollagnier | Algebraic closure of a rational function[END_REF], we consider fields with characteristic zero. Furthermore, as we want to give precise complexity estimate we are going to suppose that:

Hypothesis (C): K is a number field: K = Q[α],
α is an algebraic number of degree r.

As in [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF], we are going to suppose that the following hypothesis is satisfied:

Hypothesis (H): (i) deg(f 1 + Λf 2 ) = deg Xn (f 1 + Λf 2 ), where Λ is a new variable, (ii) R(Λ) = Res Xn f 1 (0, X n ) + Λf 2 (0, X n ), ∂ Xn f 1 (0, X n ) + Λ∂ Xn f 2 (0, X n ) = 0 in K[Λ].
where deg Xn f represents the partial degree of f in the variable X n , deg f is the total degree of f and Res Xn denotes the resultant relatively to the variable X n . This hypothesis is necessary, because we will use the factorization algorithms proposed in [START_REF] Lecerf | Improved dense multivariate polynomial factorization algorithms[END_REF], where this kind of hypothesis is needed. Actually, in [START_REF] Lecerf | Improved dense multivariate polynomial factorization algorithms[END_REF] the author studies the factorization of a polynomial F and uses hypothesis (L), where (L) is the following: Hypothesis (L):

(i) deg Xn F = deg F, and F is monic in X n , (ii)Res Xn F (0, X n ), ∂F ∂Xn (0, X n ) = 0. If F is squarefree, then hypothesis (L)
is not restrictive since it can be assured by means of a generic linear change of variables, but we will not discuss this question here (for a complete treatment in the bivariate case, see [CL07, Proposition 1]).

Roughly speaking, our hypothesis (H) is the hypothesis (L) applied to the polynomial f 1 + Λf 2 . In (H,i) we do not assume that f 1 + Λf 2 is monic in X n . Indeed, the leading coefficient relatively to X n can be written: a + Λb, with a, b ∈ K. In our algorithm, we evaluate Λ to λ such that a + λb = 0. Then we can consider the monic part of f 1 + λf 2 and we get a polynomial satisfying (L,i). Then (H,i) is sufficient in our situation. Furthermore, in this paper, we assume f 1 /f 2 to be reduced, i.e. f 1 and f 2 are coprime. We recall in Lemma 9 that in this situation f 1 + Λf 2 is squarefree. Thus hypothesis (H) is not restrictive.

Furthermore, hypothesis (H) will also be useful in a preprocessing step, see Section 2. In this preprocessing step we reduce the decomposition to two factorizations of squarefree polynomials.

Complexity model. In this paper the complexity estimates charge a constant cost for each arithmetic operation (+, -, ×, ÷) and the equality test. All the constants in the base fields are thought to be freely at our disposal.

In this paper we suppose that the number of variables n is fixed and that the degree d tends to infinity.

Polynomials are represented by dense vectors of their coefficients in the usual monomial basis. For each integer d, we assume that we are given a computation tree that computes the product of two univariate polynomials of degree at most d with at most Õ(d) operations, independently of the base ring, see [GG03, Theorem 8.23]. Then with a Kronecker substitution we can compute the product of two multivariate polynomials with degree d with n variables with Õ(d n ) arithmetic operations. We also recall, see [START_REF] Zur Gathen | Modern computer algebra[END_REF]Corollary 11.8], that if K is an algebraic extension of Q of degree r then each field operation in K takes Õ(r) arithmetic operations in Q. We use the constant ω to denote a feasible matrix multiplication exponent as defined in [GG03, Chapter 12]: two n × n matrices over K can be multiplied with O(n ω ) field operations. As in [START_REF] Bini | Polynomial and matrix computations[END_REF] we require that 2 ≤ ω ≤ 2.376. We recall that the computation of a solution basis of a linear system with m equations and d ≤ m unknowns over K takes O(md ω-1 ) operations in K [BP94, Chapter 2] (see also [START_REF] Storjohann | Algorithms for matrix canonical forms[END_REF]Theorem 2.10]). In [START_REF] Lecerf | Sharp precision in Hensel lifting for bivariate polynomial factorization[END_REF][START_REF] Lecerf | Improved dense multivariate polynomial factorization algorithms[END_REF] the author gives a deterministic algorithm for the multivariate rational factorization. The rational factorization of a polynomial f is the factorization in K[X], where K is the coefficient field of f . This algorithm uses one factorization of a univariate polynomial of degree d and Õ(d n+ω-1 ) arithmetic operations, where d is the total degree of the polynomial and n ≥ 2 is the number of variables.

Main Theorem. The following theorem gives the complexity result of our algorithm.

Theorem 1. Let f be a multivariate rational function in Q[α](X 1 , . . . , X n ) of degree d, where α is an algebraic number of degree r. Under hypotheses (C) and (H), we can compute in a deterministic way the decomposition of f with Õ(rd n+ω-1 ) arithmetic operations over Q plus two factorizations of univariate polynomials of degree d with coefficients in Q

[α].
Comparison with other algorithms. There already exist several algorithms for the decomposition of rational functions. They all use the same global strategy: first compute h, and then deduce u. The first step is the difficult part of the problem.

In [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF], we explain how we can perform the second step, i.e. compute u from h and f , with Õ(d n ) arithmetics operations. In [START_REF] Gutierrez | Unirational fields of transcendence degree one and functional decomposition[END_REF], the authors provide two algorithms to decompose a multivariate rational function. These algorithms run in exponential time in the worst case. In the first one we have to factorize polynomials with 2n variables f 1 (X)f 2 (Y )f 1 (Y )f 2 (X) and to look for factors of the following kind h 1 (X)h 2 (Y )h 1 (Y )h 2 (X). The authors say that in the worst case the number of candidates to be tested is exponential in d = deg(f 1 /f 2 ). Indeed, the authors test all the possible factors. In the second algorithm, for each pair of factors (h 1 , h 2 ) of f 1 and f 2 (i.e. h 1 divides f 1 and h 2 divides f 2 ), we have to test if there exists u ∈ K(T ) such that f 1 /f 2 = u(h 1 /h 2 ). Thus in the worst case we also have an exponential number of candidates to be tested. To the author's knowledge, the first polynomial time algorithm is due to J. Moulin-Ollagnier, see [START_REF] Ollagnier | Algebraic closure of a rational function[END_REF] . This algorithm relies on the study of the kernel of the following derivation: δ ω (F ) = ω ∧ dF , where F ∈ K[X] and ω = f 2 df 1f 1 df 2 . In [START_REF] Ollagnier | Algebraic closure of a rational function[END_REF] the author shows that we can reduce the decomposition of a rational function to linear algebra. The bottleneck of this algorithm is the computation of the kernel of a matrix. The size of this matrix is O(d n ) × O(d n ), then the complexity of this deterministic algorithm belongs to O(d nω ).

The reduction of the decomposition problem to a factorization problem is classical, see e.g. [START_REF] Klüners | On polynomial decompositions[END_REF][START_REF] Giesbrecht | Some results on the functional decomposition of polynomials[END_REF][START_REF] Zur Gathen | Homogeneous bivariate decompositions[END_REF][START_REF] Gutierrez | Unirational fields of transcendence degree one and functional decomposition[END_REF]. In [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF] the author shows that if we choose a probabilistic approach then two factorizations in K[X 1 , . . . , X n ] are sufficient to get h and furthermore we do not have a recombination problem. This gives a nearly optimal algorithm. For the deterministic approach the author uses a property on the pencil f 1λf 2 and shows that with O(d 2 ) absolute factorization (i.e. factorization in the algebraic closure of K) we can get h. This deterministic strategy works with Õ(d n+ω+2 ) arithmetic operations. In this paper, we are going to show that we can obtain a deterministic algorithm with just two factorizations in K[X 1 , . . . , X n ] and a recombination strategy. Our algorithm uses at most Õ(d n+ω-1 ) arithmetic operations. This cost corresponds to the cost of the factorization and the recombination step.

Our recombination problem comes from this factorization:

If f 1 /f 2 = u 1 /u 2 (h 1 /h 2 ) then f 1 -λf 2 = e(h 1 -t 1 h 2 ) • • • (h 1 -t k h 2 )
where λ, e ∈ K, k = deg(u 1 /u 2 ) and t i are the roots of the univariate polynomial u 1 (T )λu 2 (T ), see Lemma 10. Thus with the factors h 1t 1 h 2 and h 1t 2 h 2 we can deduce h. Unfortunately these factors are not necessarily in K[X 1 , . . . , X n ] and are not necessarily irreducible. In this paper we show how we can reduce the problem to a factorization problem in K[X 1 , . . . , X n ] and how we can recombine the irreducible factors of f 1 -λf 2 to get h.

We can see our recombination scheme as a logarithmic derivative method. Roughly speaking, the logarithmic derivative method works as follow:

If F (X, Y ) = t j=1 F j (X, Y ), where F j (X, Y ) ∈ A and A ⊃ K[X, Y ] (for example A = K[[X]][Y ]), then we can write the irreducible factors F i (X, Y ) ∈ K[X, Y ] of F in the following way: F i = t j=1 F ei,j j
, where e i,j ∈ {0, 1}. Thus we just have to compute the exponents e i,j to deduce F i . We compute these exponents thanks to this relation:

∂ X F i F i = t j=1 e i,j ∂ X F j F j .
With this relation the exponents e i,j are now coefficients, and we can compute them with linear algebra. This strategy has already been used by several authors in order to factorize polynomials see e. In our context, we do not use exactly a logarithmic derivative. We use a more general derivation, but we use the same idea: if a mathematical object transforms a product into a sum then the recombination problem becomes a linear algebra problem. In this paper this mathematical object is the cofactor, see Proposition 8.

Structure of this paper. In Section 1, we recall some results about the Jacobian derivative and Darboux polynomials. In Section 2, we describe a reduction step which eases the recombination strategy. In other words we explain how we can reduce the decomposition problem to a factorization problem. In Section 3, we explain how we can get h with a recombination strategy. In Section 4, we describe our algorithm with two examples. In Section 5 we conclude this paper with a remark on Darboux method and the logarithmic derivative method. In appendix, we explain how the strategy proposed recently by J. Berthomieu and G. Lecerf in [START_REF] Berthomieu | Convex-dense bivariate polynomial factorization[END_REF] for the sparse factorization can be used in the decomposition setting. Then we deduce a decomposition algorithm in the sparse bivariate case and we give its complexity.

Notations. All the rational functions are supposed to be reduced. Given a polynomial f , deg(f ) denotes its total degree. Given a rational function

f = f 1 /f 2 , deg(f ) denotes max deg(f 1 ), deg(f 2 ) .
For the sake of simplicity, sometimes we write

K[X] instead of K[X 1 , . . . , X n ], for n ≥ 2. u • h means u(h).
Res(A, B) denotes the resultant of two univariate polynomials A and B.

|S| is the cardinal of the set S.

Derivation and Darboux polynomials

We introduce the main tool of our algorithm.

Definition 2. A K-derivation D of the polynomial ring K[X 1 , . . . , X n ] is a K-linear map from K[X 1 , . . . , X n ]
to itself that satisfies the Leibniz rule for the product D(f.g) = D(f ).g + f.D(g).

A K-derivation has a unique extension to K(X 1 , . . . , X n ) and then we will also denote by D the extended derivation.

Definition 3. Given a rational function f 1 /f 2 , the Jacobian derivative associated to f 1 /f 2 is the following vector derivation, i.e. an (n -1)-tuple of derivations:

D f1/f2 : K[X 1 , . . . , X n ] -→ K[X 1 , . . . , X n ] n-1 F -→ f 2 2 .    ∂ X1 f 1 /f 2 )∂ X2 F -∂ X2 (f 1 /f 2 )∂ X1 F . . . ∂ X1 f 1 /f 2 )∂ Xn F -∂ Xn (f 1 /f 2 )∂ X1 F    .
The Jacobian derivative has the following property:

Proposition 4. Given f = f 1 /f 2 and g ∈ K(X 1 , . . . , X n ) \ K the following propo- sitions are equivalent:
(1) The rank of the Jacobian matrix

Jac(f, g) =    ∂f ∂X 1 • • • ∂f ∂X n ∂g ∂X 1 • • • ∂g ∂X n    is equal to one; (2) D f1/f2 (g) = 0; (3) there exists h in K(X 1 , . . . , X n ) such that f = u(h) and g = v(h) for u, v ∈ K(T ).
Proof. See [START_REF] Petravchuk | On closed rational functions in several variables[END_REF] for a proof. In [START_REF] Petravchuk | On closed rational functions in several variables[END_REF], K is supposed to be algebraically closed. However, we can remove this hypothesis because we have the equivalence: f is composite over K if and only if f is composite over K, see e. We deduce easily the following classical propositions.

Proposition 6. f 1 and f 2 are Darboux polynomials of D f1/f2 .

Proposition 7. D f1/f2 (h 1 /h 2 ) = 0 if and only if h 1 and h 2 are Darboux polynomials with the same cofactor.

The following proposition is the main tool of our algorithm. Indeed, this proposition shows that cofactors transform a product into a sum. Then thanks to the cofactors it will be possible to apply a kind of logarithmic derivative recombination scheme. 

Proposition 8. Let F ∈ K[X 1 , . . . , X n ] be a polynomial and let F = F e1 1 • • • F er r be its irreducible factorization in K[X 1 , . . . ,

Reduction to a rational factorization problem

In this section, we recall how the decomposition problem can be reduced to a factorization problem. Furthermore, we show that we can reduce our problem to a situation where f 1 and f 2 are squarefree. First, we recall some useful lemmas.

Lemma 9. If f 1 /f 2 is reduced in K(X 1 , . . . , X n ), where n ≥ 1 and Λ is a variable, then f 1 + Λf 2 is squarefree. Lemma 10. Let h = h 1 /h 2 be a rational function in K(X), u = u 1 /u 2 a rational function in K(T ) and set f = u • h with f = f 1 /f 2 ∈ K(X). For all λ ∈ K such that deg(u 1 -λu 2 ) = deg u, we have f 1 -λf 2 = e(h 1 -t 1 h 2 ) • • • (h 1 -t k h 2 )
where e ∈ K, k = deg u and t i are the roots of the univariate polynomial u 1 (T )λu 2 (T ).

Proof. See [Chè10, Lemma 8, Lemma 39]. Remark 11. If λ = f 1 (a)/f 2 (a)
, where a = (a 1 , . . . , a n ) ∈ K n , then we can suppose that t 1 ∈ K. Indeed,

t 1 = h 1 (a)/h 2 (a) ∈ K.
The following lemma says that we can always suppose that deg 

u 1 = deg u 2 = deg u. Lemma 12. Let h = h 1 /h 2 be a rational function in K(X), u = u 1 /u 2 a rational function in K(T ) and set f = u • h with f = f 1 /f 2 ∈ K(X).
u 1 u 2 H(T ) = deg u1 i=1 aT + b -λ i (αT + β) deg u2 i=1 aT + b -µ i (αT + β) .(αT + β) deg u2-deg u1 ,
where u 1 (λ i ) = 0 and u 2 (µ i ) = 0. We set:

ũ1 (T ) = (αT + β) deg u2-deg u1 . deg u1 i=1 aT + b -λ i (αT + β) = u 1 H(T ) .(αT + β) deg u2 ∈ K[T ] ũ2 (T ) = deg u2 i=1 aT + b -µ i (αT + β) = u 2 H(T ) .(αT + β) deg u2 ∈ K[T ].
If aλ i α = 0, α = 0, and aµ i α = 0 then we get deg ũ1 = deg u 2 = deg ũ2 .

To conclude the proof we just have to remark that deg H = 1, thus H is invertible for the composition.

In order to ease the recombination scheme we reduce our problem to a situation where the rational function is squarefree, i.e. the numerator and the denominator are squarefree. The following algorithm shows that if f 1 or f 2 are not squarefree then we can compute an homography U (T ) ∈ K(T ) such that U (f 1 /f 2 ) is squarefree. Furthermore, if we know a decomposition U (f 1 /f 2 ) = u(h) then we can easily deduce a decomposition f 1 /f 2 = U -1 u(h) . We recall that U is invertible for the composition because deg U = 1. Now, we describe an algorithm which computes a good homography.

Good homography

Input: f = f 1 /f 2 ∈ K(X 1 , . . . , X n ) of degree d, such that (C) and (H) are satisfied and a finite subset S of K n such that |S| = 2d 2 + 2d. Output: U (T ) = (T -λ a )/(T -λ b ) such that U (f ) is squarefree, λ a = f 1 /f 2 (a), λ b = f 1 /f 2 (b) where a, b ∈ K n , λ a = λ b , and deg Xn (f 1 -λ a f 2 ) = deg Xn (f 1 -λ b f 2 ) = d. (1) Compute f 1 (X n ) := f 1 (0, X n ), and f 2 (X n ) := f 2 (0, X n ).
(2) Construct an empty list L.

(3) For i from 1 to 2d 2 + 2d do:

(a) Compute

f := f 1 (i)/f 2 (i),. (b) If f ∈ L then L := concatenate(L, [f ]). (4) Construct an empty list L. (5) For k from 1 to 2d + 2 do: (a) Compute R := Res Xn f 1 (X n )-L[k]f 2 (X n ), ∂ Xn f 1 (X n )-L[k]∂ Xn f 2 (X n ) . (b) If R = 0 and deg Xn (f 1 -L[k]f 2 ) = d, then L := concatenate(L, [L[k]]). (6) λ a := L[1], λ b := L[2]. (7) Return U (T ) = (T -λ a )/(T -λ b ).
Proposition 13. The algorithm Good homography is correct.

Proof. In Step 3 we construct a list with at least 2d + 2 distinct elements because deg(f ) = d. By hypothesis (H), R(Λ) = 0 and by [GG03, Theorem 6.22], deg(R) ≤ 2d-1. Thus L contains at least two distincts elements. As R(λ a ) and R(λ b ) are not equal to zero, and thanks to Step 5b the condition on the degree is satisfied, we deduce that f 1λ a f 2 and f 1λ b f 2 are squarefree. Proposition 14. The algorithm Good homography can be performed with at most Õ(d n ) arithmetic operations over K.

Proof.

Step 1 can be done with Õ(d n ) arithmetic operations with Horner's method. In Step 3 we use a fast multipoint evaluation strategy, then we can perform this step with at most Õ(d 2 ) arithmetic operations, see [GG03, Corollary 10.8]. In Step 5, the computation of the resultant can be done with Õ(d) arithmetic operations, see [START_REF] Zur Gathen | Modern computer algebra[END_REF]Corollary 11.16]. Thus Step 5 can be done with Õ(d 2 ) arithmetic operations. In conclusion the algorithm can be performed with the desired complexity.

Remark 15. Suppose f 1 /f 2 = v 1 /v 2 (h). With the algorithm Good homography we can write U (f 1 /f 2 ) = u 1 /u 2 (h) with u 1 /u 2 ∈ K(T ), h ∈ K(X 1 , . . . , X n ), and u 1 (resp. u 2 ) has a root α 1 (resp. α 2 ) in K. Indeed, we have

u 1 = v 1 -λ a v 2 (resp. u 2 = v 1 -λ b v 2 ) and λ a = f 1 /f 2 (a) (resp. λ b = f 1 /f 2 (b)) then we deduce that α 1 = h 1 /h 2 (a) (resp. α 2 = h 1 /h 2 (b)).

The recombination method

In this section we describe our recombination method. First, we introduce some notations. By Proposition 6, F 1 and F 2 are Darboux polynomials of D F1/F2 .We denote by

G F k = (G (2) F k , . . . , G (n) 
F k ) the cofactor of F k , where k = 1, 2, and G (l)

F k ∈ K[X 1 , . . . , X n ].
We set:

F k = s k j=1 F k,j for k = 1, 2, and G F k,j = (G (2) 
F k,j , . . . , G (n) 
F k,j ). In Q[α][X 1 , . . . , X n ] polynomials are denoted in the following way:

P = |τ |≤d r-1 ǫ=0 a ǫ,τ α ǫ X τ1 1 • • • X τn n ∈ Q[α][X 1 , . . . , X n ],
where α is an algebraic number of degree r, τ

= (τ 1 , . . . , τ n ), |τ | = τ 1 + • • • + τ n ,
and a ǫ,τ ∈ Q. We set coef P, α ǫ X τ = a ǫ,τ . Now we define the linear system S:

S := s1 j=1 x 1,j coef G (l) F1,j , α ǫ X τ - s2 j=1 x 2,j coef G (l) F2,j , α ǫ X τ = 0,
where |τ | ≤ d, 0 ≤ ǫ ≤ r -1, and 2 ≤ l ≤ n. We denote by ker S the kernel of this linear system, and we remark that

x = (x 1,1 , . . . , x 2,s2 ) ∈ ker S ⇐⇒ s1 j=1 x 1,j G F1,j - s2 j=1
x 2,j G F2,j = 0.

We define the following maps:

π 1 : K s1+s2 -→ K s1 (x 1,1 , . . . , x 2,s2 ) -→ (x 1,1 , . . . , x 1,s1 ) π 2 : K s1+s2 -→ K s2 (x 1,1 , . . . , x 2,s2 ) -→ (x 2,1 , . . . , x 2,s2 )
The following proposition will be the key of our algorithm:

Proposition 16. Suppose that F 1 /F 2 ∈ K(X 1 , . . . , X n ) comes from the algorithm Good Homography and F 1 /F 2 = u(h) where h = h 1 /h 2 ∈ K(X 1 , . . . , X n ) is a non- composite reduced rational function and u = u 1 /u 2 ∈ K(T ) is a reduced rational function, with deg u 1 = deg u 2 . We denote by u k = t k i=1 u k,i the factorization of u k in K[T ], where k = 1, 2. We denote by F k = s k j=1 F k,j the factorization of F k in K[X 1 , . . . , X n ],
where k = 1, 2. Then:

(1) u k,i h 1 h 2 .h deg u k,i 2 = s k j=1 F e k,i,j k,j
∈ K[X 1 , . . . , X n ] and e k,i,j ∈ {0, 1}.

Furthermore, if we set e k,i := (e k,i,1 , . . . , e k,i,s k ), then the vectors e k,i , i = 1, . . . , t k , are orthogonal for the usal scalar product.

(2) We have e k,i ∈ π k (ker S).

(3) {e k,1 , . . . , e k,t k } is a basis of π k (ker S).

Proof.

(1) By Lemma 10 applied to F 1 /F 2 (resp. F 2 /F 1 ) with λ = 0, we get

F k = u k (h 1 /h 2 ).h deg u k 2 = t k i=1 u k,i (h 1 /h 2 ).h deg u k,i 2 
.

Then we deduce

u k,i (h 1 /h 2 ).h deg u k,i 2 = s k j=1 F e k,i,j k,j in K[X 1 , . . . , X n ]
with e k,i,j ∈ {0, 1} because F k are squarefree. Furthermore, the vectors e k,i are orthogonal for the usual scalar product because F k are squarefree. (2) We show this item for k = 1, the case k = 2 can be proved in a similar way.

As F 1 /F 2 comes from the algorithm Good Homography and as explained in Remark 15 we can suppose that:

u k,1 (T ) = (T -α k ), with α k ∈ K.
The previous item allows us to write:

u 1,i u deg u1,i 2,1 h 1 h 2 = s1 j=1 F e1,i,j 1,j . h 2 deg u1,i s2 j=1 F e2,1,j 2,j deg u1,i . h 2 deg u1,i = s1 j=1 F e1,i,j 1,j s2 j=1 F e2,1,j 2,j deg u1,i .
By Proposition 4 applied to

u 1,i u deg u1,i 2,1
h 1 h 2 , we get then:

D F1/F2 s1 j=1 F e1,i,j 1,j s2 j=1 F e2,1,j . deg u1,i 2,j = 0.
Now, we recall that F k,j are Darboux polynomials, see Proposition 6 and Proposition 8. Then by Proposition 8, we deduce

s1 j=1 e 1,i,j G F1,j -deg(u 1,i ) s2 j=1 e 2,1,j G F2,j = 0.
It follows (e 1,i,1 , . . . , e 1,i,s1 , deg(u 1,i ).e 2,1,1 , . . . ,deg(u 1,i ).e 2,1,s2 ) ∈ ker S. Thus, e 1,i ∈ π 1 (ker S).

(3) The vectors e k,1 , . . . , e k,t k are linearly independant because they are orthogonal. We just have to prove that these vectors generate π k (ker S).

Suppose that ρ = (ρ 1 , . . . , ρ s1+s2 ) ∈ ker S. First, we clear the denominators and we suppose that ρ ∈ Z s1+s2 instead of Q s1+s2 . In a first time we explain the strategy of the proof for this item, and in a second time we will detail the proof. We set

F 1 F 2 = s1 i=1 F ρj 1,j s2 j=1 F ρs 1 +j 2,j
, where F 1 , F 2 ∈ K[X] and F 1 /F 2 is a reduced rational function.

Our goal is to get this kind of equality:

(E), F 1 F 2 = s1 j=1 F ρj 1,j s2 j=1 F ρs 1 +j 2,j = 2 k=1 (i,k)∈Inum k j=1 F e k,i,j k,j mu k,i 2 k=1 (i,k)∈I den k j=1 F e k,i,j k,j mu k,i ,
where m u k,i ∈ N, I = {(1, 1), . . . , (t 1 , 1), (1, 2), . . . , (t 2 , 2)}, I num ⊂ I, I den ⊂ I and

I num ∩ I den = ∅.
By the unicity of the factorization in irreducible factors we deduce:

π 1 (ρ) = (i,1)∈Inum m u1,i e 1,i - (i,1)∈I den m u1,i e 1,i , π 2 (ρ) = (i,2)∈Inum m u2,i e 2,i - (i,2)∈I den m u2,i e 2,i .
We get: {e k,1 , . . . , e k,t k } generates π k (ker S), and this is the desired result. Now we detail the proof with four steps: (a) We remark:

F 1 F 2 = u 1 u 2 (h) = deg u i=1 (h 1 -µ 1,i h 2 ) deg u i=1 (h 1 -µ 2,i h 2 )
, where µ k,i are roots of u k .

(b) We have:

F 1 F 2 = d1 j=1 (h 1 -λ j h 2 ) mj d1+d2 j=d1+1 (h 1 -λ j h 2 ) mj .h κ 2 , with κ ∈ Z, m j ∈ N.
Indeed, as ρ ∈ ker S, we have

s1 j=1 ρ j G F1,j - s2 j=1 ρ s1+j G F2,j = 0. Thus s1 j=1 F ρj 1,j and s2 j=1 F ρs 1 +j 2,j
are Darboux polynomials with the same cofactor. By Proposition 7, we deduce:

D F1/F2 s1 j=1 F ρj 1,j s2 j=1 F ρs 1 +j 2,j = 0.
Then D F1/F2 (F 1 /F 2 ) = 0 and thus F 1 /F 2 = v 1 /v 2 (h) by Proposition 4. We denote by λ j the roots of v 1 and v 2 and we get the desired result.

(c) We claim:

F 1 F 2 = 2 k=1 (i,k)∈Inum u k,i (h 1 /h 2 )h deg u k,i 2 mu k,i 2 k=1 (i,k)∈I den u k,i (h 1 /h 2 )h deg u k,i 2 mu k,i , where m u k ,i ∈ N.
Indeed, we have: for all j there exists δ(j) such that λ j = µ δ(j) . (To prove this remark we suppose the converse: There exists j 0 such that λ j0 = µ k,i , for k = 1, 2 and i = 1, . . . , deg u. By definition of F k and by step 3b, there exists (k 1 , j 1 ) such that F k1,j1 and h 1λ j0 h 2 have a common factor in C[X]. We call P common factor. By step 3a, there exists (k 2 , i 2 ) such that P is a factor of h 1µ k2,i2 h 2 . Thus h 1λ j0 h 2 and h 1µ k2,i2 h 2 have a common factor. As λ j0 = µ k2,i2 we deduce that P divides h 1 and h 2 . This is absurd because h 1 /h 2 is reduced.) Thus κ = 0, and for all j there exists k(j) ∈ {1, 2} and such that

u k(j) (λ j ) = 0. As v 1 , v 2 ∈ K[T ]
, by conjugation, we deduce that if λ j and λ j ′ are roots of the same irreducible polynomial u k,i ∈ K[T ] then m j = m j ′ . We denote by m u k,i this common value. This gives the claimed equality with

I num ∩ I den = ∅, because F 1 /F 2 is reduced. (d) Now we can prove equality (E). F 1 F 2 = 2 k=1 (i,k)∈Inum u k,i (h 1 /h 2 )h deg u k,i 2 mu k,i 2 k=1 (i,k)∈I den u k,i (h 1 /h 2 )h deg u k,i 2 mu k,i , by step 3c, = 2 k=1 (i,k)∈Inum k j=1 F e k,i,j k,j mu k,i 2 k=1 (i,k)∈I den k j=1 F e k,i,j k,j
mu k,i , by the first item.

This gives the desired equality (E).

Now we describe our recombination algorithm:

Recombination for Decomposition

Input: f = f 1 /f 2 ∈ K(X 1 , . . . , X n ), such that (C) and (H) are satisfied. Output: A decomposition of f if it exists, with f = u•h, u = u 1 /u 2 with deg u ≥ 2, and h = h 1 /h 2 non-composite. (1) Compute F = F 1 /F 2 := U (f ) with the algorithm Good homography. (2) For k=1, 2, factorize F k = s k i=1 F k,i in K[X] with F k,i irreducible. (3) For each F k,i compute the corresponding cofactor G F k,i := D F1/F2 (F k,i )/F k,i .
(4) Build the system S and compute the basis in reduced row echelon form B 1 of π 1 (ker S) and B 2 of π 2 (ker S). (5) For k=1, 2, find 

v k = (v k,1 , . . . , v k,s k ) ∈ B k such that: s k i=1 v k,i deg F k,i = min w∈B k s k i=1 w i deg F k,i , where w := (w 1 , . . . , w s k ). (6) For k=1, 2, compute H k := s k i=1 F v k,i k,i . (7) Set H := H 1 /H 2 . (8) Compute u such that u(H) = f . ( 9 
k,i = s k j=1 F e k,i,j k,j = u k,i (h)h deg u k,i 2 . Furthermore deg H k,i = s k j=1 e k,i,j deg F k,j = deg u k,i deg h. Thus in Step 5 min w∈B k s k i=1 w i deg F k,i = deg h, because this minimum is reached with e k,1 ∈ B k . Hence v k in Step 6 gives H k = u k,i(k) (h)h deg u k,i(k) 2 with deg u k,i(k) = 1. It follows H = (h 1 -αh 2 )/(h 1 -βh 2 ) with α, β ∈ K. Thus H = v(h) with deg v = 1, then the algorithm is correct.
Proposition 18. The algorithm Recombination for Decomposition can be performed with Õ(rd n+ω-1 ) arithmetic operations over Q and two factorizations of univariate polynomials of degree d with coefficients in K.

We recall that in our complexity analysis the number of variables is fixed and the degree d tends to infinity.

Proof.

Step 1 uses Õ(d n ) arithmetic operations over K by Proposition 14, thus it uses Õ(rd n ) arithmetic operations over Q.

Step 2 uses Õ(d n+ω-1 ) arithmetic operations over K because we can use Lecerf's algorithm, see [START_REF] Lecerf | Improved dense multivariate polynomial factorization algorithms[END_REF]. Thus we use Õ(rd n+ω-1 ) arithmetic operations over Q and two factorizations of univariate polynomials of degree d with coefficients in K. In Step 3, we compute D F1/F2 (F k,i ), thus we perform 2(n -1) multiplications of multivariate polynomials. We can do this with a fast multiplication technique, and then this computation costs Õ(nrd n ) arithmetic operations over Q. Then we divide D F1/F2 (F k,i ) by F k,i . We have to perform n -1 exact divisions, thus with a Kronecker subsitution we reduce this problem to n -1 univariate divisions, and the cost of one such division belongs then to Õ(rd n ). As s 1 and s 2 are smaller than d,

Step 3 costs Õ(nrd n+1 ) arithmetic operations over Q.

Step 4 needs Õ(nrd n d ω-1 ) arithmetic operations over Q with Storjohann's method, see [Sto00, Theorem 2.10]. Indeed, S has O((n -1)rd n ) equations and s 1 + s 2 unknowns, thus at most 2d unknowns.

Step 5 has a negligeable cost because dim Q π k (ker S) = t k is smaller than d and s k is also smaller than d. In Step 6, we use a fast multiplication technique and we compute H k with Õ(rd n ) arithmetic operations over Q.

Step 8 can be done with Õ(rd n ) arithmetic operations over Q, see [START_REF] Chèze | Nearly optimal algorithms for the decomposition of multivariate rational functions and the extended Luroth's theorem[END_REF].

Thus the global cost of the algorithm belongs to Õ(rd n+ω-1 ) arithmetic operations over Q.

Examples

In this section we show the behavior of the algorithm Recombination for Decomposition with two examples. We consider bivariate rational functions with rational coefficients. Thus hypothesis (C) is satisfied. 4.1. f is non-composite. We set:

f 1 = 1 + X + Y 2 (X + Y ) = X + X 2 + XY 2 + Y + Y X + Y 3 , f 2 = f 1 -Y 2 -X -1 (Y -2 X + 1) = -X 2 + 3 XY 2 + 2 Y + 2 Y X -Y 2 + 1 We have deg(f 1 + Λf 2 ) = deg Y (f 1 + Λf 2 ) = 3,

and

Res Y f 1 (0, Y )+Λf 2 (0, Y ), ∂ Y f 1 (0, Y )+Λ∂ Y f 2 (0, Y ) = -4-24 Λ-92 Λ 2 -64 Λ 3 +8 Λ 4 .
Thus hypothesis (H) is satisfied. The algorithm Good homography gives: λ a = f 1 (0, 0)/f 2 (0, 0) = 0 and λ b = f 1 (0, 1)/f 2 (0, 1) = 1.

Then

F 1 = 1 + X + Y 2 (X + Y ) , F 1,1 = 1 + X + Y 2 , F 1,2 = X + Y F 2 = Y 2 -X -1 (Y -2 X + 1) , F 2,1 = Y 2 -X -1 F 2,2 Y -2 X + 1
The cofactors are:

G F1,1 = 3 X 2 + 8 Y X 2 + 2 X -2 Y X + 7 XY 2 -1 + 3 Y 2 -6 Y 3 -6 Y 4 + 2 Y G F1,2 = 3 X 2 + 8 Y X 2 + 4 Y X + 6 X -6 Y 2 -4 Y + 3 -3 Y 4 -2 Y 3 G F2,1 = 3 X 2 + 8 Y X 2 + XY 2 -6 Y X + 2 X -1 -2 Y -6 Y 4 -11 Y 2 -6 Y 3 G F2,2 = 3 X 2 + 8 Y X 2 + 6 XY 2 + 8 Y X + 6 X -3 Y 4 + 8 Y 2 -2 Y 3 + 3
The linear system S is the following:

                                   -1 3 -1 3 2 6 2 6 3 3 3 3 0 0 0 0 0 0 0 0 2 -4 -2 0 -2 4 -6 8 8 8 8 8 0 0 0 0 3 -6 -11 8 7 0 1 6 0 0 0 0 -6 -2 -6 -2 0 0 0 0 -6 -3 -6 -3                                   
A basis of ker(S) is given by: {(-1, -1, 1, 1)}. Then it follows that f 1 /f 2 is non-composite. 4.2. f is composite. Here we set:

h 1 = 1 + X + Y 2 (X + Y ) h 2 = h 1 -Y 2 -X -1 (Y -2 X + 1) u 1 = T.(T -1) u 2 = T 2 + 1 f 1 /f 2 = u 1 /u 2 (h 1 /h 2 ).
We have constructed a composite rational function f 1 /f 2 and now we illustrate how our algorithm computes a decomposition. We can already remark that in the previous example we have shown that h 1 /h 2 is non-composite.

In this situation the hypothesis (H) is satisfied and the algorithm Good Homography gives: λ a = f 1 (0, 0)/f 2 (0, 0) = 0 and λ b = f 1 (0, 2)/f 2 (0, 2) = 90/101. Then:

F 1,1 = 1 + X + Y 2 F 1,2 = 2X -Y -1 F 1,3 = Y 2 -X -1 F 1,4 = X + Y F 2,1 = 2 X 2 + 11 X + 9 + 29 XY + 29 Y + 38 XY 2 -9 Y 2 + 11 Y 3 F 2,2 = 11 X 2 + X -10 -19 Y X -19 Y -29 XY 2 + 10 Y 2 + Y 3
The basis in reduced row echelon form of π 1 (ker S) (resp. π 2 (ker S)) is {(1, 0, 0, 1); (0, 1, 1, 0)} (resp. {(1, 0); (0, 1)}).

Step 5 in the algorithm Recombination for Decomposition gives: v 1 = (1, 0, 0, 1) and v 2 = (1, 0). Then we have H 1 := F 1,1 .F 1,4 and H 2 := F 2,1 . We remark that H 1 = h 1 and that H 2 = 11h 1 + 9h 2 . Then H 1 /H 2 = w(h 1 /h 2 ), where w(T ) = T /(11T + 9). As h 1 /h 2 is non-composite and deg w = 1, we get a correct output.

Conclusion

In conclusion, we summarize our algorithm with a "derivation point of view". In order to decompose f 1 /f 2 , we have computed with Darboux method a rational first integral of D f1/f2 with minimum degree. That is to say we have computed

h 1 /h 2 ∈ K(X 1 , . . . , X n ) such that D f1/f2 (h 1 /h 2 ) = 0 and deg(h 1 /h 2 ) is minimum.
In a general setting, Darboux method works as follows: If we want to compute a rational first integral of a derivation D, first we compute all the Darboux polynomials F i and their associated cofactors G Fi , second we solve the linear system i e i G Fi = 0.

Then thanks to Proposition 8, we deduce that i F ei i is a first integral, i.e. D( i F ei i ) = 0.

When we consider the derivation D f1/f2 the computation of Darboux polynomials is reduced to the factorization of f 1 + λf 2 . Thus this step can be done efficiently. In the general setting, we can also reduce the computation of Darboux polynomials to a factorization problem, see [START_REF] Chèze | Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time[END_REF]. During the second step, we compute the kernel of i e i G Fi = 0. It is actually a recombination step. Indeed, this system explains how we have to recombine F i in order to get a rational first integral. Furthermore, the cofactor G Fi = D(F i )/F i can be viewed as a logarithmic derivative. In conclusion, the recombination scheme used in this paper is called nowadays the logarithmic derivative method, but this method is Darboux original method.

B(X

i Y j ) = X i+b1 Y j+b2 , b 1 , b 2 ∈ Z,
L(X i Y j ) = X a1i+a2j Y a3i+a4j , a 1 a 4a 2 a 3 = ±1. T can be defined on K[X, Y, X -1 , Y -1 ], and we define: T ( i,j f i,j X i Y j ) = i,j f i,j T (X i Y j ). The transformation L corresponds to the linear map: (i, j) → A t (i, j), where A = a 1 a 2 a 3 a 4 .

We denote by L -1 the transformation corresponding to

A -1 . If f (X, Y ) ∈ K[X, Y ], then L(f ) ∈ K[X, Y, X -1 , Y -1
] and L(f ) can be written

L(f ) = c L (f ).L 0 (f ), where L 0 (f ) ∈ K[X, Y ] and c L (f ) = X i Y j ∈ K[X, Y, X -1 , Y -1 ].
Furthermore, we also have L(F 1 .F 2 ) = L(F 1 ).L(F 2 ).

Let S be a finite subset of Z 2 . Set S is said to be normalized if it belongs to N 2 and if it contains at least one point in {0} × N, and also at least one point in N × {0}. For such a normalized set, we write d x (resp. d y ) for the largest abscissa (resp. ordinate) involved in S, so that the bounding rectangle is R = [0, We are going to use this transformation in order to prove: Proposition 20. If f 1 /f 2 = u(h 1 /h 2 ) then T (f 1 )/T (f 2 ) = u L(h 1 )/L(h 2 ) . If T (f 1 )/T (f 2 ) = u(H 1 /H 2 ) then f 1 /f 2 = u L -1 (H 1 )/L -1 (H 2 ) .

Theorem 19. Let f 1 /f 2 (X, Y ) ∈ K(X, Y ) such that deg(f 1 /f 2 ) = d, N (f 1 ) ⊂ N , N (f 2 ) ⊂ N
Proof. We prove the first item, the second can be proved in a similar way.

We have:

f 1 f 2 = i (h 1 -µ 1,i h 2 ) j (h 1 -µ 2,j h 2 )
, where µ k,i are roots of u k . Then,

T (f 1 ) T (f 2 ) = B • L(f 1 ) B • L(f 2 ) = X b1 Y b2 L(f 1 ) X b1 Y b2 L(f 2 ) = L(f 1 ) L(f 2 ) = i L(h 1 ) -µ 1,i L(h 2 ) j L(h 1 ) -µ 2,j L(h 2 ) = u 1 L(h 1 )/L(h 2 ) u 2 L(h 1 )/L(h 2 ) = u L(h 1 )/L(h 2 )

  g. [BHKS09, BLS + 04, Lec06, CL07, Wei10]. Here, we use this kind of technique for the decomposition problem. With this strategy the recombination part of our algorithm corresponds to the computation of the kernel of a O(d n )×O(d) matrix.

  g. [BCN, Theorem 13]. Definition 5. Given D a vector derivation i.e. an m-tuple of derivations, a polynomial F ∈ K[X] is said to be a Darboux polynomial of D if there exists G ∈ K[X] m such that D(F ) = F.G. G is called the cofactor of F for the derivation D.

  There exists an homography H(T ) = (aT + b)/(αT + β) ∈ K(T ) such that: u • H = ũ1 /ũ 2 , deg ũ1 = deg ũ2 , and f = ũ1 ũ2 • h, where h = H -1 • h and H -1 is the inverse of H for the composition. Proof. If deg u 1 = deg u 2 then we set H(T ) = T . If deg u 2 > deg u 1 then we have:

  d x ]×[0, d y ]. The following result is proved in [BL10, Theorem 2]: For any normalized finite subset S of Z 2 , of cardinality σ, convex-size π, and bounding rectangle [0, d x ]×[0, d y ], and dense size δ = (d x +1)(d y +1), one can compute an affine map T = B • L, with O(σ log 2 δ) bit-operations, such that T (S) is normalized of dense size at most 9π.

  and N is normalized. Then (1) If K is field with characteristic 0 or at least d(d -1) + 1 and (H) is satisfied, then there exists a probabilistic algorithm which computes the decomposition of f 1 /f 2 with at most Õ(|N | 1,5 ) operations in K and two factorizations of a univariate polynomial of degree at most 9|N | over K. (2) If (C) and (H) are satisfied, then there exists a deterministic algorithm which computes the decomposition of f 1 /f 2 with at most Õ(r.|N | (ω+1)/2 ) operations over Q and two factorizations of an univariate polynomials of degree at most 9|N | over Q[α]. Now, we explain how we use the transformation T in the decomposition setting.

  X n ]. Then: F is a Darboux polynomial with cofactor G F if and only if all the F i are Darboux polynomials with cofactor G Fi . Furthermore, G F = e 1 G F1 + • • • + e r G Fr .

	Proof. See for example Lemma 8.3 page 216 in [DLA06].

  ) Return H, and u.Proposition 17. The algorithm Recombination for Decomposition is correct.Proof. Consider F 1 /F 2 := U (f ). As we want to decompose f 1 /f 2 , we just have to decompose F 1 /F 2 , because deg U = 1 and then U is invertible. As F 1 /F 2 comes from the algorithm Good Homography we can suppose, see Remark 15, that u k,1 (T ) = (Tα k ) with α k ∈ K, and k = 1, 2. Furthermore, by Lemma 12 we can also suppose that deg u 1 = deg u 2 . Then by Proposition 16, the basis B k of π k (ker S) are {e k,1 , . . . , e k,t k }. The vector e k,i gives the polynomial H

Appendix A. Convex-dense bivariate decomposition

In this appendix we give complexity results for the decomposition of sparse bivariate rational functions. These results rely on a strategy proposed by J. Berthomieu and G. Lecerf in [START_REF] Berthomieu | Convex-dense bivariate polynomial factorization[END_REF].

Given a polynomial f (X, Y ) ∈ K[X, Y ], its support is the set S f of integer points (i; j) such that the monomial X i Y j appears in f with a non zero coefficient. The convex hull, in the real space R 2 of S f is denoted by N (f ) and called the Newton's polygon of f . We denote by |N (f )| the number of integral points of N (f ). We called |N (f )| the convex-size of f . Roughly speaking, the transformation proposed in [START_REF] Berthomieu | Convex-dense bivariate polynomial factorization[END_REF] consists in a monomial transformation that preserves the convex-size but decreases the dense size. The considered transformation T can be described in the following way:

This gives the following algorithm: 

Convex bivariate decomposition