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On the framework of the 2-adic group Z 2 , we study a Sobolev-like inequality where we estimate the L 2 norm by a geometric mean of the BV norm and the Ḃ-1,∞ ∞ norm. We first show, using the special topological properties of the p-adic groups, that the set of functions of bounded variations BV can be identified to the Besov space Ḃ1,∞ 1 . This identification lead us to the construction of a counterexample to the improved Sobolev inequality.

Introduction

The general improved Sobolev inequalities were initially introduced by P. Gérard, Y. Meyer and F. Oru in [START_REF] Gérard | Inégalités de Sobolev Précisées[END_REF]. For a function f such that f ∈ Ẇ s 1 ,p (R n ) and f ∈ Ḃ-β,∞ ∞ (R n ), these inequalities read as follows:

f Ẇ s,q ≤ C f θ Ẇ s 1 ,p f 1-θ Ḃ-β,∞ ∞ (1) 
where 1 < p < q < +∞, θ = p/q, s = θs 1 -(1θ)β and -β < s < s 1 . The method used for proving these estimates relies on the Littlewood-Paley decomposition and on a dyadic bloc manipulation and this explains the fact that the value p = 1 is forbidden here.

In order to study the case p = 1, it is necessary to develop other techniques. The case when p = 1, s = 0 and s 1 = 1 was treated by M. Ledoux in [START_REF] Ledoux | On improved Sobolev embedding theorems[END_REF] using a special cut-off function; while the case s 1 = 1 and p = 1 was studied by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in [START_REF] Cohen | Harmonic Analysis of the space BV[END_REF]. In this last article, the authors give a BV-norm weak estimation using wavelet coefficients and isoperimetric inequalities and obtained, for a function f such that f ∈ BV (R n ) and f ∈ Ḃ-β,∞ ∞ (R n ), the estimation below:

f Ẇ s,q ≤ C f 1/q BV f 1-1/q Ḃ-β,∞ ∞ (2)
where 1 < q ≤ 2, 0 ≤ s < 1/q and β = (1sq)/(q -1).

In a previous work (see [START_REF] Chamorro | Improved Sobolev Inequalities and Muckenhoupt weights on stratified Lie groups[END_REF], [START_REF] Chamorro | Some functional inequalities on polynomial volume growth Lie groups[END_REF]), we studied the possible generalizations of inequalities of type [START_REF] Amice | Les nombres p-adiques[END_REF] and [START_REF] Bergh | Interpolation Spaces. Grundlehren der mathematischen Wissenschaften[END_REF] to other frameworks than R n . In particular, we worked over stratified Lie groups and over polynomial volume growth Lie groups and we obtained some new weak-type estimates.

The aim of this paper is to study inequalities of type ( 1) and (2) in the setting of the 2-adic group Z 2 . The main reason for working in the framework of Z 2 is that this group is completely different from R n and from stratified or polynomial Lie groups. Indeed, since the 2-adic group is totally discontinuous, it is not absolutely trivial to give a definition for smoothness measuring spaces. Thus, the first step to do, in order to study these Sobolev-like inequalities, is to give an adapted characterization of such functional spaces. This will be achieved using the Littlewood-Paley approach and, once this task is done, we will immediatly prove -following the classical path exposed in [START_REF] Gérard | Inégalités de Sobolev Précisées[END_REF]-the inequalities (1) in the setting of the 2-adic group Z 2 .

For the estimate (2), we introduce the BV space in the following manner: we will say that f ∈ BV (Z 2 ) if there exists a constant C > 0 such that

Z 2 |f (x + y) -f (x)|dx ≤ C|y| 2 (∀y ∈ Z 2 ).
As a surprising fact, we obtain the Theorem 1 We have the following relationship between the space of functions of bounded variation BV (Z 2 ) and the Besov space Ḃ1,∞ 1 (Z 2 ):

BV (Z 2 ) ≃ Ḃ1,∞ 1 (Z 2 )
Of course, this identification is false in R n and it is this special relationship in Z 2 that give us our principal theorem which is the 2-adic counterpart of the inequality (2):

Theorem 2
The following inequality is false in Z 2 . There is not an universal constant C > 0 such that we have

f 2 L 2 ≤ C f BV f Ḃ-1,∞ ∞ for all f ∈ BV ∩ Ḃ-1,∞ ∞ (Z 2 ).
This striking fact says that the improved Sobolev inequalities of type (2) depend on the group's structure and that they are no longer true for the 2-adic group Z 2 .

The plan of the article is the following: in section 2 we recall some well known properties about p-adic groups, in 3 we define Sobolev and Besov spaces, in 4 we prove theorem 1 and, finally, we prove the theorem 2 in section 5.

p-adic groups

We write a|b when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number, for 0 = x ∈ Z, we define the p-adic valuation of x by γ(x) = max{r : p r |x} ≥ 0 and, for any rational number x = a b ∈ Q, we write γ(x) = γ(a)γ(b). Furthermore if x = 0, we agree to write γ(0) = +∞.

Let x ∈ Q and p be any prime number, with the p-adic valuation of x we can construct a norm by writing When a norm satisfy c) it is called a non-Archimedean norm and an interesting fact is that over Q all the possible norms are equivalent to | • | p for some p: this is the so-called Ostrowski theorem, see [START_REF] Amice | Les nombres p-adiques[END_REF] for a proof.

|x| p =    p -γ if x = 0 p -∞ = 0 if x = 0. ( 3 
Definition 2.1 Let p be a any prime number. We define the field of p-adic numbers Q p as the completion of Q when using the norm | • | p .

We present in the following lines the algebraic structure of the set Q p . Every p-adic number x = 0 can be represented in a unique manner by the formula

x = p γ (x 0 + x 1 p + x 2 p 2 + ...), (4) 
where γ = γ(x) is the p-adic valuation of x and x j are integers such that x 0 > 0 and 0 ≤ x j ≤ p -1 for j = 1, 2, .... Remark that this canonical representation implies the identity |x| p = p -γ .

Let x, y ∈ Q p , using the formula (4) we define the sum of x and y by x + y = p γ(x+y) (c 0 + c 1 p + c 2 p 2 + ...) with 0 ≤ c j ≤ p -1 and c 0 > 0, where γ(x + y) and c j are the unique solution of the equation

p γ(x) (x 0 + x 1 p + x 2 p 2 + ...) + p γ(y) (y 0 + y 1 p + y 2 p 2 + ...) = p γ(x+y) (c 0 + c 1 p + c 2 p 2 + ...).
Furthermore, for a, x ∈ Q p , the equation a + x = 0 has a unique solution in Q p given by x = -a. In the same way, the equation ax = 1 has a unique solution in

Q p : x = 1/a.
We take now a closer look at the topological structure of

Q p . With the norm | • | p we construct a distance over Q p by writing d(x, y) = |x -y| p (5) 
and we define the balls

B γ (x) = {y ∈ Q p : d(x, y) ≤ p γ } with γ ∈ Z.
Remark that, from the properties of the p-adic valuation, this distance has the ultra-metric property (i.e. d(x, y)

≤ max{d(x, z), d(z, y)} ≤ |x| p + |y| p ).
We gather with the next proposition some important facts concerning the balls in Q p .

Proposition 2.1 Let γ be an integer, then we have 1) the ball B γ (x) is a open and a closed set for the distance [START_REF] Cohen | Harmonic Analysis of the space BV[END_REF].

2) every point of B γ (x) is its center.

3) Q p endowed with this distance is a complete Hausdorff metric space.

4) Q p is a locally compact set.

5) the p-adic group Q p is a totally discontinuous space.

For a proof of this proposition and more details see the books [START_REF] Amice | Les nombres p-adiques[END_REF], [START_REF] Koblitz | p-adic Numbers, p-adic Analysis and Zeta-functions[END_REF] or [START_REF] Vladimirov | p-Adic Analysis and Mathematical Physics[END_REF].

Functional spaces

In this article, we will work with the subset

Z 2 of Q 2 which is defined by Z 2 = {x ∈ Q 2 : |x| 2 ≤ 1}
, and we will focus on real-valued functions over Z 2 . Since Z 2 is a locally compact commutative group, there exists a Haar measure dx which is translation invariant i.e.: d(x + a) = dx, furthermore we have the identity

d(xa) = |a| 2 dx for a ∈ Z * 2 .
We will normalize the measure dx by setting

{|x| 2 ≤1} dx = 1.
This measure is then unique and we will note |E| the measure for any subset E of Z 2 . Lebesgue spaces L p (Z 2 ) are thus defined in a natural way:

f L p = Z 2 |f (x)| p dx 1/p
for 1 ≤ p < +∞, with the usual modifications when p = +∞.

Let us now introduce the Littlewood-Paley decomposition in Z 2 . We note F j the Boole algebra formed by the equivalence classes E ⊂ Z 2 modulo the sub-group 2 j Z 2 . Then, for any function f ∈ L 1 (Z 2 ), we call S j (f ) the conditionnal expectation of f with respect to F j :

S j (f )(x) = 1 |B j (x)| B j (x)
f (y)dy.

The dyadic blocks are thus defined by the formula ∆ j (f ) = S j+1 (f ) -S j (f ) and the Littlewood-Paley decomposition of a function f : Z 2 -→ R is given by

f = S 0 (f ) + +∞ j=0 ∆ j (f ) where S 0 (f ) = Z 2 f (x)dx. ( 6 
)
We will need in the sequel some very special sets noted Q j,k . Here is the definition and some properties:

Proposition 3.1 Let j ∈ N and k = {0, 1, ..., 2 j -1}. Define the subset Q j,k of Z 2 by Q j,k = k + 2 j Z 2 . ( 7 
)
Then 1) We have the identity

F j = 0≤k<2 j Q j,k , 2) For k = {0, 1, ..., 2 j -1} the sets Q j,k are mutually disjoint, 3) |Q j,k | = 2 -j for all k, 4) the 2-adic valuation is constant over Q j,k .
The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in [START_REF] Gérard | Inégalités de Sobolev Précisées[END_REF], we obtain the following equivalence for the Lebesgue spaces L p (Z 2 ) with 1 < p < +∞:

f L p ≃ S 0 (f ) L p + j∈N |∆ j f | 2 1/2 L p .
See the book [START_REF] Stein | Topics in Harmonic analysis[END_REF], chapter IV, for a general proof.

Let us turn now to smoothness measuring spaces. As said in the introduction, it is not absolutely trivial to define Sobolev and Besov spaces over Z 2 since we are working in a totally discontinuous setting. Here is an example of this situation with the Sobolev space W 1,2 : one could try to define the quantity |∇f | by the formula

|∇f | = lim δ→0 sup d(x,y)<δ |f (x) -f (y)| d(x, y)
and define the Sobolev space W 1,2 (Z 2 ) by the norm

f * = f L 2 + Z 2 |∇f | 2 dx 1/2 . ( 8 
)
Now, using the Littlewood-Paley decomposition we can also write

f * * = S 0 f L 2 +   j∈N 2 2j |∆ j f | 2   1/2 2 .
However, the quantities • * and • * * are not equivalent: in the case of ( 8) consider a function f = c k constant over each Q j,k = {k + 2 j Z 2 } for some fixed j. Then we have |∇f | ≡ 0 and for these functions the norm • * would be equal to the L 2 norm. This is the reason why we will use in this article the Littlewood-Paley approach to characterize Sobolev spaces:

f W s,p ≃ S 0 f L p + j∈N 2 2js |∆ j f | 2 1/2 L p . ( 9 
)
with 1 < p < +∞ and s > 0. For Besov spaces we will define them by the norm

f B s,q p ≃ S 0 f L p +   j∈N 2 jsq ∆ j f q L p   1/q (10) 
where s ∈ R, 1 ≤ p, q < +∞ with the necessary modifications when p, q = +∞.

Remark 1 For homogeneous functional spaces Ẇ s,p and Ḃs,q p , we drop out the term S 0 f L p in ( 9) and [START_REF] Stein | Topics in Harmonic analysis[END_REF].

Let us give some simple examples of function belonging to these functional spaces.

1) The function f

(x) = log 2 |x| 2 is in Ḃ1,∞ 1 (Z 2 ). First note that |x| 2 = 2 -γ(x)
and thus f (x) = -γ(x). Recall (cf. proposition 3.1) that over each set Q j,k , the quantity γ(x) is constant, so the dyadic bloc ∆ j f is given by

∆ j f (x) =    -1 over Q j+1,0 0 elsewhere. 
Hence, taking the L 1 norm, we have ∆ j f L 1 = 1 2 2 -j and then f ∈ Ḃ1,∞ 1 (Z 2 ).

2

) Set h(x) = 1/|x| 2 , we have h ∈ Ḃ-1,∞ ∞ .
For this, we must verify sup j≥0 2 -j ∆ j h L ∞ < +∞. By definition we obtain h(x) = 2 γ(x) and then

∆ j h(x) =    2 j over Q j+1,0 0 elsewhere.
We finally obtain ∆ j h L ∞ = 2 j and hence 2 -j ∆ j h L ∞ = 1 for all j, so we write

h ∈ Ḃ-1,∞ ∞ .
With the Littlewood-Paley characterisation of Sobolev spaces and Besov spaces given in ( 9) and ( 10) we have the following theorem: Theorem 3 In the framework of the 2-adic group Z 2 we have, for a function

f such that f ∈ Ẇ s 1 ,p (Z 2 ) and f ∈ Ḃ-β,∞ ∞ (Z 2 ), the inequality f Ẇ s,q ≤ C f θ Ẇ s 1 ,p f 1-θ Ḃ-β,∞ ∞ where 1 < p < q < +∞, θ = p/q, s = θs 1 -(1 -θ)β and -β < s < s 1 .
Proof. We start with an interpolation result: let (a j ) j∈N be a sequence, let s = θs 1 -(1θ)β with θ = p/q, then we have for r, r 1 , r 2 ∈ [1, +∞] the estimate

2 js a j ℓ r ≤ C 2 js 1 a j θ ℓ r 1 2 -jβ a j 1-θ ℓ r 2
See [START_REF] Bergh | Interpolation Spaces. Grundlehren der mathematischen Wissenschaften[END_REF] for a proof. Apply this estimate to the dyadic blocks ∆ j f to obtain

  j∈Z 2 2js |∆ j f (x)| 2   1/2 ≤ C   j∈Z 2 2js 1 |∆ j f (x)| 2   θ/2 sup j∈Z 2 -jβ |∆ j f (x)| 1-θ
To finish, compute the L q norm of the preceding quantities.

4

The BV (Z 2 ) space and the proof of theorem 1

We study in this section the space of functions of bounded variation BV and we will prove some surprising facts in the framework of 2-adic group Z 2 . Let us start recalling the definition of this space:

Definition 4.1 If f is a real-valued function over Z 2 , we will say that f ∈ BV (Z 2 ) if there exists a constant C > 0 such that Z 2 |f (x + y) -f (x)|dx ≤ C|y| 2 , (∀y ∈ Z 2 ). (11) 
We prove now the theorem 1 which asserts that in Z 2 , the BV space can be identified to the Besov space Ḃ1,∞ 1 . For this, we will use two steps given by the propositions 4.1 and 4.2 below.

Proposition 4.1 If f is a real-valued function over Z 2 belonging to the Besov space Ḃ1,∞ 1 , then f ∈ BV and we have the inclusion Ḃ1,∞

1 ⊆ BV . Proof. Let f ∈ Ḃ1,∞ 1 (Z 2
) and let us fix |y| 2 = 2 -m . We have to prove the following estimation for all m > 0

I = Z 2 |f (x + y) -f (x)|dx ≤ C 2 -m .
Using the Littlewood-Paley decomposition given in ( 6), we will work on the formula below

I =   S 0 f (x + y) + j≥0 ∆ j f (x + y)   -   S 0 f (x) + j≥0 ∆ j f (x)   L 1
Then, by the dyadic block's properties we have to study

I ≤ S m f (x + y) -S m f (x) L 1 + +∞ j=m+1 ∆ j f (x + y) -∆ j f (x) L 1 . (12) 
We estimate this inequality with the two following lemmas.

Lemma 4.1 The first term in ( 12) is identically zero.

Proof. Since we have fixed |y| 2 = 2 -m , then for x ∈ Q m,k , we have x+ y ∈ Q m,k with k = {0, ..., 2 m -1}. Applying the operators S m to the functions f (x + y) and f (x) we get the desired result.

The second term in [START_REF] Triebel | Theory of function spaces II[END_REF] is treated by the next lemma. 

∆ j f (x + y) -∆ j f (x) L 1 ≤ C 2 -m . Proof. Indeed, +∞ j=m+1 ∆ j f (x + y) -∆ j f (x) L 1 ≤ 2 +∞ j=m+1 ∆ j f L 1 .
We use now the fact ∆ j f L 1 ≤ C 2 -j for all j, since f ∈ Ḃ1,∞ 1 , to get

+∞ j=m+1 ∆ j f (x + y) -∆ j f (x) L 1 ≤ C 2 -m .
With these two lemmas, and getting back to [START_REF] Triebel | Theory of function spaces II[END_REF], we deduce the following inequality for all y ∈ Z 2 :

Z 2 |f (x + y) -f (x)|dx ≤ C |y| 2
and this concludes the proof of proposition 4.1.

Our second step in order to prove theorem 1 is the next result.

Proposition 4.2 In Z 2 we have the inclusion BV (Z 2 ) ⊆ Ḃ1,∞ 1 (Z 2 ).
Proof. Observe that we can characterize the Besov space Ḃ1,∞ 1 (Z 2 ) by the condition

f (• + y) + f (• -y) -2f (•) L 1 ≤ C |y| 2 , ∀y = 0.
Let f be a function in BV (Z 2 ), then we have

f (• + y) -f (•) L 1 ≤ C |y| 2 .
Summing f (•y)f (•) L 1 in both sides of the previous inequality we obtain

f (• + y) -f (•) L 1 + f (• -y) -f (•) L 1 ≤ C |y| 2 + f (• -y) -f (•) L 1
and by the triangular inequality we have

f (• + y) + f (• -y) -2f (•) L 1 ≤ C |y| 2 + f (• -y) -f (•) L 1
We thus obtain

f (• + y) + f (• -y) -2f (•) L 1 ≤ 2C |y| 2 .
We have proved, in the setting of the 2-adic group Z 2 , the inequalities

C 1 f Ḃ1,∞ 1 ≤ f BV ≤ C 2 f Ḃ1,∞ 1 ,
so the theorem 1 follows.

5 Improved Sobolev inequalities, BV space and proof of theorem 2

We do not give here a global treatment of the family of inequalities of type (2); instead we focus on the next inequality

f 2 L 2 ≤ C f BV f Ḃ-1,∞ ∞ (13) 
and we want to know if this estimation is true in a 2-adic framework. Since in the Z 2 setting we have the identification

f BV ≃ f Ḃ1,∞ ∞ , the estimation (13) becomes f 2 L 2 ≤ C f Ḃ1,∞ 1 f Ḃ-1,∞ ∞ . (14) 
This remark lead us to the theorem 2 which states that the previous inequalities are false.

Proof. We will construct a counterexample by means of the Littlewood-Paley decomposition, so it is worth to recall very briefly the dyadic bloc characterization of the norms involved in inequality (14). For the L 2 norm we have

f 2 L 2 = j∈N ∆ j f 2 L 2 , while for the Besov spaces Ḃ1,∞ 1 and Ḃ-1,∞ ∞ we have f Ḃ1,∞ 1 = sup j∈N 2 j ∆ j f L 1 and f Ḃ-1,∞ ∞ = sup j∈N 2 -j ∆ j f L ∞ .
We construct a function f : Z 2 -→ R by considering his values over the dyadic blocs and we will use for this the sets Q j,k defined in [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF]. First fix α and β two non negative real numbers and j 0 , j 1 two integers such that 0 ≤ j 0 ≤ j 1 with the condition

2 2j 0 ≤ β α .
Now define N j as a function of α and β:

N j = 2 j if 0 ≤ j ≤ j 0 and N j = β α 2 -j ≤ 2 j if j 0 < j ≤ j 1 . (15) 
and write

∆ j f (x) =                               
α2 j over Q j+1,0 , -α2 j over Q j+1,1 , α2 j over Q j+1,2 , -α2 j over Q j+1,3 , . . . α2 j over Q j+1,2N j -2 , -α2 j over Q j+1,2N j -1 , 0 elsewhere.

Once this function is fixed, we compute the following norms

• ∆ j f L 1 = N j k=0 α2 j 2 -j = αN j , • ∆ j f L ∞ = α2 j , • ∆ j f 2 L 2 = N j k=0 α 2 2 2j 2 -j = α 2 2 j N j ,
and we build from these quantities the Besov and Lebesgue norms in the following manner:

1) For the Besov space Ḃ-1,∞ ∞ :

f Ḃ-1,∞ ∞ = sup 0≤j≤j 1 2 -j α2 j = α,
2) For the Besov space Ḃ1,∞ 1 :

By the definition (15) of N j we have 2 j ∆ j f L 1 = 2 j αN j = 2 2j α if 0 ≤ j ≤ j 0 and 2 j ∆ j f L 1 = β if j 0 < j ≤ j 1 . Since 2 2j 0 ≤ β α we have:

f Ḃ1,∞ 1 = β.
3) For the Lebesgue space L 2 : With the condition 2 2j 0 ≤ β α , we obtain from the previous formula that

f 2 L 2 =
f 2 L 2 ≃ αβ(j 1 -j 0 ) = f Ḃ1,∞ 1 f Ḃ-1,∞ ∞ (j 1 -j 0 ).
Thus, getting back to (14) and therefore to (13), we have for an universal constant C the inequality

f Ḃ1,∞ 1 f Ḃ-1,∞ ∞ (j 1 -j 0 ) ≤ C f Ḃ1,∞ 1 f Ḃ-1,∞ ∞ ⇐⇒ (j 1 -j 0 ) ≤ C,
which is false since we can freely choose the values of j 1 and j 0 . The theorem 2 is proved.

)

  This expression satisfy the following properties a) |x| p ≥ 0, and |x| p = 0 ⇐⇒ x = 0; b) |xy| p = |x| p |y| p ; c) |x + y| p ≤ max{|x| p , |y| p }, with equality when |x| p = |y| p .

Lemma 4 . 2

 42 Under the hypothesis of proposition 4.1 and for |y| 2 = 2 -m we have +∞ j=m+1