
HAL Id: hal-00531433
https://hal.science/hal-00531433

Submitted on 2 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A modified Lagrange-Galerkin method for a fluid-rigid
system with discontinuous density

Jorge San Martin, Jean-François Scheid, Loredana Smaranda

To cite this version:
Jorge San Martin, Jean-François Scheid, Loredana Smaranda. A modified Lagrange-Galerkin method
for a fluid-rigid system with discontinuous density. Numerische Mathematik, 2012, 122 (2), pp.341-382.
�10.1007/s00211-012-0460-1�. �hal-00531433�

https://hal.science/hal-00531433
https://hal.archives-ouvertes.fr


A modi�ed Lagrange-Galerkin method for a �uid-rigid system

with discontinuous density

Jorge San Martín∗, Jean-François Scheid†, Loredana Smaranda‡

Abstract

In this paper, we propose a new characteristics method for the discretization of the two
dimensional �uid-rigid body problem in the case where the densities of the �uid and the
solid are di�erent. The method is based on a global weak formulation involving only terms
de�ned on the whole �uid-rigid domain. To take into account the material derivative, we
construct a special characteristic function which maps the approximate rigid body at the
discrete time level tk+1 into the approximate rigid body at time tk. Convergence results are
proved for both semi-discrete and fully-discrete schemes.

1 Introduction

The aim of this paper is to present a modi�ed characteristics method for the discretization
of the equations modelling the motion of a rigid solid immersed into a viscous incompressible
�uid. Our method is a generalisation of the numerical scheme presented in San Martín,
Scheid, Takahashi and Tucsnak [18] for the case where the �uid and the solid have di�erent
densities. The �uid-rigid system occupies a bounded and regular domain O ⊂ R2. The solid
is assumed to be a ball of radius 1 whose center, at time t, is denoted by ζ(t). The �uid �lls
the part Ω(t) = O\B(ζ(t)) at time t. The velocity �eld u(x, t) and the pressure p(x, t) of the
�uid, the center of mass ζ(t) and the angular velocity ω(t) of the ball satisfy the following
Navier-Stokes system coupled with Newton's laws:

ρf

(
∂u
∂t

+ (u · ∇)u
)
− µ∆u +∇p = ρf f , x ∈ Ω(t), t ∈ [0, T ], (1.1)

divu = 0, x ∈ Ω(t), t ∈ [0, T ], (1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ], (1.3)

u = ζ′(t) + ω(t)(x− ζ(t))⊥, x ∈ ∂B(ζ(t)), t ∈ [0, T ], (1.4)

mζ′′(t) = −
∫
∂B(ζ(t))

σn dΓ + ρs

∫
B(ζ(t))

f(x, t)dx, t ∈ [0, T ], (1.5)

Jω′(t) = −
∫
∂B(ζ(t))

(x− ζ(t))⊥ · σn dΓ + ρs

∫
B(ζ(t))

(x− ζ(t))⊥ · f(x, t)dx, t ∈ [0, T ]. (1.6)

In the above system, σ = −pId + 2µD(u) denotes the Cauchy stress tensor with D(u) =
(∇u+∇uT )/2 and ∇uT means the transpose of ∇u. The positive constant µ is the dynamic
viscosity of the �uid and the constants m and J are the mass and the moment of inertia
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of the rigid body. Throughout this article, we will use the notation x⊥ =
(
−x2

x1

)
for all

x =
(
x1

x2

)
∈ R2. System (1.1)�(1.6) is completed with initial conditions:

u(x, 0) = u0(x), x ∈ Ω(0), (1.7)

ζ(0) = ζ0 ∈ R2, ζ′(0) = ζ1 ∈ R2, ω(0) = ω0 ∈ R. (1.8)

In this paper, we suppose that the density ρf of the �uid and the density ρs of the solid are
constant, but not equal, that is

ρf 6= ρs.

The �uid-structure interaction problem (1.1)�(1.8) is characterized by the strong coupling
between the nonlinear equations of the �uid and those of the structure, as well as the fact
that the equations of the �uid are written in a variable domain in time, which depends on the
displacement of the structure. From the numerical point of view, in this kind of problems it
is necessary to solve equations on moving domains. For this reason, in recent years various
authors have proposed a number of di�erent techniques, some of which are the level set
method (see Osher and Sethian [13]), the �ctitious domain method (see Glowinski, Pan,
Hesla, Joseph and Périaux [7, 8]), the immersed boundary method (see Peskin [14]) and the
Arbitrary Lagrangian Eulerian (ALE) method (see Formaggia and Nobile [4], Gastaldi [5],
Maury [11], Maury and Glowinski [12]).

In the sequel, we brie�y recall some reference about the numerical convergence for Navier-
Stokes equations, when the domain is independent of time. The Lagrange-Galerkin method
has been proposed for the numerical treatment of convection-dominated equations and it
is based on combining a Galerkin �nite element procedure with a special discretisation of
the material derivative along trajectories. Pironneau in [15] has given a detailed analysis of
the method for the Navier-Stokes equations and Süli [21] has proved optimal error estimates
for the Lagrange-Galerkin mixed �nite element approximation of Navier-Stokes equations in
a velocity/pressure formulation. We also mention the work of Achdou and Guermond [1],
where convergence analysis of a �nite element projection/Lagrange-Galerkin method for the
incompressible Navier-Stokes equations is done.

The numerical analysis of some time decoupling algorithms for the simulation of the in-
teraction between a �uid and a structure in the case where the deformation of the structure
induces an evolution in the �uid domain has been developed by Grandmont, Guimet and
Maday [9] (one dimensional problem). For the ALE method, the numerical analysis of the
unsteady Stokes equations in a time dependent domain when the motion of the domain is
given has been studied in San Martín, Smaranda and Takahashi [20]. Moreover, Legendre
and Takahashi [10] have combined the method of characteristics with a �nite element ap-
proximation to derive error estimates in the ALE formulation of a two-dimensional problem
describing the motion of a rigid body in a viscous �uid. In San Martín, Scheid, Takahashi
and Tucsnak [17, 18], the authors have proved the convergence of a numerical method based
on �nite elements with a �xed mesh for a two dimensional �uid-rigid body problem with
the densities of the �uid and the solid equal, i.e. ρf = ρs. Their numerical scheme is based
on a standard characteristic function resulting from the classical formulation of the material
derivative in the Navier-Stokes equations. The method introduced in [18] cannot be easily
extended to our case ρf 6= ρs where the global density is discontinuous by using the same
characteristic function. In this paper, we introduce crucial modi�cations on the characteris-
tic function, and we propose a new numerical scheme in order to prove a similar convergence
result as in [18]. We think that this modi�cation on the characteristic function should be
useful to obtain convergent algorithms for the simulation of aquatic organisms in two and
three dimensional cases (see San Martín, Scheid, Takahashi and Tucsnak [19]).

The paper is organized as follows. In the next section we introduce some notation and
the functional spaces we work on. In Section 3 we discretize the �uid-structure interaction
problem (1.1)�(1.8) in time variable and we state our �rst main result given in Theorem 3.3
which consists in the convergence of the semi-discretization scheme. Section 4 is dedicated to
the fully discretization in time and space variables and then we state our second main result
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given in Theorem 4.1 which concerns an error estimate for the fully-discrete formulation.
Section 5 is devoted to some crucial properties on the characteristic functions associated
with our schemes. The last two sections are focused on the proofs of the convergence results
for both semi-discrete and fully-discrete formulations.

2 Notation and functional spaces

Throughout this paper, we shall use the classical Sobolev spaces Hs(O), Hs
0(O), H−s(O),

s > 0 and the space of Lipschitz continuous functions C0,1(O) on the closure of O. We also
de�ne

L2
0(O) =

{
f ∈ L2(O) |

∫
O
f dx = 0

}
.

The usual inner product in L2(O)2 will be denoted by

(u,v) =
∫
O

u · v dx ∀u,v ∈ L2(O)2. (2.1)

If A is a matrix, we denote by AT its transpose. For any 2 × 2 matrices A,B ∈ M2×2,
we denote by A : B their inner product A : B = Trace(ATB), and by |A| the correspond-
ing norm. For convenience, we use the same notation as in (2.1) for the inner product in
L2(O,M2×2), that is

(A,B) =
∫
O

A : B dx ∀A,B ∈ L2(O,M2×2).

For ζ ∈ O, we introduce the space of rigid functions in B(ζ) = {x ∈ R2 : |x− ζ| ≤ 1},

K(ζ) =
{
u ∈ H1

0 (O)2 | D(u) = 0 in B(ζ)
}
, (2.2)

the space of rigid functions in B(ζ) with divergence free in the whole domain O,

K̂(ζ) =
{
u ∈ K(ζ) | divu = 0 in O

}
, (2.3)

and the space of the pressure

M(ζ) =
{
p ∈ L2

0(O) | p = 0 in B(ζ)
}
. (2.4)

Remark 2.1. For convenience, in the reminder of the paper, any velocity �eld in K(ζ) will
be extended by zero outside of O.

According to Lemma 1.1 of [22, pp.18], for any u ∈ K(ζ), there exist lu ∈ R2 and ωu ∈ R
such that

u(y) = lu + ωu (y − ζ)⊥ ∀y ∈ B(ζ). (2.5)

In addition, we de�ne the density ρ by the following piecewise constant function

ρ(x) =

{
ρs if x ∈ B(ζ),
ρf if x ∈ O \B(ζ).

We notice that, by using the above de�nitions, for any u,v ∈ K(ζ) we have

(ρu,v) =
∫
O\B(ζ)

ρfu · v dx +M lu · lv + Jωu ωv. (2.6)

The spaces (2.2)�(2.3) are speci�c to our problem. In fact, if the solution u of (1.1)-(1.8)
is extended by

u(x, t) = ζ′(t) + ω(t)(x− ζ(t))⊥ ∀x ∈ B(ζ(t)),

then, we easily see that u(t) ∈ K̂(ζ(t)). In the reminder of this paper, the solution u of
(1.1)�(1.8) will be extended as above.
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An important ingredient of the numerical method we use is given by the characteristic
functions whose level lines are the integral curves of the velocity �eld. More precisely (see,

for instance, [15], [21]) the characteristic function ψ̃ : [0, T ]2 × O → O is de�ned as the
solution of the initial value problem

d

dt
ψ̃(t; s,x) = u(ψ̃(t; s,x), t) ∀t ∈ [0, T ],

ψ̃(s; s,x) = x.
(2.7)

It is well-known that the material derivative Dtu = ∂u/∂t + (u · ∇)u of u at instant t0
satis�es:

Dtu(x, t0) =
d

dt

[
u(ψ̃(t; t0,x), t)

]
|t=t0

. (2.8)

Remark 2.2. By using a classical result of Liouville (see, for instance, [2, pp.251]), if

ζ ∈ H2(0, T )2, ω ∈ H1(0, T ), u ∈ C([0, T ]; K̂(ζ(t))),

then we have that
det J eψ = 1, (2.9)

where we have denoted by

J eψ =

(
∂ψ̃i
∂yj

)
i,j

the jacobian matrix of the transformation y 7→ ψ̃(y).
In the following lemma we give a weak formulation of the system (1.1)�(1.8) which will

be then used to discretize the problem with respect to time.

Lemma 2.3. Assume that

u ∈ L2
(
0, T ;H2(Ω(t))2

)
∩H1

(
0, T ;L2(Ω(t))2

)
∩ C

(
[0, T ];H1(Ω(t))2

)
,

p ∈ L2
(
0, T ;H1(Ω(t))

)
, ζ ∈ H2(0, T )2, ω ∈ H1(0, T )

and that u is extended by

u(x, t) = ζ′(t) + ω(t)(x− ζ(t))⊥ ∀x ∈ B(ζ(t)).

Then (u, p, ζ, ω) is the solution of (1.1)-(1.8) if and only if for all t ∈ [0, T ], u(·, t) ∈ K(ζ(t))
p(·, t) ∈M(ζ(t)) and (u, p) satis�es(

ρ
d

dt

[
u ◦ ψ̃

]
(t),ϕ

)
+ a(u,ϕ) + b(ϕ, p) = (ρ f(t),ϕ) ∀ϕ ∈ K(ζ(t)), (2.10)

b(u, q) = 0 ∀q ∈M(ζ(t)), (2.11)

where

a(u,v) = 2µ
∫
O

D(u) : D(v) dx ∀u,v ∈ H1(O)2 (2.12)

and

b(u, p) = −
∫
O

div(u)p dx ∀u ∈ H1(O)2, ∀p ∈ L2
0(O). (2.13)

We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding result
for the classical Navier-Stokes system (see, for instance, [16, Ch.12]).
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3 Semi-discretization scheme and statement of the �rst

main result

By using the weak formulation (2.10)�(2.11) we can derive a semi-discrete version of our
system. For N ∈ N∗ we denote ∆t = T/N and tk = k∆t for k = 0, · · · , N . Denote by

(uk, ζk) ∈ K̂(ζk) ∩ C0(O)2 ×O the approximation of the solution of (1.1)�(1.8) at the time
t = tk. In the sequel, we shall use the notation

X̃(x) = ψ̃(tk; tk+1,x) ∀x ∈ O. (3.1)

We approximate the position of the rigid ball at instant tk+1 by ζk+1 which is de�ned by
the relation

ζk+1 = ζk + uk(ζk)∆t. (3.2)

We then de�ne the characteristic function ψ associated with the semi-discretized velocity
�eld as the solution of

d

dt
ψ(t; tk+1,x) = uk(ψ(t; tk+1,x))− uk(ζk) ∀t ∈ [tk, tk+1],

ψ(tk+1; tk+1,x) = x− uk(ζk)∆t,
(3.3)

and we denote
X
k
(x) = ψ(tk; tk+1,x) ∀x ∈ O. (3.4)

In equation (3.3), the velocity uk is extended by zero outside of the domain O as it was

noted in Remark 2.1. This extension is necessary because we have X
k

(O) * O. Indeed, we
observe that due to the initial condition in (3.3), if we consider x ∈ O, then ψ(tk+1; tk+1,x)
does not necessarily belong to O. Nevertheless, one can easily check that X

k
(O) ⊆ O +

B(0, |uk(ζk)|∆t). We emphasize that the Cauchy problem (3.3) is well-posed and then the

characteristic function X
k
is also well de�ned. Indeed, since uk ∈ H1

0 (O)2 with divuk = 0
in O and uk = 0 in R2 \ O, the problem (3.3) admits a unique solution ψ(·; tk+1,x) ∈
C1([tk, tk+1]) for almost every x ∈ R2, which satis�es the following measure preserving
property (see [3, Section III]),∫

A
f
(
ψ(t; tk+1,x)

)
dx =

∫
ψ(t;tk+1,A)

f(y) dy, (3.5)

for all function f ∈ L1(R2) and for all t ∈ [tk, tk+1]. Moreover, since uk ∈ C0(O)2, the
caracteristic function ψ(·; tk+1,x) is actually well de�ned in [tk, tk+1], for all x ∈ R2.

We next de�ne uk+1 ∈ K̂(ζk+1) as the solution of the following Stokes type system(
ρk+1 uk+1 − uk ◦Xk

∆t
,ϕ

)
+ a

(
uk+1,ϕ

)
= (ρk+1fk+1,ϕ) ∀ϕ ∈ K̂(ζk+1), (3.6)

where fk+1 = f(tk+1) and ρk+1 is de�ned by

ρk+1(x) =

{
ρs if x ∈ B(ζk+1),

ρf if x ∈ O \B(ζk+1).

The above equation can be rewritten by using a mixed formulation. It is clear that (3.6)
is equivalent to the following system(

ρk+1 uk+1 − uk ◦Xk

∆t
,ϕ

)
+ a(uk+1,ϕ) + b(ϕ, pk+1)

= (ρk+1fk+1,ϕ) ∀ϕ ∈ K(ζk+1), (3.7)
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b(uk+1, q) = 0 ∀q ∈M(ζk+1), (3.8)

of unknowns (uk+1, pk+1) ∈ K(ζk+1)×M(ζk+1).

It is well-known (see, for example, [6, Corollary I.4.1., pp.61]) that the mixed formulation
(3.7)�(3.8) is a well-posed problem, provided that the spaces K(ζ), M(ζ) and the bilinear
form b satisfy an inf-sup condition. The fact that this inf-sup condition is satis�ed in our
case follows from the result below.

Lemma 3.1. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0. Then there
exists a constant β > 0, depending only on η and on O, such that for all q ∈ M(ζ) there
exists u ∈ K(ζ) with ∫

O
div(u) q dx ≥ β‖u‖H1(O)2‖q‖L2(O). (3.9)

The proof of the result above can be obtained by slightly modifying the approach used for
the mixed formulation of the standard Stokes system (see, for instance [6, pp.81]), therefore
it is left to the reader. In addition, it can be easily proved that uk+1 is continuous in O. To
see this, we remark that (uk+1, pk+1) satis�es a Stokes problem in the �uid part O\B(ζk+1)
with a rigid velocity boundary condition on ∂B(ζk+1). Then assuming fk+1 ∈ L2(O)2, we
get uk+1 ∈ H2(O \B(ζk+1))2 and we deduce that

uk+1 ∈ C0(O)2. (3.10)

In the reminder of the paper, we suppose that f and u0 satisfy

f ∈ C([0, T ];H1(O)2), u0 ∈ H2(Ω)2, div(u0) = 0 in Ω,
u0 = 0 on ∂O, u0(y) = ζ1 + ω0(y − ζ0)⊥ on ∂B(ζ0),

(3.11)

where ζ0, ζ1 ∈ R2, ω0 ∈ R and Ω = O \ B(ζ0). Let us also assume that the corresponding
solution (u, p, ζ, ω) of problem (1.1)�(1.8) satis�es

u ∈ C([0, T ];H2(Ω(t))2) ∩H1(0, T ;L2(Ω(t))2),

D2
tu ∈ L2(0, T ;L2(Ω(t))2), u ∈ C([0, T ];C0,1(O)2)

p ∈ C([0, T ];H1(Ω(t))), ζ ∈ H3(0, T )2, ω ∈ H2(0, T )
(3.12)

and
dist(B(ζ(t)), ∂O) > 0 ∀t ∈ [0, T ]. (3.13)

Remark 3.2. The hypotheses (3.12) and (3.13) imply the existence of η > 0 such that

dist(B(ζ(t)), ∂O) > 3η ∀t ∈ [0, T ]. (3.14)

Let us now state our �rst main result concerning the convergence of the semi-discrete
scheme (3.7)�(3.8):

Theorem 3.3. Suppose that O is an open smooth bounded domain in R2, f and u0 satisfy
(3.11) and (u, p, ζ, ω) is a solution of (1.1)�(1.8) satisfying (3.12)�(3.13). Then there exist
two positive constants C and τ∗ not depending on ∆t such that for all 0 < ∆t 6 τ∗ the
solution (uk, pk, ζk) of the semi-discretization problem (3.7)�(3.8) satis�es

sup
16k6N

(
|ζ(tk)− ζk|+ ‖u(tk)− uk‖L2(O)2

)
6 C∆t. (3.15)

4 Fully discrete formulation and statement of the second

main result

In order to discretize the problem (3.7)�(3.8) with respect to the space variable, we introduce
two families of �nite element spaces which approximate the spaces K(ζ) and M(ζ) de�ned
in (2.2) and (2.4). To this end, we consider the discretization parameter 0 < h < 1.
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Let Th be a quasi-uniform triangulation of the domain O. We denote by Wh the P1-
bubble �nite elements space associated with Th for the velocity �eld in the Stokes problem
and by Eh the P1-�nite elements space for the pressure. Then, we de�ne the following �nite
elements spaces for a conform approximation of the �uid-rigid system:

Kh(ζ) = Wh ∩ K(ζ) ∀ζ ∈ O
Mh(ζ) = Eh ∩M(ζ) ∀ζ ∈ O.

In order to de�ne the approximate characteristics, let us denote by Fh the P2-�nite
element space associated with the triangulation Th and we introduce the space:

Rh(ζ) = {∇⊥ϕh : ϕh ∈ Fh, ϕh = 0 on ∂O} ∩ K(ζ) ∀ζ ∈ O,

where we have denoted by ∇⊥ϕh =

−
∂ϕh
∂y
∂ϕh
∂x

 .

We denote P(ζ) the orthogonal projection from L2(O)2 onto Rh(ζ), i.e. if u ∈ L2(O)2

then P(ζ)u ∈ Rh(ζ) such that (u−P(ζ)u, rh) = 0 for all rh ∈ Rh(ζ).
Let N be a positive integer. We denote ∆t = T/N and tk = k∆t for all k ∈ {0, . . . , N}.

Assume that the approximate solution (ukh, p
k
h, ζ

k
h) of (1.1)�(1.8) at t = tk is known. We

describe below the numerical scheme allowing to determinate the approximate solution
(uk+1
h , pk+1

h , ζk+1
h ) at t = tk+1. First, we compute ζk+1

h ∈ R2 by

ζk+1
h = ζkh + ukh(ζkh)∆t. (4.1)

We consider the approximated characteristic function ψ
k

h de�ned as the solution of
d

dt
ψ
k

h(t; tk+1,x) = P(ζkh)ukh(ψ
k

h(t; tk+1,x))−P(ζkh)ukh(ζkh) ∀t ∈ [tk, tk+1],

ψ
k

h(tk+1; tk+1,x) = x− ukh(ζkh)∆t.
(4.2)

Finally, we de�ne

X
k

h(x) = ψ
k

h(tk; tk+1,x) ∀x ∈ O. (4.3)

We remark that, since div
(
P(ζkh)ukh(ψ

k

h(t; tk+1, ·)) − P(ζkh)ukh(ζkh)
)

= 0 and

∇(x− ukh(ζkh)∆t) = Id, we get
det J

ψ
k
h

= 1. (4.4)

In the sequel, we shall split the mesh into the union of 4 di�erent types of triangle's
subsets. We �rst introduce Ah as the union of all triangles intersecting the ball B(ζkh), i.e.

Ah =
⋃

T∈Th
◦
T∩

◦
B(ζk

h)6=∅

T.

We also denote by Qh the union of all triangles such that all their vertices are contained in
Ah. The triangles of Th are then splitted into the 4 following categories (see Figure 1):

• F1 is the subset of Th formed by all triangles T ∈ Th such that T ⊂ B(ζkh).

• F2 is the subset formed by all triangles T ∈ Th \ F1 such that T ⊂ Qh.
• F3 is the subset formed by all triangles T ∈ Th such that T ∩Qh 6= ∅ and T 6⊂ Qh.
• F4 = Th \ (F1 ∪ F2 ∪ F3).

We introduce two approximated density functions ρkh and ρkh as follows:

ρkh(x) =

{
ρs if x ∈ B(ζkh),

ρf if x ∈ O \B(ζkh)
(4.5)
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F1

F2

F3

F4This triangle does not belong to

Ah but lies in Qh since its three

vertices are in Ah.

Figure 1: The rigid ball and the related splitting of the triangulation.

and ρkh is the continuous function in O which is piecewise linear on triangles of Th and satis�es

ρkh(x) =
{
ρs if x ∈ Qh,
ρf if x ∈ F4.

(4.6)

With these notations, we consider the following mixed variational fully discrete formula-
tion: Find (uk+1

h , pk+1
h ) ∈ Kh(ζk+1

h )×Mh(ζk+1
h ) such that(

ρk+1
h

uk+1
h − ukh ◦X

k

h

∆t
,ϕ

)
+ a(uk+1

h ,ϕ) + b(ϕ, pk+1
h )

= (ρk+1
h fk+1

h ,ϕ) ∀ϕ ∈ Kh(ζk+1
h ), (4.7)

b(uk+1
h , q) = 0 ∀q ∈Mh(ζk+1

h ), (4.8)

where fk+1
h is the L2(O)2-projection of fk+1 = f(tk+1) on (Eh)2.

Let us now state the second main result of this paper which asserts the convergence of
the fully-discrete scheme (4.7)�(4.8):

Theorem 4.1. Let O be a convex domain with a polygonal boundary. Suppose that f and
u0 satisfy the conditions (3.11) and that (u, p, ζ, ω) is a solution of (1.1)�(1.8) satisfying the
regularity properties (3.12) and such that (3.13) holds. Let C0 > 0 and 0 < α ≤ 1 be two
�xed constants. Then there exist two positive constants C and τ∗ independent of h and ∆t
such that for all 0 < ∆t ≤ τ∗ and for all h ≤ C0∆t1+α we have

sup
1≤k≤N

(
|ζ(tk)− ζkh|+ ‖u(tk)− ukh‖L2(O)2

)
≤ C∆tα.

Remark 4.2. In order to get an approximation of �rst order in time (i.e. O(∆t)), we have
to choose α = 1. In this case, the corresponding condition on h becomes h ≤ C0∆t2 which
is similar to the one obtained in [18, Th.3.2] in the case of equal densities ρf = ρs.

5 Properties on the characteristic function

In this section, we prove some properties on the new characteristic function which are essen-
tial for the proof of our main results.
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Lemma 5.1. For any free divergence velocity �eld v ∈ H1
0 (O)2 ∩ C0(O)2 extended by zero

outside of O, and for any di�erentiable function R : O → R2 such that det(∇R) = 1 and
R(Sk+1) = Sk, where Sk and Sk+1 are two open smooth subsets of O, we consider the
characteristic function as the solution of problem

d

dt
ψ(t; tk+1,x) = v(ψ(t; tk+1,x)) ∀t ∈ [tk, tk+1],

ψ(tk+1; tk+1,x) = R(x)
(5.1)

and we denote
X(x) = ψ(tk; tk+1,x) ∀x ∈ O. (5.2)

If v(z) · n = 0 for any z ∈ ∂Sk, then the characteristic function satis�es the following
properties:

i) X
(
Sk+1

)
= Sk;

ii) For any f ∈ L2(R2) such that f = 0 in R2 \ O, we have∥∥f ◦ψ(t; tk+1, ·)
∥∥
L2(O)

≤
∥∥f∥∥

L2(O)
∀t ∈ [tk, tk+1]. (5.3)

Proof. Let us �rst remark that the Cauchy problem (5.1) is well-posed. To see this, we
transform problem (5.1) by making use of the following change of unknown:

ψ(t; tk+1,x) = ϕ(t; tk+1,R(x)), (5.4)

where ϕ satis�es 
d

dt
ϕ(t; tk+1,y) = v(ϕ(t; tk+1,y)) ∀t ∈ [tk, tk+1],

ϕ(tk+1; tk+1,y) = y ∀y ∈ R2.

(5.5)

According to [3, Section III], the Cauchy problem (5.5) admits a unique solutionϕ(· ; tk+1,y) ∈
C1(R)2 for almost every y ∈ R2 and satis�es the following measure preserving property∫

A
F (ϕ(t; tk+1,y)) dy =

∫
ϕ(t;tk+1,A)

F (x)dx, (5.6)

for any subset A ⊂ R2, for all function F ∈ L1(R2) and for all t ∈ [tk, tk+1]. Since the
velocity �eld v is continuous in R2, then ϕ(· ; tk+1,y) is actually de�ned for all y ∈ R2.
Moreover, due to the hypothesis v · n = 0 on ∂Sk, we have that ϕ(tk; tk+1, ·) maps Sk onto
itself (see [3, Section IV]).

We can now prove the equality i). In fact, we have that

X(Sk+1) = ϕ(tk; tk+1,R(Sk+1)) = ϕ(tk; tk+1, Sk) = Sk.

Let us turn to the proof of ii). Under the assumption det(∇R) = 1 and using the property
(5.6), we obtain

‖f ◦ψ(t; tk+1, ·)‖2L2(O) =
∫
O
|f(ψ(t; tk+1,x))|2dx =

∫
O
|f(ϕ(t; tk+1,R(x)))|2dx

=
∫
R(O)

|f(ϕ(t; tk+1,y))|2dy =
∫
ψ(t;tk+1,O)

|f(z)|2dz.

On the other hand, since f = 0 in R2 \ O we have∫
ψ(t;tk+1,O)

|f(z)|2dz =
∫
ψ(t;tk+1,O)∩O

|f(z)|2dz ≤
∫
O
|f(z)|2dz.

Therefore, we conclude the result ii).
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In the sequel, we state two corollaries of the above lemma which state the properties on
the characteristic functions associated with the semi-discretized and fully-discretized velocity
�elds:

Corollary 5.2. For any k ∈ {0, . . . , N}, the characteristic function ψ de�ned in (3.3)�(3.4)
satis�es the following properties:

i) X
k(
B(ζk+1)

)
= B(ζk);

ii) If we extend by ρf the density �eld ρk outside of O, we have

ρk+1 = ρk ◦Xk
;

iii) For any f ∈ L2(R2) such that f = 0 in R2 \ O, we have∥∥f ◦ψ(t; tk+1, ·)
∥∥
L2(O)

≤
∥∥f∥∥

L2(O)
∀t ∈ [tk, tk+1]. (5.7)

Proof. The properties i) and iii) are direct consequences of Lemma 5.1. In fact, we have
that the function R(x) = x−uk(ζk)∆t maps B(ζk+1) onto B(ζk), ∇R = Id. Moreover, the
velocity �eld

v(z) = uk(z)− uk(ζk) ∀z ∈ R2

has free divergence and for any z ∈ B(ζk) the decomposition (2.5) allows us to get that

v(z) = ωuk(z− ζk)⊥,

which implies that the hypothesis v · n = 0 on ∂B(ζk) holds.
The equality ii) is a direct consequence of i) and the extension of ρk by ρf outside of

O. In fact, we have (ρk ◦X
k
)(x) = ρs if and only if X

k
(x) ∈ B(ζk) which is equivalent to

x ∈ B(ζk+1) due to identity i).

Corollary 5.3. For any k ∈ {0, . . . , N} and h ∈ (0, 1), the characteristic function ψ
k

h

de�ned in (4.2)�(4.3) satis�es the following properties:

i) X
k

h

(
B(ζk+1

h )
)

= B(ζkh);

ii) If we extend by ρf the density �eld ρkh outside of O, we have

ρk+1
h = ρkh ◦X

k

h; (5.8)

iii) For any f ∈ L2(R2) such that f = 0 in R2 \ O, we have∥∥f ◦ψkh(t; tk+1, ·)
∥∥
L2(O)2

≤ ‖f‖L2(O)2 ∀t ∈ [tk, tk+1]. (5.9)

Proof. The proof is similar to the proof of Corollary 5.2. It is enough to observe that the
initial condition from equation (4.2), R(x) = x− ukh(ζkh)∆t maps B(ζk+1

h ) onto B(ζkh) and
∇R = Id. The velocity �eld

v(z) = P(ζkh)ukh(z)−P(ζkh)ukh(ζkh) ∀z ∈ R2

has free divergence and for any z ∈ B(ζkh) the decomposition (2.5) gives us

v(z) = ωP(ζk
h)uk

h
(z− ζkh)⊥,

where ωP(ζk
h)uk

h
is the angular velocity associated with the rigid velocity �eld P(ζkh)ukh in

B(ζkh). This implies that v ·n = 0 on ∂B(ζkh). With these remarks, the hypotheses of Lemma
5.1 are satis�ed and thus the proof is concluded.
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Remark 5.4. In the case of a general rigid body, not necessarily ball, the de�nition of the
characteristic function ψ has to be modi�ed in order to take into account the rotation
e�ects. To this end, we denote by B(ζk, θk) the rigid body with the center of mass ζk and
the orientation angle θk. We also denote ωk the approximate angular velocity and Rθ will
stand for the rotation matrix of angle θ. The characteristic function ψ is now de�ned as the
solution of 

d

dt
ψ(t; tk+1,x) = uk

(
ψ(t; tk+1,x)

)
− ukR

(
ψ(t; tk+1,x)

)
,

ψ(tk+1; tk+1,x) = R−ωk(tk+1−tk)(x− ζk+1) + ζk,
(5.10)

where uk is extended by zero outside of O as in Remark 2.1 and ukR is the rigid velocity �eld
de�ned as follows

ukR(x) = uk(ζk) + ωk(x− ζk)⊥ ∀x ∈ R2. (5.11)

We also de�ne the function X
k
by

X
k
(x) = ψ(tk; tk+1,x) ∀x ∈ O. (5.12)

With these de�nitions, the hypotheses of Lemma 5.1 are still ful�lled and then Corollary 5.2
holds for the general case of a rigid body.

6 Proof of the �rst main result

Let us now prove our �rst main result stated in Theorem 3.3 concerning the convergence of the
semi-discretization scheme (3.7)�(3.8). For this purpose, we �rst introduce the transformed
system (6.4)�(6.5) below, and then in Subsection 6.2 we give the proof of the convergence
result.

6.1 Transformed system

We need to compare the exact solution u(tk) ∈ K(ζ(tk)), which is a rigid velocity �eld in
B(ζ(tk)) with uk ∈ K(ζk) which is a rigid velocity �eld in B(ζk). To this end, we use the
change of variable Xζ1,ζ2 de�ned in [18, Section 5], which maps the ball B(ζ1) into the ball
B(ζ2). We de�ne

Xk = Xζk,ζ(tk), Yk = Yζk,ζ(tk),

where Yζ1,ζ2 is the inverse mapping of Xζ1,ζ2 . We also de�ne

Uk(y) = JYk(Xk(y))u
(
Xk(y), tk

)
, P k(y) = p(Xk(y), tk), (6.1)

where JYk is the determinant of the jacobian matrix of Yk. We recall that Uk ∈ K̂(ζk) and
P k ∈M(ζk). Let us introduce the following notations that will be useful in the sequel:

X̂ = Yk ◦ X̃ ◦Xk+1 (6.2)

and
Ĵ =

(
JYk+1 ◦Xk+1

) (
JXk ◦ X̂

)
, (6.3)

where X̃ is de�ned in (3.1). The characteristics functions satisfy the properties depicted on
the following diagram:

B(ζk+1) Xk+1

−−−−→ B(ζ(tk+1))

bXy yeX
B(ζk) ←−−−−

Yk
B(ζ(tk))

We point out that the following relation holds

ρk+1 = ρk ◦ X̂.
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The transformed functions Uk+1 and P k+1 satisfy a mixed weak formulation with test
functions in K(ζk+1) and M(ζk+1). Precisely, we have the following result which can be
obtained as in [18, Proposition 6.2] with a very slight modi�cation of the proof.

Proposition 6.1. The functions (Uk+1, P k+1) de�ned by (6.1) satisfy

1
∆t

(
ρk+1

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
,ϕ
)

+ a(Uk+1,ϕ) + b(ϕ, P k+1)

= (ρk+1fk+1,ϕ) + (Ak,ϕ) ∀ϕ ∈ K(ζk+1), (6.4)

b(Uk+1, q) = 0 ∀q ∈M(ζk+1), (6.5)

with

‖Ak‖L2(O)2 ≤ C
(
|ζ(tk+1)− ζk+1|+ ∆t+

√
∆t
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (6.6)

Let us prove an approximation property of the function X
k
and we also recall an useful

property on the change of variables which is given in [18].

Lemma 6.2. The functions X
k
, X̂ and Ĵ de�ned in (3.4), (6.2) and (6.3) respectively,

satisfy the following estimates:

‖X̂−X
k‖L2(O)2 ≤ C

(
∆t2 + ∆t‖Uk − uk‖L2(O)2 +

√
∆t ‖δk‖L2(O×(tk,tk+1))2

)
, (6.7)∥∥∥Ĵ− Id

∥∥∥
L2(O)2

≤ C
(

∆t2 + ∆t
∥∥Uk − uk

∥∥
L2(O)2

+
√

∆t ‖δk‖L2(O×(tk,tk+1))2

+∆t|ζ(tk)− ζk|
)
, (6.8)

with ‖δk‖L2(O×(tk,tk+1))2 ≤ C∆t
∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

and C a positive constant independent

of k.

Proof. Let us de�ne a new characteristic function ψ associated with the semi-discretized
velocity �eld as the solution of

d

dt
ψ(t; tk+1,x) = Uk(ψ(t; tk+1,x)),

ψ(tk+1; tk+1,x) = x
(6.9)

and let us denote

X
k
(x) = ψ(tk; tk+1,x) ∀x ∈ O. (6.10)

With a very slight modi�cation of the proof of Lemma 6.5 from [18], we get

‖X̂−X
k
‖L2(O)2 ≤ C

(
∆t2 +

√
∆t ‖δk‖L2(O×(tk,tk+1))2

)
. (6.11)

The characteristic equations (3.3) and (6.9) can be written as follows:

ψ(t; tk+1,x) = x− uk(ζk)(t− tk) +
∫ t

tk+1

uk(ψ(s; tk+1,x)) ds,

ψ(t; tk+1,x) = x +
∫ t

tk+1

Uk(ψ(s; tk+1,x)) ds,

for all t ∈ [tk, tk+1]. Subtracting the previous identities, we get

ψ(t; tk+1,x)−ψ(t; tk+1,x) = −uk(ζk)(t− tk)

+
∫ t

tk+1

(
uk(ψ(s; tk+1,x))−Uk(ψ(s; tk+1,x))

)
ds.
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Taking the L2(O)2-norm, we obtain that∥∥ψ(t; tk+1, ·)−ψ(t; tk+1, ·)
∥∥
L2(O)2

≤ C|uk(ζk)|(t− tk)

+
∫ tk+1

t

∥∥uk(ψ(s; tk+1, ·))−Uk(ψ(s; tk+1, ·))
∥∥
L2(O)2

ds

+
∫ tk+1

t

∥∥Uk(ψ(s; tk+1, ·))−Uk(ψ(s; tk+1, ·))
∥∥
L2(O)2

ds.

By using the property (5.7) and the regularity hypothesis (3.12), we get∥∥ψ(t; tk+1, ·)−ψ(t; tk+1, ·)
∥∥
L2(O)2

≤ C|uk(ζk)|(t− tk) +
∥∥uk −Uk

∥∥
L2(O)2

(tk+1 − t)

+
∫ tk+1

t

C
∥∥ψ(s; tk+1, ·)−ψ(s; tk+1, ·)

∥∥
L2(O)2

ds.

Then, due to Gronwall inequality, the above estimate yields∥∥ψ(t; tk+1, ·)−ψ(t; tk+1, ·)
∥∥
L2(O)2

≤ C|uk(ζk)|(t− tk) +
∥∥uk −Uk

∥∥
L2(O)2

(tk+1 − t)

+C∆t2
(
|uk(ζk)|+

∥∥uk −Uk
∥∥
L2(O)2

)
,

for all t ∈ [tk, tk+1]. In particular, for t = tk we deduce that∥∥Xk −X
k∥∥
L2(O)2

≤ C∆t2|uk(ζk)|+ C∆t
∥∥uk −Uk

∥∥
L2(O)2

≤ C∆t2|Uk(ζk)|+ C∆t2|uk(ζk)−Uk(ζk)|+ C∆t
∥∥uk −Uk

∥∥
L2(O)2

.

Combining the above inequality with (6.11) and using again the regularity hypothesis
(3.12), we deduce the result (6.7).

The proof of (6.8) is done in [18, eq. (7.6)].

6.2 Error estimate

In this subsection, we give the proof of our �rst main result stated in Theorem 3.3. To this
end, let us subtract (3.7)�(3.8) from (6.4)�(6.5) and we obtain

1
∆t
(
ρk+1(Uk+1 − uk+1),ϕ

)
+ a(Uk+1 − uk+1,ϕ) + b(ϕ, P k+1 − pk+1)

=
1

∆t

(
ρk+1

(
Ĵ
(
Uk ◦ X̂

)
− uk ◦Xk

)
,ϕ
)

+ (Ak,ϕ) ∀ϕ ∈ K(ζk+1),

b(Uk+1 − uk+1, q) = 0 ∀q ∈M(ζk+1).

We choose the test functions ϕ = Uk+1 − uk+1 ∈ K(ζk+1) and q = P k+1 − pk+1 ∈
M(ζk+1) and we get that(

ρk+1
(
Uk+1 − uk+1

)
,Uk+1 − uk+1

)
+ ∆t a(Uk+1 − uk+1,Uk+1 − uk+1)

=
(
ρk+1

(
Ĵ
(
Uk ◦ X̂

)
− uk ◦Xk

)
,Uk+1 − uk+1

)
+ ∆t(Ak,Uk+1 − uk+1),

then due to Cauchy�Schwarz inequality, there exists a positive constant C independent of k
such that∥∥√ρk+1(Uk+1 − uk+1)

∥∥
L2(O)2

≤
∥∥∥√ρk+1

(
Ĵ
(
Uk ◦ X̂

)
− uk ◦Xk

)∥∥∥
L2(O)2

+ C∆t
∥∥Ak

∥∥
L2(O)2

. (6.12)
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In order to estimate the �rst term in the right hand side of (6.12), we observe that√
ρk+1

(
Ĵ
(
Uk ◦ X̂

)
− uk ◦Xk

)
=

√
ρk+1(Ĵ− Id)

(
Uk ◦ X̂

)
+

√
ρk+1

(
Uk ◦ X̂−Uk ◦Xk

)
+

√
ρk+1

(
Uk − uk

)
◦Xk

,

then using the regularity hypothesis (3.12) and the de�nition of Uk given in (6.1), we easily
deduce∥∥∥√ρk+1

(
Ĵ
(
Uk ◦ X̂

)
− uk ◦Xk

)∥∥∥
L2(O)2

≤ C
∥∥Ĵ− Id

∥∥
L2(O)2

+ C
∥∥X̂−X

k∥∥
L2(O)2

+
∥∥∥√ρk+1

(
Uk − uk

)
◦Xk

∥∥∥
L2(O)2

.

Then, by using the inequality (5.7) from Proposition 5.2, we observe that∥∥∥√ρk+1
(
Ĵ
(
Uk ◦ X̂

)
− uk ◦Xk

)∥∥∥
L2(O)2

≤ C
∥∥Ĵ− Id

∥∥
L2(O)2

+ C
∥∥X̂−X

k∥∥
L2(O)2

+
∥∥∥√ρk(Uk − uk

)∥∥∥
L2(O)2

.

Due to the above estimate, the inequality (6.12) becomes∥∥∥√ρk+1(Uk+1 − uk+1)
∥∥∥
L2(O)2

≤
∥∥∥√ρk(Uk − uk

)∥∥∥
L2(O)2

+ C
∥∥Ĵ− Id

∥∥
L2(O)2

+ C
∥∥X̂−X

k∥∥
L2(O)2

+ C∆t
∥∥Ak

∥∥
L2(O)2

, (6.13)

then, taking into account the estimates (6.6) from Proposition 6.1, (6.7)�(6.8) from Lemma
6.2, we obtain∥∥∥√ρk+1(Uk+1 − uk+1)

∥∥∥
L2(O)2

≤
∥∥∥√ρk(Uk − uk

)∥∥∥
L2(O)2

+ C
(

∆t
∥∥Uk − uk

∥∥
L2(O)2

+ ∆t
∣∣ζ(tk)− ζk

∣∣+ ∆t
∣∣ζ(tk+1)− ζk+1

∣∣
+ ∆t2 +

√
∆t ‖δk‖L2(O×(tk,tk+1))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (6.14)

Since

‖δk‖L2(O×(tk,tk+1))2 ≤ C∆t
∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

,

we get that∥∥∥√ρk+1(Uk+1 − uk+1)
∥∥∥
L2(O)2

≤
∥∥∥√ρk(Uk − uk

)∥∥∥
L2(O)2

+ C
(

∆t
∥∥Uk − uk

∥∥
L2(O)2

+ ∆t
∣∣ζ(tk)− ζk

∣∣+ ∆t
∣∣ζ(tk+1)− ζk+1

∣∣
+ ∆t2 + (∆t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (6.15)

Let us also recall (see [18, Eq.(7.9)]) that

|ζ(tk+1)− ζk+1| ≤ |ζ(tk)− ζk|+ C∆t‖Uk − uk‖L2(O)2 + C∆t2, (6.16)

then, the estimate (6.15) yield∥∥∥√ρk+1(Uk+1 − uk+1)
∥∥∥
L2(O)2

+ |ζ(tk+1)− ζk+1|

≤ (1 + C∆t)
(∥∥∥√ρk(Uk − uk

)∥∥∥
L2(O)2

+ |ζ(tk)− ζk|
)

+ C
(

∆t2 + (∆t)3/2
∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (6.17)
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For any k ∈ {0, . . . , N}, let us de�ne

Ek =
∥∥∥√ρk(Uk − uk

)∥∥∥
L2(O)2

+
∣∣ζ(tk)− ζk

∣∣,
then according to the estimate (6.17) we write

Ek+1 ≤ (1 + C∆t)Ek + C
(

∆t2 + (∆t)3/2
∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
.

By applying the discrete Gronwall Lemma, we deduce that for any k ∈ {0, . . . , N},

Ek ≤ C
(

∆t+ (∆t)3/2
∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(0,T ))2

)
,

then using the hypothesis (3.12) we get∥∥Uk − uk
∥∥
L2(O)2

+
∣∣ζ(tk)− ζk

∣∣ ≤ C∆t.

The above estimate together with the de�nition of Uk from (6.1) and properties on the
change of variables Xk given in [18, Lemmas 5.5�5.6], we conclude the proof of (3.15) from
our �rst main result given in Theorem 3.3.

7 Proof of the second main result

Let us give the proof of the second main result stated in Theorem 4.1 which concern the
convergence of the fully discretization scheme (4.7)�(4.8). To this end, we �rst introduce
the transformed system (7.4)�(7.5) below and we prove some important estimates on the
transform velocity �eld. Then we prove the second main result.

7.1 Preliminaries

Since we need to compare the exact solution u(tk) ∈ K(ζ(tk)), which is a rigid velocity �eld
in B(ζ(tk)) with ukh ∈ K(ζkh) which is a rigid velocity �eld in B(ζkh), we are going to use the
change of variable Xζ1,ζ2 which maps the ball B(ζ1) into the ball B(ζ2). We de�ne

Xk
h = Xζk

h,ζ(tk), Yk
h = Yζk

h,ζ(tk),

where Yζ1,ζ2 is the inverse mapping of Xζ1,ζ2 . We also de�ne

Uk
h(y) = JYk

h
(Xk

h(y))u
(
Xk
h(y), tk

)
, P kh (y) = p(Xk

h(y), tk), (7.1)

where JYk
h
is the determinant of the jacobian matrix of Yk

h. We recall that Uk
h ∈ K̂(ζkh) and

P kh ∈M(ζkh). Let us introduce the following notations that will be useful in the sequel:

X̂h = Yk
h ◦ X̃ ◦Xk+1

h (7.2)

and
Ĵh =

(
JYk+1

h
◦Xk+1

h

)(
JXk

h
◦ X̂h

)
. (7.3)

We observe that the characteristics functions satisfy the properties depicted on the fol-
lowing diagram:

B(ζk+1
h )

Xk+1
h−−−−→ B(ζ(tk+1))

bXh

y yeX
B(ζkh) ←−−−−

Yk
h

B(ζ(tk))
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The transformed functions Uk+1
h and P k+1

h satisfy a mixed weak formulation with test

functions in K(ζk+1
h ) and M(ζk+1

h ).

Proposition 7.1. The functions (Uk+1
h , P k+1

h ) de�ned by (7.1) satisfy

1
∆t

(
ρk+1
h

[
Uk+1
h − Ĵh

(
Uk
h ◦ X̂h

)]
,ϕ
)

+ a(Uk+1
h ,ϕ) + b(ϕ, P k+1

h )

= (ρk+1
h fk+1

h ,ϕ) + (Ak
h,ϕ) ∀ϕ ∈ K(ζk+1

h ), (7.4)

b(Uk+1
h , q) = 0 ∀q ∈M(ζk+1

h ), (7.5)

with

‖Ak
h‖L2(O)2 ≤ C

(
|ζ(tk+1)− ζk+1

h |+ h+ ∆t+
√

∆t
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (7.6)

The above result can be obtained as in [18, Proposition 6.2] with a very slight modi�cation
of the proof.

In the following lemma, we state an important result on the transformed velocity �eld.
Precisely, we prove the existence of a velocity �eld Uk

h,ext near Uk
h which is rigid in a h-

neighbourhood of the ball B(ζkh). Moreover, this function is a rigid velocity �eld in Qh.

Lemma 7.2. For any k ∈ {0, . . . , N} and h ∈ (0, 1), there exists a velocity �eld Uk
h,ext ∈

H1
0 (O)2 such that

Uk
h,ext(x) = Uk

h(x) ∀x ∈ B(ζkh), (7.7)

D(Uk
h,ext) = 0 in

{
x ∈ O : |x− ζkh| < 1 + h

}
, (7.8)

‖Uk
h −Uk

h,ext‖L2(O)2 ≤ Ch3/2, (7.9)

‖Uk
h,ext‖H1(O)2 ≤ C, (7.10)

where C is a positive constant independent of h and k.

Proof. Since Uk
h ∈ H1

0 (O)2 and div Uk
h = 0, there exists a stream function Φ ∈ H2(O) ∩

H1
0 (O) such that Uk

h = ∇⊥Φ.
It clearly su�ces to prove that there exists a stream function Φext ∈ H2(O) ∩ H1

0 (O),
such that ∇⊥Φext satis�es the conditions (7.7)�(7.10).

To this end, let us observe that since D(Uk
h) = 0 in B(ζkh), there exist some constants

a, c ∈ R and b ∈ R2 such that

Φ(x) = a+ b · x + c|x|2 ∀x ∈ B(ζkh).

We denote
w(x) = Φ(x)−

(
a+ b · x + c|x|2

)
∀x ∈ O, (7.11)

then it is clear that
w(x) = 0 ∀x ∈ B(ζkh). (7.12)

Let us de�ne the stream function Φext as follows:

Φext(x) = Φ(x)− w(x)ρ(|x− ζkh|) ∀x ∈ O, (7.13)

where the real function ρ ∈ H2(R) is given by the following formula

ρ(s) =


1 if s < 1 + h,
1
2

(
cos( s−(1+h)

h π) + 1
)

if 1 + h ≤ s ≤ 1 + 2h,

0 if 1 + 2h < s.

Using this de�nition, one can easily check that Φext(x) = Φ(x) for all x such that |x −
ζkh| ≤ 1 or |x − ζkh| ≥ 1 + 2h. Then ∇⊥Φext ∈ H1

0 (O)2 and satis�es the identity (7.7).
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Additionally, if |x− ζkh| < 1 +h, we have Φext(x) = a+b ·x+ c|x|2 and this identity implies
that ∇⊥Φext satis�es (7.8).

In order to prove that ∇⊥Φext satis�es the estimates (7.9) and (7.10), we �rst remark
that

(Φ− Φext)(x) = 0 ∀x ∈ O \ A1,1+2h, (7.14)

where we have denoted by A1,1+2h the annulus enclosed between the circles of radius 1,
respectively 1 + 2h and with center at ζkh.

Let us now di�erentiate the identity (7.13) and for any i, j ∈ {1, 2}, we get that

∂(Φ− Φext)
∂xi

=
∂w

∂xi
ρ+ wρ′

xi − ζkh,i
|x− ζkh|

(7.15)

and

∂2(Φ− Φext)
∂xi∂xj

=
∂2w

∂xi∂xj
ρ+

∂w

∂xi
ρ′
xj − ζkh,j
|x− ζkh|

+
∂w

∂xj
ρ′
xi − ζkh,i
|x− ζkh|

+ wρ′′
(xi − ζkh,i)(xj − ζkh,j)

|x− ζkh|2
+ wρ′

(
δij

|x− ζkh|
−

(xi − ζkh,i)(xj − ζkh,j)
|x− ζkh|3

)
. (7.16)

Taking the L2(O)-norm in the estimates (7.15)�(7.16), using the identity (7.14) and the
properties |ρ| ≤ 1, |ρ′| ≤ 2/h and |ρ′′| ≤ 5/h2, we obtain that for all i, j ∈ {1, 2},∥∥∥∂(Φ− Φext)

∂xi

∥∥∥
L2(O)

≤
∥∥∥ ∂w
∂xi

∥∥∥
L2(A1,1+2h)

+
2
h
‖w‖L2(A1,1+2h) (7.17)

and∥∥∥∂2(Φ− Φext)
∂xi∂xj

∥∥∥
L2(O)

≤
∥∥∥ ∂2w

∂xi∂xj

∥∥∥
L2(A1,1+2h)

+
2
h

∥∥∥ ∂w
∂xi

∥∥∥
L2(A1,1+2h)

+
2
h

∥∥∥ ∂w
∂xj

∥∥∥
L2(A1,1+2h)

+
5
h2
‖w‖L2(A1,1+2h) +

4
h
‖w‖L2(A1,1+2h). (7.18)

In order to �nish the proof, we need to estimate the di�erent norms of w on the annulus
A1,1+2h. To this end, let us take an arbitrary x ∈ A1,1+2h. It is easy to see that there exists

y ∈ B(ζkh) such that |x − y| ≤ 2h. Since ∇⊥Φ is a Lipschitz function (see the hypothesis
(3.12) and the de�nition (7.1)), we get that∇w is also a Lipschitz function, with the Lipschitz
constant L independent of h. Using this property and (7.12), we have

|∇w(x)| = |∇w(x)−∇w(y)| ≤ L|x− y| ≤ 2Lh (7.19)

and

|w(x)| = |w(x)− w(y)| ≤ |∇w(y + λ(x− y))| · |x− y|

=
∣∣∣∇w(y + λ(x− y))−∇w(y)

∣∣∣ · |x− y| ≤ Lλ|x− y|2 ≤ 4λLh2, (7.20)

for some λ ∈ (0, 1). Taking the L2(A1,1+2h)-norm in the estimates (7.19) and (7.20), we
deduce

‖w‖L2(A1,1+2h) ≤ Ch5/2, (7.21)

‖∇w‖L2(A1,1+2h)2 ≤ Ch3/2. (7.22)

Combining (7.17) with (7.21)�(7.22), we obtain the inequality (7.9). Moreover, the es-
timate (7.10) is a direct consequence of (7.18), (7.21)�(7.22) and the fact that ‖w‖H2(O) is
independent of h (see the de�nition of w given in (7.11)). Thus, we conclude the proof of
Lemma 7.2.
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Using the above lemma, let us prove the following crucial estimate:

Proposition 7.3. For any k ∈ {0, 1, . . . , N} and h ∈ (0, 1), the following estimate holds:∥∥∥Uk
h −P(ζkh)Uk

h

∥∥∥
L2(O)2

≤ Ch, (7.23)

where C is a positive constant independent of h.

Proof. Using Lemma 7.2, there exists Uk
h,ext ∈ H1

0 (O)2 satisfying (7.7)�(7.10). We can write∥∥∥Uk
h −P(ζkh)Uk

h

∥∥∥
L2(O)2

≤
∥∥∥Uk

h −Uk
h,ext

∥∥∥
L2(O)2

+
∥∥∥Uk

h,ext −P(ζkh)Uk
h,ext

∥∥∥
L2(O)2

+
∥∥∥P(ζkh)Uk

h,ext −P(ζkh)Uk
h

∥∥∥
L2(O)2

,

then, since P(ζkh) is an orthogonal projection from L2(O)2 onto Rh(ζkh), we get∥∥∥Uk
h −P(ζkh)Uk

h

∥∥∥
L2(O)2

≤ 2
∥∥∥Uk

h −Uk
h,ext

∥∥∥
L2(O)2

+
∥∥∥Uk

h,ext −P(ζkh)Uk
h,ext

∥∥∥
L2(O)2

. (7.24)

Let Φext be the stream function corresponding to Uk
h,ext and ΦI be the P2-Lagrange

interpolated function of Φext on the triangulation Th. Since Uk
h,ext is a rigid velocity �eld

on Qh, the function Φext is quadratic on Qh and thus

ΦI(x) = Φext(x) ∀x ∈ Qh

and ∇⊥ΦI is a rigid velocity �eld in Qh. This implies that ∇⊥ΦI ∈ Rh(ζkh).
By using the de�nition of the orthogonal projection and due to the classical estimates of

the interpolated functions (see, for instance, [6, Lemma A.2, p. 99]), we deduce that∥∥∥Uk
h,ext −P(ζkh)Uk

h,ext

∥∥∥
L2(O)2

≤
∥∥∥Uk

h,ext −∇⊥ΦI
∥∥∥
L2(O)2

=
∥∥∥∇⊥Φext −∇⊥ΦI

∥∥∥
L2(O)2

≤ Ch
∥∥∥Φext

∥∥∥
H2(O)2

≤ Ch
∥∥∥Uk

h,ext

∥∥∥
H1(O)2

. (7.25)

Let us now conclude the proof of our result by noting that the estimate (7.23) is a direct
consequence of the inequality (7.24) combined with (7.25) and the estimates (7.9)�(7.10)
from Lemma 7.2.

Let us now state an important estimate on the L2(O)-norm of the di�erence between the
density functions ρkh and ρkh de�ned in (4.5) and (4.6), respectively.

Lemma 7.4. There exists a positive constant C, independent of h and k, such that∥∥ρkh − ρkh∥∥L2(O)
≤ C
√
h. (7.26)

Proof. Using the de�nitions of ρkh and ρkh given in (4.5) and (4.6) respectively, we have that

ρkh − ρkh = 0 in F4 ∪B(ζkh).

Taking the L2(O)-norm, we deduce that∥∥ρkh − ρkh∥∥2

L2(O)
=
∫
F2∪F3

∣∣ρkh(x)− ρkh(x)
∣∣2 dx ≤ |ρf − ρs|2 mes (F2 ∪ F3) . (7.27)

The region F2 ∪ F3 is contained into the annulus of center ζkh with radius r1 = 1 − h and
r2 = 1 + 2h (see Figure 1). Then, the area of the region F2 ∪F3 can be estimated as follows:

mes (F2 ∪ F3) ≤ π
(
(1 + 2h)2 − (1− h)2

)
= 3πh(h+ 2).

Combining this estimate with (7.27), we conclude that the estimate (7.26) holds.
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Let us now prove approximation properties of the characteristic function de�ned in (4.2)
and also properties on the change of variables.

Lemma 7.5. The functions X
k

h, X̂h and Ĵh de�ned by (4.3), (7.2) and (7.3) respectively,
satisfy the following estimates:

‖X̂h −X
k

h‖L2(O)2 ≤ C
(

∆t2 + h∆t+ ∆t
∥∥Uk

h − ukh
∥∥
L2(O)2

+
√

∆t ‖δk‖L2(O×(tk,tk+1))2

)
, (7.28)∥∥Ĵh − Id

∥∥
L2(O)2

≤ C
(

∆t2 + ∆t
∥∥Uk

h − ukh
∥∥
L2(O)2

+
√

∆t ‖δk‖L2(O×(tk,tk+1))2

+∆t|ζ(tk)− ζkh|
)
, (7.29)

with

‖δk‖L2(O×(tk,tk+1))2 ≤ C∆t
∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

. (7.30)

Proof. Analogous to the proof of Lemma 6.2, we de�ne the characteristic function ψkh asso-
ciated with the fully-discrete velocity �eld as the solution of

d

dt
ψkh(t; tk+1,x) = Uk

h(ψkh(t; tk+1,x)),

ψkh(tk+1; tk+1,x) = x

(7.31)

and we denote
Xk
h(x) = ψkh(tk; tk+1,x) ∀x ∈ O. (7.32)

With a very slight modi�cation of the proof of Lemma 6.5 in [18], we get

‖X̂h −Xk
h‖L2(O)2 ≤ C

(
∆t2 +

√
∆t ‖δk‖L2(O×(tk,tk+1))2

)
. (7.33)

Let us observe that the characteristic equations (4.2) and (7.31) can be written as follows:
for any t ∈ [tk, tk+1], we have

ψkh(t; tk+1,x) = x− ukh(ζkh)∆t+
∫ t

tk+1

P(ζkh)ukh(ψkh(s; tk+1,x)) ds

−P(ζkh)ukh(ζkh)(t− tk+1),

ψkh(t; tk+1,x) = x +
∫ t

tk+1

Uk
h(ψkh(s; tk+1,x)) ds.

Subtracting the previous identities, we obtain

ψkh(t; tk+1,x)−ψkh(t; tk+1,x) = −ukh(ζkh)∆t−P(ζkh)ukh(ζkh)(t− tk+1)

+
∫ t

tk+1

(
P(ζkh)ukh(ψkh(s; tk+1,x))−Uk

h(ψkh(s; tk+1,x))
)

ds,

then taking the L2(O)2-norm, we deduce that∥∥ψkh(t; tk+1, ·)−ψkh(t; tk+1, ·)
∥∥
L2(O)2

≤ C|ukh(ζkh)|(t−tk)+C
∣∣∣(ukh−P(ζkh)ukh

)
(ζkh)

∣∣∣(tk+1−t)

+
∫ tk+1

t

∥∥∥P(ζkh)ukh(ψkh(s; tk+1, ·))−P(ζkh)Uk
h(ψkh(s; tk+1, ·))

∥∥∥
L2(O)2

ds

+
∫ tk+1

t

∥∥∥P(ζkh)Uk
h(ψkh(s; tk+1, ·))−Uk

h(ψkh(s; tk+1, ·))
∥∥∥
L2(O)2

ds

+
∫ tk+1

t

∥∥∥Uk
h(ψkh(s; tk+1, ·))−Uk

h(ψkh(s; tk+1, ·))
∥∥∥
L2(O)2

ds.
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By using (5.9) and the hypothesis (3.12), the above estimate yields∥∥ψkh(t; tk+1, ·)−ψkh(t; tk+1, ·)
∥∥
L2(O)2

≤ C|ukh(ζkh)|(t−tk)+C
∣∣∣(ukh−P(ζkh)ukh

)
(ζkh)

∣∣∣(tk+1−t)

+
∥∥ukh −Uk

h

∥∥
L2(O)2

(tk+1 − t) +
∥∥∥P(ζkh)Uk

h −Uk
h

∥∥∥
L2(O)2

(tk+1 − t)

+ C

∫ tk+1

t

∥∥∥ψkh(s; tk+1, ·)−ψkh(s; tk+1, ·)
∥∥∥
L2(O)2

ds.

Then, applying the Gronwall inequality to the above estimate, for all t ∈ [tk, tk+1] we
deduce that∥∥ψkh(t; tk+1, ·)−ψkh(t; tk+1, ·)

∥∥
L2(O)2

≤ C|ukh(ζkh)|(t−tk)+C
∣∣∣(ukh−P(ζkh)ukh

)
(ζkh)

∣∣∣(tk+1−t)

+
∥∥ukh −Uk

h

∥∥
L2(O)2

(tk+1 − t) +
∥∥∥P(ζkh)Uk

h −Uk
h

∥∥∥
L2(O)2

(tk+1 − t)

+ C∆t2
(
|ukh(ζkh)|+

∣∣∣(ukh −P(ζkh)ukh
)

(ζkh)
∣∣∣

+
∥∥ukh −Uk

h

∥∥
L2(O)2

+
∥∥∥P(ζkh)Uk

h −Uk
h

∥∥∥
L2(O)2

)
,

and in particular, taking t = tk, we get∥∥Xk
h −Xk

h

∥∥
L2(O)2

≤ C∆t2|ukh(ζkh)|+ C∆t
(∣∣∣(ukh −P(ζkh)ukh

)
(ζkh)

∣∣∣
+
∥∥ukh −Uk

h

∥∥
L2(O)2

+
∥∥∥P(ζkh)Uk

h −Uk
h

∥∥∥
L2(O)2

)
≤ C∆t2‖Uk

h‖L2(O)2 + C∆t
∥∥ukh −Uk

h

∥∥
L2(O)2

+ C∆t
∥∥∥P(ζkh)Uk

h −Uk
h

∥∥∥
L2(O)2

.

Combining the above inequality with the estimates (7.33) and (7.23) from Proposition
7.3, and using the hypothesis (3.12), we conclude (7.28).

The proof of (7.29) is completely similar to [18, eq. (7.6)].

Let us recall an approximation property of the projection on Kh(ζ)×Mh(ζ) (see [18]).

Lemma 7.6. Suppose that V ∈ K(ζ) and that P ∈M(ζ). Then there exists a unique couple
(Vh, Ph) in Kh(ζ)×Mh(ζ) such that:{

a
(
V −Vh,ϕ

)
+ b

(
ϕ, P − Ph

)
= 0 ∀ϕ ∈ Kh(ζ),

b
(
V −Vh, q

)
= 0 ∀q ∈Mh(ζ).

(7.34)

Moreover, if we suppose in addition that V|O\B(ζ) ∈ H2 (O \B(ζ))2 and that P|O\B(ζ) ∈
H1 (O \B(ζ)), then there exists a positive constant C, independent of h, such that

‖V −Vh‖L2(O)2 ≤ Ch.

7.2 Error estimate

In this section, we give the proof of our second main result stated in Theorem 4.1. First of

all, let us observe that according to Lemma 7.6, there exists a unique couple (U
k+1

h , P
k+1

h ) ∈
Kh(ζk+1

h )×Mh(ζk+1
h ) such that{

a
(
Uk+1
h −U

k+1

h ,ϕ
)

+ b
(
ϕ, P k+1

h − P k+1

h

)
= 0 ∀ϕ ∈ Kh(ζk+1

h ),
b
(
Uk+1
h −U

k+1

h , q
)

= 0 ∀q ∈Mh(ζk+1
h )

(7.35)

and moreover, there exists a positive constant C, independent of h and k, such that the
following estimate holds: ∥∥Uk+1

h −U
k+1

h

∥∥
L2(O)2

≤ Ch. (7.36)
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Subtracting the equations (4.7)�(4.8) from (7.4)�(7.5) and using the de�nition of the

projection (U
k+1

h , P
k+1

h ) on the �nite element spaces Kh(ζk+1
h )×Mh(ζk+1

h ) given in (7.35),
we get

1
∆t

(
ρk+1
h (Uk+1

h − uk+1
h ),ϕ

)
+ a(U

k+1

h − uk+1
h ,ϕ) + b(ϕ, P

k+1

h − pk+1
h )

=
1

∆t

(
ρk+1
h Ĵh

(
Uk
h ◦ X̂h

)
− ρk+1

h ukh ◦X
k

h,ϕ
)

+
(
(ρk+1
h − ρk+1

h )fk+1
h ,ϕ

)
+ (Ak

h,ϕ) ∀ϕ ∈ Kh(ζk+1
h ),

b(U
k+1

h − uk+1
h , q) = 0 ∀q ∈Mh(ζk+1

h ).
We choose the test functions

ϕ = U
k+1

h − uk+1
h ∈ Kh(ζk+1

h ) and q = P
k+1

h − pk+1
h ∈Mh(ζk+1

h ),

then we obtain the following identity(
ρk+1
h (Uk+1

h − uk+1
h ),U

k+1

h − uk+1
h

)
+ ∆t a(U

k+1

h − uk+1
h ,U

k+1

h − uk+1
h )

=
(
ρk+1
h Ĵh

(
Uk
h ◦ X̂h

)
− ρk+1

h ukh ◦X
k

h,U
k+1

h − uk+1
h

)
+ ∆t

(
(ρk+1
h − ρk+1

h )fk+1
h ,U

k+1

h − uk+1
h

)
+ ∆t(Ak

h,U
k+1

h − uk+1
h ),

which can be written as follows:(
ρk+1
h (U

k+1

h − uk+1
h ),U

k+1

h − uk+1
h

)
+ ∆t a(U

k+1

h − uk+1
h ,U

k+1

h − uk+1
h )

=
(
ρk+1
h Ĵh

(
Uk
h ◦ X̂h

)
− ρk+1

h ukh ◦X
k

h,U
k+1

h − uk+1
h

)
+
(
ρk+1
h (U

k+1

h −Uk+1
h ),U

k+1

h − uk+1
h

)
+∆t

(
(ρk+1
h − ρk+1

h )fk+1
h ,U

k+1

h − uk+1
h

)
+ ∆t(Ak

h,U
k+1

h − uk+1
h ).

By using the Cauchy�Schwarz inequality, there exists a positive constant C, independent
of h and k, such that∥∥∥√ρk+1

h

(
U
k+1

h − uk+1
h

)∥∥∥
L2(O)2

≤
∥∥∥√ρk+1

h

(
Ĵh
(
Uk
h ◦ X̂h

)
− ukh ◦X

k

h

)∥∥∥
L2(O)2

+ C
(∥∥Uk+1

h −Uk+1
h

∥∥
L2(O)2

+ ∆t
∥∥ρk+1

h − ρk+1
h

∥∥
L2(O)

+ ∆t
∥∥Ak

h

∥∥
L2(O)2

)
. (7.37)

Let us now estimate the �rst term in the right hand side of the inequality (7.37). To this

end, we remark that since
√
ρk+1
h =

√
ρkh ◦X

k

h (see (5.8)), one can write√
ρk+1
h

(
Ĵh
(
Uk
h ◦ X̂h

)
− ukh ◦X

k

h

)
=

√
ρk+1
h (Ĵh − Id)Uk

h ◦ X̂h

+
√
ρk+1
h

(
Uk
h ◦ X̂h −Uk

h ◦X
k

h

)
+
√
ρk+1
h

(
Uk
h −U

k

h

)
◦Xk

h

+
(√

ρkh
(
U
k

h − ukh
))
◦Xk

h.

Then, by using the hypothesis (3.12) and the fact that det J
X

k
h

= 1, we deduce the following
estimate:∥∥∥√ρk+1

h

(
Ĵh
(
Uk
h ◦ X̂h

)
− ukh ◦X

k

h

)∥∥∥
L2(O)2

≤ C
∥∥Ĵh − Id

∥∥
L2(O)4

+ C
∥∥X̂h −X

k

h

∥∥
L2(O)2

+ C
∥∥Uk

h −Uk
h

∥∥
L2(O)2

+
∥∥√ρkh(Uk

h − ukh
)∥∥
L2(O)2

. (7.38)
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Combining the estimates (7.37) together with (7.38), we deduce that∥∥∥√ρk+1
h

(
U
k+1

h − uk+1
h

)∥∥∥
L2(O)2

≤
∥∥√ρkh(Uk

h − ukh
)∥∥
L2(O)2

+ C
(∥∥Ĵh − Id

∥∥
L2(O)4

+
∥∥X̂h −X

k

h

∥∥
L2(O)2

+
∥∥Uk

h −Uk
h

∥∥
L2(O)2

+
∥∥Uk+1

h −Uk+1
h

∥∥
L2(O)2

+ ∆t
∥∥ρk+1

h − ρk+1
h

∥∥
L2(O)

+ ∆t
∥∥Ak

h

∥∥
L2(O)2

)
.

Due to Lemma 7.5 (see (7.28)�(7.29)) and Lemma 7.4, the above estimate yields

∥∥√ρk+1
h

(
U
k+1

h −uk+1
h

)∥∥
L2(O)2

≤
∥∥√ρkh(Uk

h−ukh
)∥∥
L2(O)2

+C
(

∆t|ζ(tk)−ζkh|+∆t
∥∥Uk

h−ukh
∥∥
L2(O)2

+
√

∆t‖δk‖L2(O×(tk,tk+1))2 + ∆t2 + ∆t
√
h

+
∥∥Uk

h −Uk
h

∥∥
L2(O)2

+
∥∥Uk+1

h −Uk+1
h

∥∥
L2(O)2

+ ∆t
∥∥Ak

h

∥∥
L2(O)2

)
.

Let us now use the estimate (7.36) of the projection, the estimates (7.6) and (7.30) of Ak
h,

respectively δk, then the above inequality becomes

∥∥√ρk+1
h

(
U
k+1

h − uk+1
h

)∥∥
L2(O)2

≤ (1 + C∆t)
∥∥√ρkh(Uk

h − ukh
)∥∥
L2(O)2

+ C
(

∆t2 + ∆t
√
h+ h+ ∆t

∣∣ζ(tk)− ζkh
∣∣+ ∆t

∣∣ζ(tk+1)− ζk+1
h

∣∣
+ (∆t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (7.39)

We also recall (see [18, Eq.(7.9)]) that

|ζ(tk+1)− ζk+1
h | ≤ |ζ(tk)− ζkh|+ C∆t‖Uk

h − ukh‖L2(O)2 + C∆t2,

then since the estimate of the projection (7.36) holds, we get

|ζ(tk+1)− ζk+1
h | ≤ |ζ(tk)− ζkh|+ C∆t

∥∥∥√ρkh(Uk

h − ukh
)∥∥∥
L2(O)2

+ Ch∆t+ C∆t2. (7.40)

Therefore, taking into account the inequality (7.40) in the estimate (7.39), one can deduce
that

∥∥√ρk+1
h

(
U
k+1

h − uk+1
h

)∥∥
L2(O)2

+ |ζ(tk+1)− ζk+1
h |

≤ (1 + C∆t)
(∥∥√ρkh(Uk

h − ukh
)∥∥
L2(O)2

+
∣∣ζ(tk)− ζkh

∣∣)
+ C

(
∆t2 + ∆t

√
h+ h+ (∆t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk,tk+1))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(tk,tk+1))2

)
. (7.41)

By applying the discrete Gronwall Lemma in (7.41), there exists a positive constant
independent of h such that

∥∥√ρkh(U
k

h − ukh)
∥∥
L2(O)2

+ |ζ(tk)− ζkh|

≤ C1

(
∆t+

√
h+

h

∆t
+ (∆t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2

+ (∆t)3/2
∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥
L2(O×(0,T ))2

)
, (7.42)
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for all k ∈ {0, . . . , N}.

Using the hypothesis (3.12), the estimate of the projection (7.36), Lemma 5.6 in [18], and

the fact that
√
ρkh ≥ min{√ρf ,

√
ρs} > 0, we get

∥∥u(tk)− ukh
∥∥
L2(O)2

+ |ζ(tk)− ζkh| ≤ C
(

∆t+
√
h+

h

∆t

)
∀k ∈ {0, . . . , N}. (7.43)

Then, for ∆t small enough and h ≤ C0∆t1+α with 0 < α ≤ 1, we conclude that the estimate
(7.43) becomes∥∥u(tk)− ukh

∥∥
L2(O)2

+ |ζ(tk)− ζkh| ≤ C∆tα ∀k ∈ {0, . . . , N}, (7.44)

which is the conclusion of Theorem 4.1.
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