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Abstract

On the framework of the 2-adic group Zs, we study a Sobolev-like inequality where we estimate
the L? norm by a geometric mean of the BV norm and the Bo_ol"’o norm. We first show, using the
special topological properties of the p-adic groups, that the set of functions of bounded variations
BV can be identified to the Besov space Bi "°°. This identification lead us to the construction of
a counterexample to the improved Sobolev inequality.
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MSC 2010: 22E35, 46E35

1 Introduction

The general improved Sobolev inequalities were initially introduced by P. Gérard, Y. Meyer and F. Oru in
[6]. For a function f such that f € W*LP(R") and f € B 2°(R™), these inequalities read as follows:

0 —0
1 llirsa < ClF ey o 111y e (1)

where 1 < p < g < 400,00 =p/q, s=0s1 — (1 —0)8 and —f < s < s1. The method used for proving these
estimates relies on the Littlewood-Paley decomposition and on a dyadic bloc manipulation and this explains
the fact that the value p = 1 is forbidden here.

In order to study the case p = 1, it is necessary to develop other techniques. The case when p =1, s =10
and s; = 1 was treated by M. Ledoux in [9] using a special cut-off function; while the case s; =1 and p =1
was studied by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in [5]. In this last article, the authors
give a BV-norm weak estimation using wavelet coefficients and isoperimetric inequalities and obtained, for
a function f such that f € BV(R") and f € B "*°(R™), the estimation below:

£ llivea < CIFIHENF I ?)

where 1 < ¢<2,0<s<1/gand f=(1—-sq)/(qg—1).

In a previous work (see [3], [4]), we studied the possible generalizations of inequalities of type (1) and
@) to other frameworks than R™. In particular, we worked over stratified Lie groups and over polynomial
volume growth Lie groups and we obtained some new weak-type estimates.

The aim of this paper is to study inequalities of type (Il) and (2]) in the setting of the 2-adic group Zs.
The main reason for working in the framework of Zs is that this group is completely different from R™ and
from stratified or polynomial Lie groups. Indeed, since the 2-adic group is totally discontinuous, it is not
absolutely trivial to give a definition for smoothness measuring spaces. Thus, the first step to do, in order to



study these Sobolev-like inequalities, is to give an adapted characterization of such functional spaces. This
will be achieved using the Littlewood-Paley approach and, once this task is done, we will immediatly prove
-following the classical path exposed in [6]- the inequalities (1) in the setting of the 2-adic group Zs.

For the estimate (2]), we introduce the BV space in the following manner: we will say that f € BV (Zs)
if there exists a constant C' > 0 such that

i |f(z+y) = f(2)|lde < Clyla  (Vy € Za).

As a surprising fact, we obtain the

Theorem 1 We have the following relationship between the space of functions of bounded variation BV (Z2)
51,00
and the Besov space By (Za):

BV (Zy) ~ By™(Zy)

Of course, this identification is false in R™ and it is this special relationship in Zs that give us our
principal theorem which is the 2-adic counterpart of the inequality (2)):

Theorem 2 The following inequality is false in Zo. There is not an universal constant C' > 0 such that we
have

I£1Z2 < ClfIBvIfl gt
for all f € BV N Bx"™(Zy).

This striking fact says that the improved Sobolev inequalities of type (2] depend on the group’s structure
and that they are no longer true for the 2-adic group Zs.

The plan of the article is the following: in section 2] we recall some well known properties about p-adic
groups, inBlwe define Sobolev and Besov spaces, in [ we prove theorem [Ml and, finally, we prove the theorem
in section [l

2 p-adic groups

We write alb when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number, for
0 # z € Z, we define the p-adic valuation of z by v(x) = max{r : p"|z} > 0 and, for any rational number
r =3 €Q, we write y(x) = y(a) — v(b). Furthermore if z = 0, we agree to write (0) = +o0.

Let x € Q and p be any prime number, with the p-adic valuation of x we can construct a norm by writing

p 7 if x#0

2|y = (3)
p~ =0 if x=0.

This expression satisfy the following properties
a) |z|p, >0, and |z|, =0 <= z = 0;
b) |zylp = |lplylp;
) |z +ylp, < max{|z|,,|y|p}, with equality when |z, # |y|p.

When a norm satisfy ¢) it is called a non-Archimedean norm and an interesting fact is that over Q all the
possible norms are equivalent to | - |, for some p: this is the so-called Ostrowski theorem, see [I] for a proof.



Definition 2.1 Let p be a any prime number. We define the field of p-adic numbers Q, as the completion
of Q when using the norm | - .

We present in the following lines the algebraic structure of the set Q,. Every p-adic number = # 0 can be
represented in a unique manner by the formula

x = p7(xo + x1p + 22p® + ...), (4)

where v = () is the p-adic valuation of = and z; are integers such that x9 > 0 and 0 < z; < p — 1 for
j=1,2,.... Remark that this canonical representation implies the identity |z|, = p~7.

Let z,y € Qp, using the formula (@) we define the sum of z and y by z+y = p“/(”““*y)(co +epteop?+..)
with 0 <¢; <p—1and ¢g > 0, where y(z 4 y) and ¢; are the unique solution of the equation

PO (@o + 21p + 2p® + ) + 0" (Yo + i + yap® + ) = PV (o + e1p + cap” + ).

Furthermore, for a,z € @), the equation a + 2 = 0 has a unique solution in Q, given by x = —a. In the
same way, the equation az = 1 has a unique solution in Q,: =z =1/a.

We take now a closer look at the topological structure of Q,. With the norm |- |, we construct a distance
over Q, by writing
d(z,y) = |z —ylp (5)

and we define the balls By(z) = {y € Q,: d(z,y) < p"} with v € Z. Remark that, from the properties
of the p-adic valuation, this distance has the wltra-metric property (i.e. d(z,y) < max{d(z,z),d(z,y)} <

|x|p + |y|p)-

We gather with the next proposition some important facts concerning the balls in Q,,.
Proposition 2.1 Let v be an integer, then we have

1) the ball By(x) is a open and a closed set for the distance (3).

2) every point of By(x) is its center.

3) Qp endowed with this distance is a complete Hausdorff metric space.

4) Qp is a locally compact set.

5) the p-adic group Qy is a totally discontinuous space.

For a proof of this proposition and more details see the books [1], [§] or [13].

3 Functional spaces

In this article, we will work with the subset Zg of Qo which is defined by Zo = {x € Q2 : |z]2 < 1}, and we
will focus on real-valued functions over Zs. Since Zo is a locally compact commutative group, there exists
a Haar measure dz which is translation invariant i.e.: d(x + a) = dz, furthermore we have the identity
d(za) = |aladx for a € Z5. We will normalize the measure dz by setting

/ dr = 1.
{lz]2<1}

This measure is then unique and we will note |E| the measure for any subset E of Zs. Lebesgue spaces

1/p
LP(Zy) are thus defined in a natural way: || f|/» = <f22 ]f(x)]pdx) for 1 < p < 400, with the usual
modifications when p = +oc.



Let us now introduce the Littlewood-Paley decomposition in Zs. We note F; the Boole algebra formed
by the equivalence classes £ C Zy modulo the sub-group 2/Z,. Then, for any function f € L'(Zs), we call
S;(f) the conditionnal expectation of f with respect to F;:

1

[Bj(@)] J, )

The dyadic blocks are thus defined by the formula A;(f) = Sj11(f) — S;(f) and the Littlewood-Paley
decomposition of a function f : Zo — R is given by

Si(f)(x) = f(y)dy.

+oo
F=50(f)+> A;(f)  where So(f) = | f@)de. (6)
i=0 2
We will need in the sequel some very special sets noted @; . Here is the definition and some properties:

Proposition 3.1 Let j € N and k = {0,1,...,29 — 1}. Define the subset Q;x of Z2 by
Qin=1{k+217Z}. (7)
Then

1) We have the identity F; = |J Qjk,
0<k<27

2) For k=1{0,1,...,27 — 1} the sets Q;x are mutually disjoint,
3) Qx| =277 for all k,
4) the 2-adic valuation is constant over Qj .

The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in (@), we obtain the following equivalence for the
Lebesgue spaces LP(Zsg) with 1 < p < +o0:

1/2
Y f\2>

JEN

1l = 1S0() 12w + (

Lp

See the book [10], chapter IV, for a general proof.

Let us turn now to smoothness measuring spaces. As said in the introduction, it is not absolutely trivial
to define Sobolev and Besov spaces over Zo since we are working in a totally discontinuous setting. Here is
an example of this situation with the Sobolev space W12: one could try to define the quantity |V f| by the
formula

Vfl=lm sup
| | 6=0 d(z,y)<d d(:l?, y)

and define the Sobolev space W12(Z3) by the norm

1/2
1l = [l + ( / \Vf\zdw> | ®)

Now, using the Littlewood-Paley decomposition we can also write
1/2

[ £llee = 10 llz2 + || { D 2214, £

JeN



However, the quantities || - ||« and || - ||+« are not equivalent: in the case of (§]) consider a function f = ¢
constant over each @Q;r = {k + 2175} for some fixed j. Then we have |V f| = 0 and for these functions the
norm || - ||+ would be equal to the L? norm.

This is the reason why we will use in this article the Littlewood-Paley approach to characterize Sobolev
spaces:

‘ 1/2
I£lwes = 180510 + | S 20a,) | )
jEN e
with 1 < p < 400 and s > 0. For Besov spaces we will define them by the norm
1/q
£ llgga = IS0 llze + [ D274, £, (10)
JEN

where s € R, 1 < p,q < +00 with the necessary modifications when p, g = +oo.

Remark 1 For homogeneous functional spaces WP and Bj?, we drop out the term |Sof||r» in (@) and

[@.

Let us give some simple examples of function belonging to these functional spaces.

1) The function f(z) = logy ||y is in By**(Zy). First note that |z|, = 277 and thus f(z) = —7(z).
Recall (cf. proposition B.1]) that over each set Q;, the quantity v(x) is constant, so the dyadic bloc
A, f is given by

-1 over ;11,0
Ajf(z) =

0 elsewhere.

Hence, taking the L' norm, we have [|A;f||z1 = 3277 and then f € Bll’oo(ZQ).

2) Set h(z) = 1/|x|2, we have h € B>, For this, we must verify sup 277 ||Ajh|| e < +00. By definition
=0
we obtain h(z) = 27*) and then

2J over ;11,0

0 elsewhere.

We finally obtain || Akl =27 and hence 277||A;h||L = 1 for all j, so we write h € Bxh™.

With the Littlewood-Paley characterisation of Sobolev spaces and Besov spaces given in (@) and (I0) we
have the following theorem:

Theorem 3 In the framework of the 2-adic group Zo we have, for a function f such that f € Wslvp(Zg)
and f € Bo™(Zy), the inequality

0 1-0
£ 1ireia < ClAor o 1500

where 1 < p < q< +o00, 0 =p/q, s=0s1— (1 —0)5 and — < s < s1.



Proof. We start with an interpolation result: let (a;);en be a sequence, let s = 0s; — (1 —60)38 with 6 = p/q,
then we have for r,ry, 79 € [1,4+00] the estimate

, A 0 o 0
127 ajller < ClI27 a1 (1277 a3,
See [2] for a proof. Apply this estimate to the dyadic blocks A;f to obtain

1/2 0/2

1-0
S2PA@P | <C | YA @) <sup2—ﬂfmjf<x>\>

JET JET JEL

To finish, compute the L? norm of the preceding quantities.

4 The BV (Z,) space and the proof of theorem [I

We study in this section the space of functions of bounded variation BV and we will prove some surprising
facts in the framework of 2-adic group Zsy. Let us start recalling the definition of this space:

Definition 4.1 If f is a real-valued function over Zy, we will say that f € BV (Zz) if there exists a constant
C > 0 such that

; [f(z+y) — f(@)lde < Clylz,  (Vy € Za). (11)

We prove now the theorem [[l which asserts that in Zs, the BV space can be identified to the Besov space
B11 ">°. For this, we will use two steps given by the propositions 1] and below.

Proposition 4.1 If f is a real-valued function over Zs belonging to the Besov space Bll’oo, then f € BV
and we have the inclusion Bll’C>O C BV.

Proof. Let f € Bll’oo(Zg) and let us fix |y|o = 27™. We have to prove the following estimation for all m > 0

I= | |flz+y)— fz)lde < C27™.
L

Using the Littlewood-Paley decomposition given in (], we will work on the formula below

I=|/[Sof(x+y)+ > Ajflx+y) | = | Sof(x)+ > Ajf(x)

>0 >0 I

Then, by the dyadic block’s properties we have to study
+oo
I<|Smf(@+y) = Smf@)lp+ Y 148 (@ +y) = Ajf @) (12)
Jj=m+1
We estimate this inequality with the two following lemmas.
Lemma 4.1 The first term in (12) is identically zero.

Proof. Since we have fixed |yl = 27, then for € Q, k, we have 24y € Q,  with k£ = {0,...,2™ —1}.
Applying the operators S,, to the functions f(x + y) and f(z) we get the desired result.

The second term in (I2) is treated by the next lemma.



Lemma 4.2 Under the hypothesis of proposition [[.1] and for |y|a = 27™ we have
“+oo
D 1A f@+y) = Aif (@) <C27
j=m+1
Proof. Indeed,
+00 +oo
DooAfE+y) =A@ <2 Y 1A flpa-
j=m+1 j=m+1
We use now the fact ||A; f||;1 < C277 for all j, since f € Bll’oo, to get
+oo
Do A f+y) = A f @)l <C27™
j=m-+1

With these two lemmas, and getting back to (I2]), we deduce the following inequality for all y € Zy:

i |f(z+y) — f(z)|dx < Clyla

and this concludes the proof of proposition F1]

Our second step in order to prove theorem [I] is the next result.

Proposition 4.2 In Zy we have the inclusion BV (Zy) C By (Zy).
Proof. Observe that we can characterize the Besov space Bl1 "*°(Z2) by the condition

IFC+y)+FC—y) =2fOllr <Clyle, Yy #0.
Let f be a function in BV (Z3), then we have

1fC+y) = fOll < C lyla.
Summing || f(- —y) — f(*)||z1 in both sides of the previous inequality we obtain
IFC+y) = FOlp +1FC=y) = FOln < Clyla+ ¢ —y) = FO)lle

and by the triangular inequality we have

[fC+y)+fC—y)=2fC)llee <Clyla +I1fC =) = fFOllzn

We thus obtain
[fC+y)+ 0 —y)—2f0)llp <2C [yl

We have proved, in the setting of the 2-adic group Zs, the inequalities
Cle”Bll"x’ <|fllsv < CQHf”Bll,oo,

so the theorem [I] follows.



5 Improved Sobolev inequalities, BV space and proof of theorem

We do not give here a global treatment of the family of inequalities of type (2)); instead we focus on the next
inequality

11172 < CIAllBv £l e (13)

and we want to know if this estimation is true in a 2-adic framework. Since in the Zs setting we have the
identification || f|| v ~ || f|| 1.0, the estimation (I3]) becomes

IF1122 < ClFll oo 1 gzt (14)

This remark lead us to the theorem [2] which states that the previous inequalities are false.

Proof. We will construct a counterexample by means of the Littlewood-Paley decomposition, so it is
worth to recall very briefly the dyadic bloc characterization of the norms involved in inequality (I4]). For
the L? norm we have [/ f[|2, = > jeN A f|2., while for the Besov spaces Bll’Oo and B3> we have

Ifllgree = sup 27| A;fllz  and
JEN

[fllpzree = sup 277[|A; fl|zee.
JEN

We construct a function f : Zo — R by considering his values over the dyadic blocs and we will use
for this the sets @ defined in (7). First fix & and 3 two non negative real numbers and jo, j1 two integers
such that 0 < jg < j; with the condition

p

2%j0 < 2
e

Now define N; as a function of a and 3:

N; =2 if0<j<jo and Nj:ﬁzfﬂ'gzj if jo < j < 1. (15)
(6

and write

a2l over (11,0
—a2!  over Qjy1,1,
a2’ over Qj412,

—a2)  over Qj+1,3,
Ajf(x) =

a2l over Qji12N;-2,
—a2) over Qji12N;-1,
0 elsewhere.

\

Once this function is fixed, we compute the following norms
o [A;fllr =Y 002277 = aN;,
o [Ajfllre = a2,
o A;f|2, = Y, a%2%277 = o220 N,
and we build from these quantities the Besov and Lebesgue norms in the following manner:

1) For the Besov space Bxh>:

It = sup 29020 = .
0<i<i



2) For the Besov space Bll’oo

By the definition (5] of N; we have 27||A; f||;1 = 27aN; = 2%a if 0 < j < jo and 27||Aj f|| = B if
Jjo < 7 < j1. Since 2%j0 < g we have:

£l g = 6

3) For the Lebesgue space L:

IflI3. = ZQQQJN Za222] + Z a22j 2 I = Za222j + (j1 — jo)af

J>jo Jj=0
ol
= af 522% + (j1 — Jjo)
§=0
With the condition 2% < g, we obtain from the previous formula that
11152 ~ aB(1 — jo) = HfHB;oonHB;OLMﬁ — Jjo)-

Thus, getting back to (I4]) and therefore to (I3]), we have for an universal constant C' the inequality

ClLAN groe [l oo

IN

£l groe 1] poe (G2 = o)

= (j1—jo) < C,

which is false since we can freely choose the values of j; and jy. The theorem [2lis proved.
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