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A modied Lagrange-Galerkin method for a uid-rigid system with discontinuous density

In this paper, we propose a new characteristics method for the discretization of the two dimensional uid-rigid body problem in the case where the densities of the uid and the solid are dierent. The method is based on a global weak formulation involving only terms dened on the whole uid-rigid domain. To take into account the material derivative, we construct a special characteristic function which maps the approximate rigid body at the discrete time level t k+1 into the approximate rigid body at time t k . Convergence results are proved for both semi-discrete and fully-discrete schemes.

Introduction

The aim of this paper is to present a modied characteristics method for the discretization of the equations modelling the motion of a rigid solid immersed into a viscous incompressible uid. Our method is a generalisation of the numerical scheme presented in San Martín, Scheid, Takahashi and Tucsnak [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF] for the case where the uid and the solid have dierent densities. The uid-rigid system occupies a bounded and regular domain O ⊂ R 2 . The solid is assumed to be a ball of radius 1 whose center, at time t, is denoted by ζ(t). The uid lls the part Ω(t) = O \B(ζ(t)) at time t. The velocity eld u(x, t) and the pressure p(x, t) of the uid, the center of mass ζ(t) and the angular velocity ω(t) of the ball satisfy the following Navier-Stokes system coupled with Newton's laws:

ρ f ∂u ∂t + (u • ∇)u -µ∆u + ∇p = ρ f f , x ∈ Ω(t), t ∈ [0, T ], (1.1) 
div u = 0, x ∈ Ω(t), t ∈ [0, T ], (1.2) 
u = 0, x ∈ ∂O, t ∈ [0, T ], (1.3) 
u = ζ (t) + ω(t)(x -ζ(t)) ⊥ , x ∈ ∂B(ζ(t)), t ∈ [0, T ], (1.4 
)

mζ (t) = - ∂B(ζ(t)) σn dΓ + ρ s B(ζ(t)) f (x, t)dx, t ∈ [0, T ], (1.5 
)

Jω (t) = - ∂B(ζ(t)) (x -ζ(t)) ⊥ • σn dΓ + ρ s B(ζ(t)) (x -ζ(t)) ⊥ • f (x, t)dx, t ∈ [0, T ]. (1.6)
In the above system, σ = -pId + 2µD(u) denotes the Cauchy stress tensor with D(u) = (∇u + ∇u T )/2 and ∇u T means the transpose of ∇u. The positive constant µ is the dynamic viscosity of the uid and the constants m and J are the mass and the moment of inertia u(x, 0) = u 0 (x), x ∈ Ω(0), (1.7)

ζ(0) = ζ 0 ∈ R 2 , ζ (0) = ζ 1 ∈ R 2 , ω(0) = ω 0 ∈ R. (1.8) 
In this paper, we suppose that the density ρ f of the uid and the density ρ s of the solid are constant, but not equal, that is

ρ f = ρ s .
The uid-structure interaction problem (1.1)(1.8) is characterized by the strong coupling between the nonlinear equations of the uid and those of the structure, as well as the fact that the equations of the uid are written in a variable domain in time, which depends on the displacement of the structure. From the numerical point of view, in this kind of problems it is necessary to solve equations on moving domains. For this reason, in recent years various authors have proposed a number of dierent techniques, some of which are the level set method (see Osher and Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF]), the ctitious domain method (see Glowinski, Pan, Hesla, Joseph and Périaux [START_REF] Glowinski | A distributed Lagrange multiplier/ctitious domain method for the simulation of ow around moving rigid bodies: application to particulate ow[END_REF][START_REF] Glowinski | A ctitious domain approach to the direct numerical simulation of incompressible viscous ow past moving rigid bodies: application to particulate ow[END_REF]), the immersed boundary method (see Peskin [START_REF] Peskin | The immersed boundary method[END_REF]) and the Arbitrary Lagrangian Eulerian (ALE) method (see Formaggia and Nobile [START_REF] Formaggia | A stability analysis for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], Gastaldi [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], Maury [START_REF] Maury | Direct simulations of 2D uid-particle ows in biperiodic domains[END_REF], Maury and Glowinski [START_REF] Maury | Fluid-particle ow: a symmetric formulation[END_REF]).

In the sequel, we briey recall some reference about the numerical convergence for Navier-Stokes equations, when the domain is independent of time. The Lagrange-Galerkin method has been proposed for the numerical treatment of convection-dominated equations and it is based on combining a Galerkin nite element procedure with a special discretisation of the material derivative along trajectories. Pironneau in [START_REF] Pironneau | On the transport-diusion algorithm and its applications to the Navier-Stokes equations[END_REF] has given a detailed analysis of the method for the Navier-Stokes equations and Süli [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF] has proved optimal error estimates for the Lagrange-Galerkin mixed nite element approximation of Navier-Stokes equations in a velocity/pressure formulation. We also mention the work of Achdou and Guermond [START_REF] Achdou | Convergence analysis of a nite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations[END_REF], where convergence analysis of a nite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations is done.

The numerical analysis of some time decoupling algorithms for the simulation of the interaction between a uid and a structure in the case where the deformation of the structure induces an evolution in the uid domain has been developed by Grandmont, Guimet and Maday [START_REF] Grandmont | Numerical analysis of some decoupling techniques for the approximation of the unsteady uid structure interaction[END_REF] (one dimensional problem). For the ALE method, the numerical analysis of the unsteady Stokes equations in a time dependent domain when the motion of the domain is given has been studied in San Martín, Smaranda and Takahashi [START_REF] San Martín | Convergence of a nite element/ALE method for the Stokes equations in a domain depending on time[END_REF]. Moreover, Legendre and Takahashi [START_REF] Legendre | Convergence of a Lagrange-Galerkin method for a uid-rigid body system in ALE formulation[END_REF] have combined the method of characteristics with a nite element approximation to derive error estimates in the ALE formulation of a two-dimensional problem describing the motion of a rigid body in a viscous uid. In San Martín, Scheid, Takahashi and Tucsnak [START_REF] San Martín | Convergence of the Lagrange-Galerkin method for a uid-rigid system[END_REF][START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF], the authors have proved the convergence of a numerical method based on nite elements with a xed mesh for a two dimensional uid-rigid body problem with the densities of the uid and the solid equal, i.e. ρ f = ρ s . Their numerical scheme is based on a standard characteristic function resulting from the classical formulation of the material derivative in the Navier-Stokes equations. The method introduced in [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF] cannot be easily extended to our case ρ f = ρ s where the global density is discontinuous by using the same characteristic function. In this paper, we introduce crucial modications on the characteristic function, and we propose a new numerical scheme in order to prove a similar convergence result as in [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF]. We think that this modication on the characteristic function should be useful to obtain convergent algorithms for the simulation of aquatic organisms in two and three dimensional cases (see San Martín, Scheid, Takahashi and Tucsnak [START_REF]An initial and boundary value problem modeling of sh-like swimming[END_REF]).

The paper is organized as follows. In the next section we introduce some notation and the functional spaces we work on. In Section 3 we discretize the uid-structure interaction problem (1.1)(1.8) in time variable and we state our rst main result given in Theorem 3.3 which consists in the convergence of the semi-discretization scheme. Section 4 is dedicated to the fully discretization in time and space variables and then we state our second main result given in Theorem 4.1 which concerns an error estimate for the fully-discrete formulation. Section 5 is devoted to some crucial properties on the characteristic functions associated with our schemes. The last two sections are focused on the proofs of the convergence results for both semi-discrete and fully-discrete formulations.

Notation and functional spaces

Throughout this paper, we shall use the classical Sobolev spaces H s (O), H s 0 (O), H -s (O), s 0 and the space of Lipschitz continuous functions C 0,1 (O) on the closure of O. We also dene

L 2 0 (O) = f ∈ L 2 (O) | O f dx = 0 .
The usual inner product in L 2 (O) 2 will be denoted by

(u, v) = O u • v dx ∀u, v ∈ L 2 (O) 2 . (2.1)
If A is a matrix, we denote by A T its transpose. For any 2 × 2 matrices A, B ∈ M 2×2 , we denote by A : B their inner product A : B = Trace (A T B), and by |A| the corresponding norm. For convenience, we use the same notation as in (2.1) for the inner product in

L 2 (O, M 2×2 ), that is (A, B) = O A : B dx ∀A, B ∈ L 2 (O, M 2×2 ).
For ζ ∈ O, we introduce the space of rigid functions in

B(ζ) = {x ∈ R 2 : |x -ζ| ≤ 1}, K(ζ) = u ∈ H 1 0 (O) 2 | D(u) = 0 in B(ζ) , (2.2) 
the space of rigid functions in B(ζ) with divergence free in the whole domain O,

K(ζ) = u ∈ K(ζ) | div u = 0 in O , (2.3) 
and the space of the pressure

M (ζ) = p ∈ L 2 0 (O) | p = 0 in B(ζ) . (2.4) 
Remark 2.1. For convenience, in the reminder of the paper, any velocity eld in K(ζ) will be extended by zero outside of O.

According to Lemma 1.1 of [22, pp.18], for any u ∈ K(ζ), there exist

l u ∈ R 2 and ω u ∈ R such that u(y) = l u + ω u (y -ζ) ⊥ ∀y ∈ B(ζ). (2.5) 
In addition, we dene the density ρ by the following piecewise constant function

ρ(x) = ρ s if x ∈ B(ζ), ρ f if x ∈ O \ B(ζ).
We notice that, by using the above denitions, for any u, v ∈ K(ζ) we have

(ρu, v) = O\B(ζ) ρ f u • v dx + M l u • l v + Jω u ω v . (2.6)
The spaces (2.2)(2.3) are specic to our problem. In fact, if the solution u of (1.1)

-(1.8) is extended by u(x, t) = ζ (t) + ω(t)(x -ζ(t)) ⊥ ∀x ∈ B(ζ(t)),
then, we easily see that u(t) ∈ K(ζ(t)). In the reminder of this paper, the solution u of (1.1)(1.8) will be extended as above.

An important ingredient of the numerical method we use is given by the characteristic functions whose level lines are the integral curves of the velocity eld. More precisely (see, for instance, [START_REF] Pironneau | On the transport-diusion algorithm and its applications to the Navier-Stokes equations[END_REF], [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF]) the characteristic function ψ : [0, T ] 2 × O → O is dened as the solution of the initial value problem

   d dt ψ(t; s, x) = u( ψ(t; s, x), t) ∀t ∈ [0, T ],
ψ(s; s, x) = x.

(2.7)

It is well-known that the material derivative D t u = ∂u/∂t + (u • ∇)u of u at instant t 0 satises: 

D t u(x, t 0 ) = d dt u( ψ(t; t 0 , x), t) |t=t 0 . ( 2 
ζ ∈ H 2 (0, T ) 2 , ω ∈ H 1 (0, T ), u ∈ C([0, T ]; K(ζ(t))),
then we have that det

J e ψ = 1, (2.9) 
where we have denoted by

J e ψ = ∂ ψ i ∂y j i,j
the jacobian matrix of the transformation y → ψ(y).

In the following lemma we give a weak formulation of the system (1.1)(1.8) which will be then used to discretize the problem with respect to time.

Lemma 2.3. Assume that u ∈ L 2 0, T ; H 2 (Ω(t)) 2 ∩ H 1 0, T ; L 2 (Ω(t)) 2 ∩ C [0, T ]; H 1 (Ω(t)) 2 , p ∈ L 2 0, T ; H 1 (Ω(t)) , ζ ∈ H 2 (0, T ) 2 , ω ∈ H 1 (0, T )
and that u is extended by

u(x, t) = ζ (t) + ω(t)(x -ζ(t)) ⊥ ∀x ∈ B(ζ(t)).
Then (u, p, ζ, ω) is the solution of ( 

ρ d dt u • ψ (t), ϕ + a(u, ϕ) + b(ϕ, p) = (ρ f (t), ϕ) ∀ϕ ∈ K(ζ(t)), (2.10) b(u, q) = 0 ∀q ∈ M (ζ(t)), (2.11) 
where

a(u, v) = 2µ O D(u) : D(v) dx ∀u, v ∈ H 1 (O) 2 (2.12) and b(u, p) = - O div (u)p dx ∀u ∈ H 1 (O) 2 , ∀p ∈ L 2 0 (O). (2.13)
We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding result for the classical Navier-Stokes system (see, for instance, [START_REF] Quarteroni | Numerical approximation of partial dierential equations[END_REF]Ch.12]).

3 Semi-discretization scheme and statement of the rst main result By using the weak formulation (2.10)(2.11) we can derive a semi-discrete version of our system. For N ∈ N * we denote ∆t = T /N and t k = k∆t for k = 0, • • • , N . Denote by 2 × O the approximation of the solution of (1.1)(1.8) at the time t = t k . In the sequel, we shall use the notation

(u k , ζ k ) ∈ K(ζ k ) ∩ C 0 (O)
X(x) = ψ(t k ; t k+1 , x) ∀x ∈ O. (3.1)
We approximate the position of the rigid ball at instant t k+1 by ζ k+1 which is dened by the relation

ζ k+1 = ζ k + u k (ζ k )∆t. (3.2)
We then dene the characteristic function ψ associated with the semi-discretized velocity eld as the solution of

   d dt ψ(t; t k+1 , x) = u k (ψ(t; t k+1 , x)) -u k (ζ k ) ∀t ∈ [t k , t k+1 ], ψ(t k+1 ; t k+1 , x) = x -u k (ζ k )∆t, (3.3) 
and we denote We next dene u k+1 ∈ K(ζ k+1 ) as the solution of the following Stokes type system

X k (x) = ψ(t k ; t k+1 , x) ∀x ∈ O. ( 3 
ρ k+1 u k+1 -u k • X k ∆t , ϕ + a u k+1 , ϕ = (ρ k+1 f k+1 , ϕ) ∀ϕ ∈ K(ζ k+1 ), (3.6) 
where f k+1 = f (t k+1 ) and ρ k+1 is dened by

ρ k+1 (x) = ρ s if x ∈ B(ζ k+1 ), ρ f if x ∈ O \ B(ζ k+1 ).
The above equation can be rewritten by using a mixed formulation. It is clear that (3.6) is equivalent to the following system

ρ k+1 u k+1 -u k • X k ∆t , ϕ + a(u k+1 , ϕ) + b(ϕ, p k+1 ) = (ρ k+1 f k+1 , ϕ) ∀ϕ ∈ K(ζ k+1 ), (3.7) b(u k+1 , q) = 0 ∀q ∈ M (ζ k+1 ), (3.8) of unknowns (u k+1 , p k+1 ) ∈ K(ζ k+1 ) × M (ζ k+1 ).
It is well-known (see, for example, [6, Corollary I.4.1., pp.61]) that the mixed formulation (3.7)(3.8) is a well-posed problem, provided that the spaces K(ζ), M (ζ) and the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup condition is satised in our case follows from the result below. Lemma 3.1. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0. Then there exists a constant β > 0, depending only on η and on O, such that for all q ∈ M (ζ) there exists

u ∈ K(ζ) with O div (u) q dx ≥ β u H 1 (O) 2 q L 2 (O) .
(3.9)

The proof of the result above can be obtained by slightly modifying the approach used for the mixed formulation of the standard Stokes system (see, for instance [6, pp.81]), therefore it is left to the reader. In addition, it can be easily proved that u k+1 is continuous in O. To see this, we remark that (u k+1 , p k+1 ) satises a Stokes problem in the uid part O \ B(ζ k+1 ) with a rigid velocity boundary condition on ∂B(ζ k+1 ). Then assuming 2 and we deduce that

f k+1 ∈ L 2 (O) 2 , we get u k+1 ∈ H 2 (O \ B(ζ k+1 ))
u k+1 ∈ C 0 (O) 2 .
(3.10)

In the reminder of the paper, we suppose that f and u 0 satisfy

f ∈ C([0, T ]; H 1 (O) 2 ), u 0 ∈ H 2 (Ω) 2 , div (u 0 ) = 0 in Ω, u 0 = 0 on ∂O, u 0 (y) = ζ 1 + ω 0 (y -ζ 0 ) ⊥ on ∂B(ζ 0 ), (3.11) 
where

ζ 0 , ζ 1 ∈ R 2 , ω 0 ∈ R and Ω = O \ B(ζ 0 ). Let us also assume that the corresponding solution (u, p, ζ, ω) of problem (1.1)(1.8) satises      u ∈ C([0, T ]; H 2 (Ω(t)) 2 ) ∩ H 1 (0, T ; L 2 (Ω(t)) 2 ), D 2 t u ∈ L 2 (0, T ; L 2 (Ω(t)) 2 ), u ∈ C([0, T ]; C 0,1 (O) 2 ) p ∈ C([0, T ]; H 1 (Ω(t))), ζ ∈ H 3 (0, T ) 2 , ω ∈ H 2 (0, T ) (3.12) and dist (B(ζ(t)), ∂O) > 0 ∀t ∈ [0, T ]. (3.13) 
Remark 3.2. The hypotheses (3.12) and (3.13) imply the existence of η > 0 such that

dist (B(ζ(t)), ∂O) > 3η ∀t ∈ [0, T ]. (3.14) 
Let us now state our rst main result concerning the convergence of the semi-discrete scheme (3.7)(3.8): Theorem 3.3. Suppose that O is an open smooth bounded domain in R 2 , f and u 0 satisfy (3.11) and(u, p, ζ, ω) is a solution of (1.1)(1.8) satisfying (3.12)(3.13). Then there exist two positive constants C and τ * not depending on ∆t such that for all 0 < ∆t τ * the solution

(u k , p k , ζ k ) of the semi-discretization problem (3.7)(3.8) satises sup 1 k N |ζ(t k ) -ζ k | + u(t k ) -u k L 2 (O) 2
C∆t.

(3.15)

4 Fully discrete formulation and statement of the second main result

In order to discretize the problem (3.7)(3.8) with respect to the space variable, we introduce two families of nite element spaces which approximate the spaces K(ζ) and M (ζ) dened in (2.2) and (2.4). To this end, we consider the discretization parameter 0 < h < 1.

Let T h be a quasi-uniform triangulation of the domain O. We denote by W h the P 1bubble nite elements space associated with T h for the velocity eld in the Stokes problem and by E h the P 1 -nite elements space for the pressure. Then, we dene the following nite elements spaces for a conform approximation of the uid-rigid system:

K h (ζ) = W h ∩ K(ζ) ∀ζ ∈ O M h (ζ) = E h ∩ M (ζ) ∀ζ ∈ O.
In order to dene the approximate characteristics, let us denote by F h the P 2 -nite element space associated with the triangulation T h and we introduce the space:

R h (ζ) = {∇ ⊥ ϕ h : ϕ h ∈ F h , ϕ h = 0 on ∂O} ∩ K(ζ) ∀ζ ∈ O,
where we have denoted by

∇ ⊥ ϕ h =    - ∂ϕ h ∂y ∂ϕ h ∂x    .
We denote

P(ζ) the orthogonal projection from L 2 (O) 2 onto R h (ζ), i.e. if u ∈ L 2 (O) 2 then P(ζ)u ∈ R h (ζ) such that (u -P(ζ)u, r h ) = 0 for all r h ∈ R h (ζ).
Let N be a positive integer. We denote ∆t = T /N and t k = k∆t for all k ∈ {0, . . . , N }. Assume that the approximate solution

(u k h , p k h , ζ k h ) of (1.1)(1.8) at t = t k
is known. We describe below the numerical scheme allowing to determinate the approximate solution

(u k+1 h , p k+1 h , ζ k+1 h ) at t = t k+1 . First, we compute ζ k+1 h ∈ R 2 by ζ k+1 h = ζ k h + u k h (ζ k h )∆t. (4.1) 
We consider the approximated characteristic function

ψ k h dened as the solution of      d dt ψ k h (t; t k+1 , x) = P(ζ k h )u k h (ψ k h (t; t k+1 , x)) -P(ζ k h )u k h (ζ k h ) ∀t ∈ [t k , t k+1 ], ψ k h (t k+1 ; t k+1 , x) = x -u k h (ζ k h )∆t. (4.2)
Finally, we dene

X k h (x) = ψ k h (t k ; t k+1 , x) ∀x ∈ O. (4.3) 
We remark that, since div

P(ζ k h )u k h (ψ k h (t; t k+1 , •)) -P(ζ k h )u k h (ζ k h ) = 0 and ∇(x -u k h (ζ k h )∆t) = Id, we get det J ψ k h = 1. (4.4) 
In the sequel, we shall split the mesh into the union of 4 dierent types of triangle's subsets. We rst introduce A h as the union of all triangles intersecting the ball B(ζ k h ), i.e.

A h = T ∈T h • T ∩ • B(ζ k h ) =∅ T.
We also denote by Q h the union of all triangles such that all their vertices are contained in A h . The triangles of T h are then splitted into the 4 following categories (see Figure 1):

• F 1 is the subset of T h formed by all triangles T ∈ T h such that T ⊂ B(ζ k h ). • F 2 is the subset formed by all triangles T ∈ T h \ F 1 such that T ⊂ Q h . • F 3 is the subset formed by all triangles T ∈ T h such that T ∩ Q h = ∅ and T ⊂ Q h . • F 4 = T h \ (F 1 ∪ F 2 ∪ F 3 ).
We introduce two approximated density functions ρ k h and ρ k h as follows:

ρ k h (x) = ρ s if x ∈ B(ζ k h ), ρ f if x ∈ O \ B(ζ k h ) (4.5) F 1 F 2 F 3 F 4

This triangle does not belong to

A h but lies in Q h since its three vertices are in A h . 

ρ k h (x) = ρ s if x ∈ Q h , ρ f if x ∈ F 4 . (4.6) 
With these notations, we consider the following mixed variational fully discrete formulation:

Find (u k+1 h , p k+1 h ) ∈ K h (ζ k+1 h ) × M h (ζ k+1 h ) such that ρ k+1 h u k+1 h -u k h • X k h ∆t , ϕ + a(u k+1 h , ϕ) + b(ϕ, p k+1 h ) = (ρ k+1 h f k+1 h , ϕ) ∀ϕ ∈ K h (ζ k+1 h ), (4.7) b(u k+1 h , q) = 0 ∀q ∈ M h (ζ k+1 h ), (4.8) 
where

f k+1 h is the L 2 (O) 2 -projection of f k+1 = f (t k+1 ) on (E h ) 2 .
Let us now state the second main result of this paper which asserts the convergence of the fully-discrete scheme (4.7)(4.8): Theorem 4.1. Let O be a convex domain with a polygonal boundary. Suppose that f and u 0 satisfy the conditions (3.11) and that (u, p, ζ, ω) is a solution of (1.1)(1.8) satisfying the regularity properties (3.12) and such that (3.13) holds. Let C 0 > 0 and 0 < α ≤ 1 be two xed constants. Then there exist two positive constants C and τ * independent of h and ∆t such that for all 0 < ∆t ≤ τ * and for all h ≤ C 0 ∆t 1+α we have

sup 1≤k≤N |ζ(t k ) -ζ k h | + u(t k ) -u k h L 2 (O) 2 ≤ C∆t α .
Remark 4.2. In order to get an approximation of rst order in time (i.e. O(∆t)), we have to choose α = 1. In this case, the corresponding condition on h becomes h ≤ C 0 ∆t 2 which is similar to the one obtained in [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF]Th.3.2] in the case of equal densities ρ f = ρ s .

Properties on the characteristic function

In this section, we prove some properties on the new characteristic function which are essential for the proof of our main results. 

   d dt ψ(t; t k+1 , x) = v(ψ(t; t k+1 , x)) ∀t ∈ [t k , t k+1 ], ψ(t k+1 ; t k+1 , x) = R(x) (5.1)
and we denote

X(x) = ψ(t k ; t k+1 , x) ∀x ∈ O. (5.2)
If v(z) • n = 0 for any z ∈ ∂S k , then the characteristic function satises the following properties:

i) X S k+1 = S k ; ii) For any f ∈ L 2 (R 2 ) such that f = 0 in R 2 \ O, we have f • ψ(t; t k+1 , •) L 2 (O) ≤ f L 2 (O) ∀t ∈ [t k , t k+1 ]. (5.3) 
Proof. Let us rst remark that the Cauchy problem (5.1) is well-posed. To see this, we transform problem (5.1) by making use of the following change of unknown:

ψ(t; t k+1 , x) = ϕ(t; t k+1 , R(x)), (5.4) 
where ϕ satises

   d dt ϕ(t; t k+1 , y) = v(ϕ(t; t k+1 , y)) ∀t ∈ [t k , t k+1 ], ϕ(t k+1 ; t k+1 , y) = y ∀y ∈ R 2 .
(

According to [3, Section III], the Cauchy problem (5.5) admits a unique solution ϕ(• ; t k+1 , y) ∈ C 1 (R) We can now prove the equality i). In fact, we have that

X(S k+1 ) = ϕ(t k ; t k+1 , R(S k+1 )) = ϕ(t k ; t k+1 , S k ) = S k .
Let us turn to the proof of ii). Under the assumption det(∇R) = 1 and using the property (5.6), we obtain

f • ψ(t; t k+1 , •) 2 L 2 (O) = O |f (ψ(t; t k+1 , x))| 2 dx = O |f (ϕ(t; t k+1 , R(x)))| 2 dx = R(O) |f (ϕ(t; t k+1 , y))| 2 dy = ψ(t;t k+1 ,O) |f (z)| 2 dz.
On the other hand, since f = 0 in R 2 \ O we have

ψ(t;t k+1 ,O) |f (z)| 2 dz = ψ(t;t k+1 ,O)∩O |f (z)| 2 dz ≤ O |f (z)| 2 dz.
Therefore, we conclude the result ii). 10

In the sequel, we state two corollaries of the above lemma which state the properties on the characteristic functions associated with the semi-discretized and fully-discretized velocity elds: Corollary 5.2. For any k ∈ {0, . . . , N }, the characteristic function ψ dened in (3.3)(3.4) satises the following properties:

i) X k B(ζ k+1 ) = B(ζ k );
ii) If we extend by ρ f the density eld ρ k outside of O, we have

ρ k+1 = ρ k • X k ; iii) For any f ∈ L 2 (R 2 ) such that f = 0 in R 2 \ O, we have f • ψ(t; t k+1 , •) L 2 (O) ≤ f L 2 (O) ∀t ∈ [t k , t k+1 ]. (5.7) 
Proof. The properties i) and iii) are direct consequences of Lemma 5.1. In fact, we have that the function

R(x) = x -u k (ζ k )∆t maps B(ζ k+1 ) onto B(ζ k ), ∇R = Id. Moreover, the velocity eld v(z) = u k (z) -u k (ζ k ) ∀z ∈ R 2
has free divergence and for any z ∈ B(ζ k ) the decomposition (2.5) allows us to get that

v(z) = ω u k (z -ζ k ) ⊥ , which implies that the hypothesis v • n = 0 on ∂B(ζ k ) holds.
The equality ii) is a direct consequence of i) and the extension of ρ k by ρ f outside of

O. In fact, we have (ρ k • X k )(x) = ρ s if and only if X k (x) ∈ B(ζ k ) which is equivalent to x ∈ B(ζ k+1
) due to identity i). 

ρ k+1 h = ρ k h • X k h ; (5.8) iii) For any f ∈ L 2 (R 2 ) such that f = 0 in R 2 \ O, we have f • ψ k h (t; t k+1 , •) L 2 (O) 2 ≤ f L 2 (O) 2 ∀t ∈ [t k , t k+1 ]. (5.9) 
Proof. The proof is similar to the proof of Corollary 5.2. It is enough to observe that the initial condition from equation (4

.2), R(x) = x -u k h (ζ k h )∆t maps B(ζ k+1 h ) onto B(ζ k h ) and ∇R = Id. The velocity eld v(z) = P(ζ k h )u k h (z) -P(ζ k h )u k h (ζ k h ) ∀z ∈ R 2
has free divergence and for any z ∈ B(ζ k h ) the decomposition (2.5) gives us

v(z) = ω P(ζ k h )u k h (z -ζ k h ) ⊥ ,
where ω P(ζ k h )u k h is the angular velocity associated with the rigid velocity eld

P(ζ k h )u k h in B(ζ k h ). This implies that v•n = 0 on ∂B(ζ k h )
. With these remarks, the hypotheses of Lemma 5.1 are satised and thus the proof is concluded. Remark 5.4. In the case of a general rigid body, not necessarily ball, the denition of the characteristic function ψ has to be modied in order to take into account the rotation eects. To this end, we denote by B(ζ k , θ k ) the rigid body with the center of mass ζ k and the orientation angle θ k . We also denote ω k the approximate angular velocity and R θ will stand for the rotation matrix of angle θ. The characteristic function ψ is now dened as the solution of

   d dt ψ(t; t k+1 , x) = u k ψ(t; t k+1 , x) -u k R ψ(t; t k+1 , x) , ψ(t k+1 ; t k+1 , x) = R -ω k (t k+1 -t k ) (x -ζ k+1 ) + ζ k , (5.10) 
where u k is extended by zero outside of O as in Remark 2.1 and u k R is the rigid velocity eld dened as follows

u k R (x) = u k (ζ k ) + ω k (x -ζ k ) ⊥ ∀x ∈ R 2 .
(5.11)

We also dene the function X k by

X k (x) = ψ(t k ; t k+1 , x) ∀x ∈ O.
(5.12)

With these denitions, the hypotheses of Lemma 5.1 are still fullled and then Corollary 5.2 holds for the general case of a rigid body.

Proof of the rst main result

Let us now prove our rst main result stated in Theorem 3.3 concerning the convergence of the semi-discretization scheme (3.7)(3.8). For this purpose, we rst introduce the transformed system (6.4)(6.5) below, and then in Subsection 6.2 we give the proof of the convergence result. . We dene

X k = X ζ k ,ζ(t k ) , Y k = Y ζ k ,ζ(t k ) , where Y ζ 1 ,ζ 2 is the inverse mapping of X ζ 1 ,ζ 2 .
We also dene

U k (y) = J Y k (X k (y))u X k (y), t k , P k (y) = p(X k (y), t k ), (6.1) 
where J Y k is the determinant of the jacobian matrix of Y k . We recall that U k ∈ K(ζ k ) and

P k ∈ M (ζ k ).
Let us introduce the following notations that will be useful in the sequel:

X = Y k • X • X k+1 (6.2) and J = J Y k+1 • X k+1 J X k • X , (6.3) 
where X is dened in (3.1). The characteristics functions satisfy the properties depicted on the following diagram:

B(ζ k+1 ) X k+1 ----→ B(ζ(t k+1 )) b X     e X B(ζ k ) ← ---- Y k B(ζ(t k ))
We point out that the following relation holds

ρ k+1 = ρ k • X.
The transformed functions U k+1 and P k+1 satisfy a mixed weak formulation with test functions in K(ζ k+1 ) and M (ζ k+1 ). Precisely, we have the following result which can be obtained as in [18, Proposition 6.2] with a very slight modication of the proof. Proposition 6.1. The functions (U k+1 , P k+1 ) dened by (6.1) satisfy

1 ∆t ρ k+1 U k+1 -J U k • X , ϕ + a(U k+1 , ϕ) + b(ϕ, P k+1 ) = (ρ k+1 f k+1 , ϕ) + (A k , ϕ) ∀ϕ ∈ K(ζ k+1 ), (6.4) b(U k+1 , q) = 0 ∀q ∈ M (ζ k+1 ), (6.5) 
with

A k L 2 (O) 2 ≤ C |ζ(t k+1 ) -ζ k+1 | + ∆t + √ ∆t d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . ( 6.6) 
Let us prove an approximation property of the function X k and we also recall an useful property on the change of variables which is given in [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF].

Lemma 6.2. The functions X k , X and J dened in (3.4), (6.2) and (6.3) respectively, satisfy the following estimates:

X -X k L 2 (O) 2 ≤ C ∆t 2 + ∆t U k -u k L 2 (O) 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 , (6.7) J -Id L 2 (O) 2 ≤ C ∆t 2 + ∆t U k -u k L 2 (O) 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 +∆t|ζ(t k ) -ζ k | , (6.8) 
with δ k L 2 (O×(t k ,t k+1 )) 2 ≤ C∆t ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 and C a positive constant independent of k.

Proof. Let us dene a new characteristic function ψ associated with the semi-discretized velocity eld as the solution of

     d dt ψ(t; t k+1 , x) = U k (ψ(t; t k+1 , x)), ψ(t k+1 ; t k+1 , x) = x (6.9)
and let us denote

X k (x) = ψ(t k ; t k+1 , x) ∀x ∈ O. (6.10)
With a very slight modication of the proof of Lemma 6.5 from [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF], we get

X -X k L 2 (O) 2 ≤ C ∆t 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 . (6.11)
The characteristic equations (3.3) and (6.9) can be written as follows:

ψ(t; t k+1 , x) = x -u k (ζ k )(t -t k ) + t t k+1 u k (ψ(s; t k+1 , x)) ds, ψ(t; t k+1 , x) = x + t t k+1 U k (ψ(s; t k+1 , x)) ds, for all t ∈ [t k , t k+1 ].
Subtracting the previous identities, we get

ψ(t; t k+1 , x) -ψ(t; t k+1 , x) = -u k (ζ k )(t -t k ) + t t k+1 u k (ψ(s; t k+1 , x)) -U k (ψ(s; t k+1 , x)) ds.
Taking the L 2 (O) 2 -norm, we obtain that

ψ(t; t k+1 , •) -ψ(t; t k+1 , •) L 2 (O) 2 ≤ C|u k (ζ k )|(t -t k ) + t k+1 t u k (ψ(s; t k+1 , •)) -U k (ψ(s; t k+1 , •)) L 2 (O) 2 ds + t k+1 t U k (ψ(s; t k+1 , •)) -U k (ψ(s; t k+1 , •)) L 2 (O) 2 ds.
By using the property (5.7) and the regularity hypothesis (3.12), we get

ψ(t; t k+1 , •) -ψ(t; t k+1 , •) L 2 (O) 2 ≤ C|u k (ζ k )|(t -t k ) + u k -U k L 2 (O) 2 (t k+1 -t) + t k+1 t C ψ(s; t k+1 , •) -ψ(s; t k+1 , •) L 2 (O) 2 ds.
Then, due to Gronwall inequality, the above estimate yields

ψ(t; t k+1 , •) -ψ(t; t k+1 , •) L 2 (O) 2 ≤ C|u k (ζ k )|(t -t k ) + u k -U k L 2 (O) 2 (t k+1 -t) +C∆t 2 |u k (ζ k )| + u k -U k L 2 (O) 2 , for all t ∈ [t k , t k+1 ].
In particular, for t = t k we deduce that

X k -X k L 2 (O) 2 ≤ C∆t 2 |u k (ζ k )| + C∆t u k -U k L 2 (O) 2 ≤ C∆t 2 |U k (ζ k )| + C∆t 2 |u k (ζ k ) -U k (ζ k )| + C∆t u k -U k L 2 (O) 2 .
Combining the above inequality with (6.11) and using again the regularity hypothesis (3.12), we deduce the result (6.7).

The proof of (6.8) is done in [18, eq. (7.6)].

Error estimate

In this subsection, we give the proof of our rst main result stated in Theorem 3.3. To this end, let us subtract (3.7)(3.8) from (6.4)(6.5) and we obtain

1 ∆t ρ k+1 (U k+1 -u k+1 ), ϕ + a(U k+1 -u k+1 , ϕ) + b(ϕ, P k+1 -p k+1 ) = 1 ∆t ρ k+1 J U k • X -u k • X k , ϕ + (A k , ϕ) ∀ϕ ∈ K(ζ k+1 ), b(U k+1 -u k+1 , q) = 0 ∀q ∈ M (ζ k+1 ).
We choose the test functions ϕ = U k+1 -u k+1 ∈ K(ζ k+1 ) and q = P k+1 -p k+1 ∈ M (ζ k+1 ) and we get that

ρ k+1 U k+1 -u k+1 , U k+1 -u k+1 + ∆t a(U k+1 -u k+1 , U k+1 -u k+1 ) = ρ k+1 J U k • X -u k • X k , U k+1 -u k+1 + ∆t(A k , U k+1 -u k+1 ),
then due to CauchySchwarz inequality, there exists a positive constant C independent of k such that

ρ k+1 (U k+1 -u k+1 ) L 2 (O) 2 ≤ ρ k+1 J U k • X -u k • X k L 2 (O) 2 + C∆t A k L 2 (O) 2 . (6.12)
In order to estimate the rst term in the right hand side of (6.12), we observe that

ρ k+1 J U k • X -u k • X k = ρ k+1 ( J -Id) U k • X + ρ k+1 U k • X -U k • X k + ρ k+1 U k -u k • X k ,
then using the regularity hypothesis (3.12) and the denition of U k given in (6.1), we easily deduce

ρ k+1 J U k • X -u k • X k L 2 (O) 2 ≤ C J -Id L 2 (O) 2 + C X -X k L 2 (O) 2 + ρ k+1 U k -u k • X k L 2 (O) 2 .
Then, by using the inequality (5.7) from Proposition 5.2, we observe that

ρ k+1 J U k • X -u k • X k L 2 (O) 2 ≤ C J -Id L 2 (O) 2 + C X -X k L 2 (O) 2 + ρ k U k -u k L 2 (O) 2 .
Due to the above estimate, the inequality (6.12) becomes

ρ k+1 (U k+1 -u k+1 ) L 2 (O) 2 ≤ ρ k U k -u k L 2 (O) 2 + C J -Id L 2 (O) 2 + C X -X k L 2 (O) 2 + C∆t A k L 2 (O) 2 , (6.13)
then, taking into account the estimates (6.6) from Proposition 6.1, (6.7)(6.8) from Lemma 6.2, we obtain

ρ k+1 (U k+1 -u k+1 ) L 2 (O) 2 ≤ ρ k U k -u k L 2 (O) 2 + C ∆t U k -u k L 2 (O) 2 + ∆t ζ(t k ) -ζ k + ∆t ζ(t k+1 ) -ζ k+1 + ∆t 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . (6.14) Since δ k L 2 (O×(t k ,t k+1 )) 2 ≤ C∆t ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 , we get that ρ k+1 (U k+1 -u k+1 ) L 2 (O) 2 ≤ ρ k U k -u k L 2 (O) 2 + C ∆t U k -u k L 2 (O) 2 + ∆t ζ(t k ) -ζ k + ∆t ζ(t k+1 ) -ζ k+1 + ∆t 2 + (∆t) 3/2 ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . (6.
15) Let us also recall (see [18, Eq.(7.9)]) that

|ζ(t k+1 ) -ζ k+1 | ≤ |ζ(t k ) -ζ k | + C∆t U k -u k L 2 (O) 2 + C∆t 2 , (6.16)
then, the estimate (6.15) yield

ρ k+1 (U k+1 -u k+1 ) L 2 (O) 2 + |ζ(t k+1 ) -ζ k+1 | ≤ (1 + C∆t) ρ k U k -u k L 2 (O) 2 + |ζ(t k ) -ζ k | + C ∆t 2 + (∆t) 3/2 ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . (6.17)
For any k ∈ {0, . . . , N }, let us dene

E k = ρ k U k -u k L 2 (O) 2 + ζ(t k ) -ζ k ,
then according to the estimate (6.17) we write

E k+1 ≤ (1 + C∆t)E k + C ∆t 2 + (∆t) 3/2 ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 .
By applying the discrete Gronwall Lemma, we deduce that for any k ∈ {0, . . . , N },

E k ≤ C ∆t + (∆t) 3/2 ∂u ∂t L 2 (O×(0,T )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(0,T )) 2 ,
then using the hypothesis (3.12) we get

U k -u k L 2 (O) 2 + ζ(t k ) -ζ k ≤ C∆t.
The above estimate together with the denition of U k from (6.1) and properties on the change of variables X k given in [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF]Lemmas 5.55.6], we conclude the proof of (3.15) from our rst main result given in Theorem 3.3.

Proof of the second main result

Let us give the proof of the second main result stated in Theorem 4.1 which concern the convergence of the fully discretization scheme (4.7)(4.8). To this end, we rst introduce the transformed system (7.4)(7.5) below and we prove some important estimates on the transform velocity eld. Then we prove the second main result.

Preliminaries

Since we need to compare the exact solution

u(t k ) ∈ K(ζ(t k )), which is a rigid velocity eld in B(ζ(t k )) with u k h ∈ K(ζ k h )
which is a rigid velocity eld in B(ζ k h ), we are going to use the change of variable X ζ 1 ,ζ 2 which maps the ball B(ζ 1 ) into the ball B(ζ 2 ). We dene

X k h = X ζ k h ,ζ(t k ) , Y k h = Y ζ k h ,ζ(t k ) , where Y ζ 1 ,ζ 2 is the inverse mapping of X ζ 1 ,ζ 2 . We also dene U k h (y) = J Y k h (X k h (y))u X k h (y), t k , P k h (y) = p(X k h (y), t k ), (7.1) 
where

J Y k h is the determinant of the jacobian matrix of Y k h . We recall that U k h ∈ K(ζ k h ) and P k h ∈ M (ζ k h ).
Let us introduce the following notations that will be useful in the sequel:

X h = Y k h • X • X k+1 h (7.2) and J h = J Y k+1 h • X k+1 h J X k h • X h . (7.3)
We observe that the characteristics functions satisfy the properties depicted on the following diagram:

B(ζ k+1 h ) X k+1 h ----→ B(ζ(t k+1 )) b X h     e X B(ζ k h ) ← ---- Y k h B(ζ(t k ))
The transformed functions U k+1 h and P k+1 h satisfy a mixed weak formulation with test functions in K(ζ k+1 h ) and M (ζ k+1 h ). Proposition 7.1. The functions (U k+1 h , P k+1 h ) dened by (7.1) satisfy

1 ∆t ρ k+1 h U k+1 h -J h U k h • X h , ϕ + a(U k+1 h , ϕ) + b(ϕ, P k+1 h ) = (ρ k+1 h f k+1 h , ϕ) + (A k h , ϕ) ∀ϕ ∈ K(ζ k+1 h ), (7.4) b(U k+1 h , q) = 0 ∀q ∈ M (ζ k+1 h ), (7.5) 
with

A k h L 2 (O) 2 ≤ C |ζ(t k+1 ) -ζ k+1 h | + h + ∆t + √ ∆t d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . (7.6) 
The above result can be obtained as in [18, Proposition 6.2] with a very slight modication of the proof.

In the following lemma, we state an important result on the transformed velocity eld. Precisely, we prove the existence of a velocity eld

U k h,ext near U k h which is rigid in a h- neighbourhood of the ball B(ζ k h ).
Moreover, this function is a rigid velocity eld in Q h .

Lemma 7.2. For any k ∈ {0, . . . , N } and h ∈ (0, 1), there exists a velocity eld

U k h,ext ∈ H 1 0 (O) 2 such that U k h,ext (x) = U k h (x) ∀x ∈ B(ζ k h ), (7.7) 
D(U k h,ext ) = 0 in x ∈ O : |x -ζ k h | < 1 + h , (7.8) 
U k h -U k h,ext L 2 (O) 2 ≤ Ch 3/2 , (7.9) 
U k h,ext H 1 (O) 2 ≤ C, (7.10) 
where C is a positive constant independent of h and k.

Proof. Since

U k h ∈ H 1 0 (O) 2 and div U k h = 0, there exists a stream function Φ ∈ H 2 (O) ∩ H 1 0 (O) such that U k h = ∇ ⊥ Φ.
It clearly suces to prove that there exists a stream function Φ ext ∈ H 2 (O) ∩ H 1 0 (O), such that ∇ ⊥ Φ ext satises the conditions (7.7)(7.10).

To this end, let us observe that since

D(U k h ) = 0 in B(ζ k h ), there exist some constants a, c ∈ R and b ∈ R 2 such that Φ(x) = a + b • x + c|x| 2 ∀x ∈ B(ζ k h ).
We denote

w(x) = Φ(x) -a + b • x + c|x| 2 ∀x ∈ O, (7.11) 
then it is clear that w

(x) = 0 ∀x ∈ B(ζ k h ). (7.12) 
Let us dene the stream function Φ ext as follows:

Φ ext (x) = Φ(x) -w(x)ρ(|x -ζ k h |) ∀x ∈ O, (7.13) 
where the real function ρ ∈ H 2 (R) is given by the following formula

ρ(s) =        1 if s < 1 + h, 1 2 cos( s-(1+h) h π) + 1 if 1 + h ≤ s ≤ 1 + 2h, 0 if 1 + 2h < s.
Using this denition, one can easily check that Φ ext (x) = Φ(x) for all x such that |x - 2 and satises the identity (7.7).

ζ k h | ≤ 1 or |x -ζ k h | ≥ 1 + 2h. Then ∇ ⊥ Φ ext ∈ H 1 0 (O)

Additionally, if |x -

ζ k h | < 1 + h, we have Φ ext (x) = a + b • x + c|x| 2
and this identity implies that ∇ ⊥ Φ ext satises (7.8).

In order to prove that ∇ ⊥ Φ ext satises the estimates (7.9) and (7.10), we rst remark that

(Φ -Φ ext )(x) = 0 ∀x ∈ O \ A 1,1+2h , (7.14) 
where we have denoted by A 1,1+2h the annulus enclosed between the circles of radius 1, respectively 1 + 2h and with center at ζ k h . Let us now dierentiate the identity (7.13) and for any i, j ∈ {1, 2}, we get that

∂(Φ -Φ ext ) ∂x i = ∂w ∂x i ρ + wρ x i -ζ k h,i |x -ζ k h | (7.15) 
and

∂ 2 (Φ -Φ ext ) ∂x i ∂x j = ∂ 2 w ∂x i ∂x j ρ + ∂w ∂x i ρ x j -ζ k h,j |x -ζ k h | + ∂w ∂x j ρ x i -ζ k h,i |x -ζ k h | + wρ (x i -ζ k h,i )(x j -ζ k h,j ) |x -ζ k h | 2 + wρ δ ij |x -ζ k h | - (x i -ζ k h,i )(x j -ζ k h,j ) |x -ζ k h | 3 . (7.16)
Taking the L 2 (O)-norm in the estimates (7.15)(7.16), using the identity (7.14) and the properties |ρ| ≤ 1, |ρ | ≤ 2/h and |ρ | ≤ 5/h 2 , we obtain that for all i, j ∈ {1, 2},

∂(Φ -Φ ext ) ∂x i L 2 (O) ≤ ∂w ∂x i L 2 (A 1,1+2h ) + 2 h w L 2 (A 1,1+2h ) (7.17) 
and

∂ 2 (Φ -Φ ext ) ∂x i ∂x j L 2 (O) ≤ ∂ 2 w ∂x i ∂x j L 2 (A 1,1+2h ) + 2 h ∂w ∂x i L 2 (A 1,1+2h ) + 2 h ∂w ∂x j L 2 (A 1,1+2h ) + 5 h 2 w L 2 (A 1,1+2h ) + 4 h w L 2 (A 1,1+2h ) . (7.18)
In order to nish the proof, we need to estimate the dierent norms of w on the annulus A 1,1+2h . To this end, let us take an arbitrary x ∈ A 1,1+2h . It is easy to see that there exists y ∈ B(ζ k h ) such that |x -y| ≤ 2h. Since ∇ ⊥ Φ is a Lipschitz function (see the hypothesis (3.12) and the denition (7.1)), we get that ∇w is also a Lipschitz function, with the Lipschitz constant L independent of h. Using this property and (7.12), we have for some λ ∈ (0, 1). Taking the L 2 (A 1,1+2h )-norm in the estimates (7.19) and (7.20), we deduce

w L 2 (A 1,1+2h ) ≤ Ch 5/2 , (7.21) ∇w L 2 (A 1,1+2h ) 2 ≤ Ch 3/2 . (7.22)
Combining (7.17) with (7.21) (7.22), we obtain the inequality (7.9). Moreover, the estimate (7.10) is a direct consequence of (7.18), (7.21) (7.22) and the fact that w H 2 (O) is independent of h (see the denition of w given in (7.11)). Thus, we conclude the proof of Lemma 7.2.

Using the above lemma, let us prove the following crucial estimate: Proposition 7.3. For any k ∈ {0, 1, . . . , N } and h ∈ (0, 1), the following estimate holds:

U k h -P(ζ k h )U k h L 2 (O) 2 ≤ Ch, (7.23) 
where C is a positive constant independent of h.

Proof. Using Lemma 7.2, there exists U k h,ext ∈ H 1 0 (O) 2 satisfying (7.7)(7.10). We can write

U k h -P(ζ k h )U k h L 2 (O) 2 ≤ U k h -U k h,ext L 2 (O) 2 + U k h,ext -P(ζ k h )U k h,ext L 2 (O) 2 + P(ζ k h )U k h,ext -P(ζ k h )U k h L 2 (O) 2 , then, since P(ζ k h ) is an orthogonal projection from L 2 (O) 2 onto R h (ζ k h ), we get U k h -P(ζ k h )U k h L 2 (O) 2 ≤ 2 U k h -U k h,ext L 2 (O) 2 + U k h,ext -P(ζ k h )U k h,ext L 2 (O) 2 . (7.24)
Let Φ ext be the stream function corresponding to U k h,ext and Φ I be the P 2 -Lagrange interpolated function of Φ ext on the triangulation T h . Since U k h,ext is a rigid velocity eld on Q h , the function Φ ext is quadratic on Q h and thus

Φ I (x) = Φ ext (x) ∀x ∈ Q h and ∇ ⊥ Φ I is a rigid velocity eld in Q h . This implies that ∇ ⊥ Φ I ∈ R h (ζ k h )
. By using the denition of the orthogonal projection and due to the classical estimates of the interpolated functions (see, for instance, [6, Lemma A.2, p. 99]), we deduce that

U k h,ext -P(ζ k h )U k h,ext L 2 (O) 2 ≤ U k h,ext -∇ ⊥ Φ I L 2 (O) 2 = ∇ ⊥ Φ ext -∇ ⊥ Φ I L 2 (O) 2 ≤ Ch Φ ext H 2 (O) 2 ≤ Ch U k h,ext H 1 (O) 2 . ( 7 

.25)

Let us now conclude the proof of our result by noting that the estimate (7.23) is a direct consequence of the inequality (7.24) combined with (7.25) and the estimates (7.9)(7.10) from Lemma 7.2.

Let us now state an important estimate on the L 2 (O)-norm of the dierence between the density functions ρ k h and ρ k h dened in (4.5) and (4.6), respectively. Lemma 7.4. There exists a positive constant C, independent of h and k, such that

ρ k h -ρ k h L 2 (O) ≤ C √ h. (7.26)
Proof. Using the denitions of ρ k h and ρ k h given in (4.5) and (4.6) respectively, we have that

ρ k h -ρ k h = 0 in F 4 ∪ B(ζ k h ). Taking the L 2 (O)-norm, we deduce that ρ k h -ρ k h 2 L 2 (O) = F2∪F3 ρ k h (x) -ρ k h (x) 2 dx ≤ |ρ f -ρ s | 2 mes (F 2 ∪ F 3 ) . (7.27)
The region F 2 ∪ F 3 is contained into the annulus of center ζ k h with radius r 1 = 1 -h and r 2 = 1 + 2h (see Figure 1). Then, the area of the region F 2 ∪ F 3 can be estimated as follows:

mes (F 2 ∪ F 3 ) ≤ π (1 + 2h) 2 -(1 -h) 2 = 3πh(h + 2).
Combining this estimate with (7.27), we conclude that the estimate (7.26) holds.

Let us now prove approximation properties of the characteristic function dened in (4.2) and also properties on the change of variables.

Lemma 7.5. The functions X k h , X h and J h dened by (4.3), (7.2) and (7.3) respectively, satisfy the following estimates:

X h -X k h L 2 (O) 2 ≤ C ∆t 2 + h∆t + ∆t U k h -u k h L 2 (O) 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 , (7.28) J h -Id L 2 (O) 2 ≤ C ∆t 2 + ∆t U k h -u k h L 2 (O) 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 +∆t|ζ(t k ) -ζ k h | , (7.29) 
with

δ k L 2 (O×(t k ,t k+1 )) 2 ≤ C∆t ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 . (7.30)
Proof. Analogous to the proof of Lemma 6.2, we dene the characteristic function ψ k h associated with the fully-discrete velocity eld as the solution of

     d dt ψ k h (t; t k+1 , x) = U k h (ψ k h (t; t k+1 , x)), ψ k h (t k+1 ; t k+1 , x) = x (7.31)
and we denote

X k h (x) = ψ k h (t k ; t k+1 , x) ∀x ∈ O. (7.32) 
With a very slight modication of the proof of Lemma 6.5 in [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF], we get

X h -X k h L 2 (O) 2 ≤ C ∆t 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 . ( 7 

.33)

Let us observe that the characteristic equations (4.2) and (7.31) can be written as follows: for any t ∈ [t k , t k+1 ], we have

ψ k h (t; t k+1 , x) = x -u k h (ζ k h )∆t + t t k+1 P(ζ k h )u k h (ψ k h (s; t k+1 , x)) ds -P(ζ k h )u k h (ζ k h )(t -t k+1 ), ψ k h (t; t k+1 , x) = x + t t k+1 U k h (ψ k h (s; t k+1 , x)) ds.
Subtracting the previous identities, we obtain

ψ k h (t; t k+1 , x) -ψ k h (t; t k+1 , x) = -u k h (ζ k h )∆t -P(ζ k h )u k h (ζ k h )(t -t k+1 ) + t t k+1 P(ζ k h )u k h (ψ k h (s; t k+1 , x)) -U k h (ψ k h (s; t k+1 , x)) ds,
then taking the L 2 (O) 2 -norm, we deduce that

ψ k h (t; t k+1 , •)-ψ k h (t; t k+1 , •) L 2 (O) 2 ≤ C|u k h (ζ k h )|(t-t k )+C u k h -P(ζ k h )u k h (ζ k h ) (t k+1 -t) + t k+1 t P(ζ k h )u k h (ψ k h (s; t k+1 , •)) -P(ζ k h )U k h (ψ k h (s; t k+1 , •)) L 2 (O) 2 ds + t k+1 t P(ζ k h )U k h (ψ k h (s; t k+1 , •)) -U k h (ψ k h (s; t k+1 , •)) L 2 (O) 2 ds + t k+1 t U k h (ψ k h (s; t k+1 , •)) -U k h (ψ k h (s; t k+1 , •)) L 2 (O) 2 ds.
By using (5.9) and the hypothesis (3.12), the above estimate yields

ψ k h (t; t k+1 , •)-ψ k h (t; t k+1 , •) L 2 (O) 2 ≤ C|u k h (ζ k h )|(t-t k )+C u k h -P(ζ k h )u k h (ζ k h ) (t k+1 -t) + u k h -U k h L 2 (O) 2 (t k+1 -t) + P(ζ k h )U k h -U k h L 2 (O) 2 (t k+1 -t) + C t k+1 t ψ k h (s; t k+1 , •) -ψ k h (s; t k+1 , •) L 2 (O) 2 ds.
Then, applying the Gronwall inequality to the above estimate, for all t ∈ [t k , t k+1 ] we deduce that

ψ k h (t; t k+1 , •)-ψ k h (t; t k+1 , •) L 2 (O) 2 ≤ C|u k h (ζ k h )|(t-t k )+C u k h -P(ζ k h )u k h (ζ k h ) (t k+1 -t) + u k h -U k h L 2 (O) 2 (t k+1 -t) + P(ζ k h )U k h -U k h L 2 (O) 2 (t k+1 -t) + C∆t 2 |u k h (ζ k h )| + u k h -P(ζ k h )u k h (ζ k h ) + u k h -U k h L 2 (O) 2 + P(ζ k h )U k h -U k h L 2 (O) 2 ,
and in particular, taking t = t k , we get

X k h -X k h L 2 (O) 2 ≤ C∆t 2 |u k h (ζ k h )| + C∆t u k h -P(ζ k h )u k h (ζ k h ) + u k h -U k h L 2 (O) 2 + P(ζ k h )U k h -U k h L 2 (O) 2 ≤ C∆t 2 U k h L 2 (O) 2 + C∆t u k h -U k h L 2 (O) 2 + C∆t P(ζ k h )U k h -U k h L 2 (O) 2 .
Combining the above inequality with the estimates (7.33) and (7.23) from Proposition 7.3, and using the hypothesis (3.12), we conclude (7.28).

The proof of (7.29) is completely similar to [18, eq. (7.6)]. [START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF]). Lemma 7.6. Suppose that V ∈ K(ζ) and that P ∈ M (ζ). Then there exists a unique couple

Let us recall an approximation property of the projection on

K h (ζ) × M h (ζ) (see
(V h , P h ) in K h (ζ) × M h (ζ) such that: a V -V h , ϕ + b ϕ, P -P h = 0 ∀ϕ ∈ K h (ζ), b V -V h , q = 0 ∀q ∈ M h (ζ). (7.34) 
Moreover, if we suppose in addition that

V |O\B(ζ) ∈ H 2 (O \ B(ζ)) 2 and that P |O\B(ζ) ∈ H 1 (O \ B(ζ))
, then there exists a positive constant C, independent of h, such that

V -V h L 2 (O) 2 ≤ Ch.

Error estimate

In this section, we give the proof of our second main result stated in Theorem 4.1. First of all, let us observe that according to Lemma 7.6, there exists a unique couple (U k+1 h , P

h ) ∈ K h (ζ k+1 h ) × M h (ζ k+1 h ) such that a U k+1 h -U k+1 h , ϕ + b ϕ, P k+1 h -P k+1 h = 0 ∀ϕ ∈ K h (ζ k+1 h ), b U k+1 h -U k+1 h , q = 0 ∀q ∈ M h (ζ k+1 h ) (7.35) k+1 
and moreover, there exists a positive constant C, independent of h and k, such that the following estimate holds: 

U k+1 h -U k+1 h L 2 (O) 2 ≤ Ch. ( 7 
1 ∆t ρ k+1 h (U k+1 h -u k+1 h ), ϕ + a(U k+1 h -u k+1 h , ϕ) + b(ϕ, P k+1 h -p k+1 h ) = 1 ∆t ρ k+1 h J h U k h • X h -ρ k+1 h u k h • X k h , ϕ + (ρ k+1 h -ρ k+1 h )f k+1 h , ϕ + (A k h , ϕ) ∀ϕ ∈ K h (ζ k+1 h ), b(U k+1 h -u k+1 h , q) = 0 ∀q ∈ M h (ζ k+1 h ). We choose the test functions ϕ = U k+1 h -u k+1 h ∈ K h (ζ k+1 h ) and q = P k+1 h -p k+1 h ∈ M h (ζ k+1 h
), then we obtain the following identity

ρ k+1 h (U k+1 h -u k+1 h ), U k+1 h -u k+1 h + ∆t a(U k+1 h -u k+1 h , U k+1 h -u k+1 h ) = ρ k+1 h J h U k h • X h -ρ k+1 h u k h • X k h , U k+1 h -u k+1 h + ∆t (ρ k+1 h -ρ k+1 h )f k+1 h , U k+1 h -u k+1 h + ∆t(A k h , U k+1 h
u k+1 h ), which can be written as follows:

ρ k+1 h (U k+1 h -u k+1 h ), U k+1 h -u k+1 h + ∆t a(U k+1 h -u k+1 h , U k+1 h -u k+1 h ) = ρ k+1 h J h U k h • X h -ρ k+1 h u k h • X k h , U k+1 h -u k+1 h + ρ k+1 h (U k+1 h -U k+1 h ), U k+1 h -u k+1 h +∆t (ρ k+1 h -ρ k+1 h )f k+1 h , U k+1 h -u k+1 h + ∆t(A k h , U k+1 h
u k+1 h ). By using the CauchySchwarz inequality, there exists a positive constant C, independent of h and k, such that 

ρ k+1 h U k+1 h -u k+1 h L 2 (O) 2 ≤ ρ k+1 h J h U k h • X h -u k h • X k h L 2 (O) 2 + C U k+1 h -U k+1 h L 2 (O) 2 + ∆t ρ k+1 h -ρ k+1 h L 2 (O) + ∆t A k h L 2 (O)
ρ k+1 h J h U k h • X h -u k h • X k h = ρ k+1 h ( J h -Id)U k h • X h + ρ k+1 h U k h • X h -U k h • X k h + ρ k+1 h U k h -U k h • X k h + ρ k h U k h -u k h • X k h .
Then, by using the hypothesis (3.12) and the fact that det J X k h = 1, we deduce the following estimate:

ρ k+1 h J h U k h • X h -u k h • X k h L 2 (O) 2 ≤ C J h -Id L 2 (O) 4 + C X h -X k h L 2 (O) 2 + C U k h -U k h L 2 (O) 2 + ρ k h U k h -u k h L 2 (O) 2 . (7.38)
Combining the estimates (7.37) together with (7.38), we deduce that

ρ k+1 h U k+1 h -u k+1 h L 2 (O) 2 ≤ ρ k h U k h -u k h L 2 (O) 2 + C J h -Id L 2 (O) 4 + X h -X k h L 2 (O) 2 + U k h -U k h L 2 (O) 2 + U k+1 h -U k+1 h L 2 (O) 2 + ∆t ρ k+1 h -ρ k+1 h L 2 (O) + ∆t A k h L 2 (O) 2 .
Due to Lemma 7.5 (see (7.28)(7.29)) and Lemma 7.4, the above estimate yields

ρ k+1 h U k+1 h -u k+1 h L 2 (O) 2 ≤ ρ k h U k h -u k h L 2 (O) 2 +C ∆t|ζ(t k )-ζ k h |+∆t U k h -u k h L 2 (O) 2 + √ ∆t δ k L 2 (O×(t k ,t k+1 )) 2 + ∆t 2 + ∆t √ h + U k h -U k h L 2 (O) 2 + U k+1 h -U k+1 h L 2 (O) 2 + ∆t A k h L 2 (O) 2 .
Let us now use the estimate (7.36) of the projection, the estimates (7.6) and (7.30) of A k h , respectively δ k , then the above inequality becomes 

ρ k+1 h U k+1 h -u k+1 h L 2 (O) 2 ≤ (1 + C∆t) ρ k h U k h -u k h L 2 (O) 2 + C ∆t 2 + ∆t √ h + h + ∆t ζ(t k ) -ζ k h + ∆t ζ(t k+1 ) -ζ k+1 h + (∆t)
ρ k+1 h U k+1 h -u k+1 h L 2 (O) 2 + |ζ(t k+1 ) -ζ k+1 h | ≤ (1 + C∆t) ρ k h U k h -u k h L 2 (O) 2 + ζ(t k ) -ζ k h + C ∆t 2 + ∆t √ h + h + (∆t)
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 1 Figure 1: The rigid ball and the related splitting of the triangulation.

Lemma 5 . 1 .

 51 For any free divergence velocity eld v ∈ H 1 0 (O) 2 ∩ C 0 (O) 2 extended by zero outside of O, and for any dierentiable function R : O → R 2 such that det(∇R) = 1 and R(S k+1 ) = S k , where S k and S k+1 are two open smooth subsets of O, we consider the characteristic function as the solution of problem

Corollary 5 . 3 .

 53 For any k ∈ {0, . . . , N } and h ∈ (0, 1), the characteristic function ψ k h dened in (4.2)(4.3) satises the following properties: i) X k h B(ζ k+1 h ) = B(ζ k h ); ii) If we extend by ρ f the density eld ρ k h outside of O, we have

6 . 1

 61 Transformed system We need to compare the exact solution u(t k ) ∈ K(ζ(t k )), which is a rigid velocity eld in B(ζ(t k )) with u k ∈ K(ζ k ) which is a rigid velocity eld in B(ζ k ). To this end, we use the change of variable X ζ 1 ,ζ 2 dened in [18, Section 5], which maps the ball B(ζ 1 ) into the ball B(ζ 2 )

  |∇w(x)| = |∇w(x) -∇w(y)| ≤ L|x -y| ≤ 2Lh (7.19) and |w(x)| = |w(x) -w(y)| ≤ |∇w(y + λ(x -y))| • |x -y| = ∇w(y + λ(x -y)) -∇w(y) • |x -y| ≤ Lλ|x -y| 2 ≤ 4λLh 2 , (7.20) 

  ∈ L 1 (R 2 ) and for all t ∈ [t k , t k+1 ]. Moreover, since u k ∈ C 0 (O) 2 , the caracteristic function ψ(•; t k+1 , x) is actually well dened in [t k , t k+1 ], for all x ∈ R 2 .

				.4)
	In equation (3.3), the velocity u k is extended by zero outside of the domain O as it was
	noted in Remark 2.1. This extension is necessary because we have X	k (O) O. Indeed, we
	observe that due to the initial condition in (3.3), if we consider x ∈ O, then ψ(t k+1 ; t k+1 , x)
	does not necessarily belong to O. Nevertheless, one can easily check that X	k (O) ⊆ O +
	B(0, |u k (ζ k )|∆t). We emphasize that the Cauchy problem (3.3) is well-posed and then the
	characteristic function X in O and u k = 0 in R 2 \ O, the problem (3.3) admits a unique solution ψ(•; t k+1 , x) ∈ k is also well dened. Indeed, since u k ∈ H 1 0 (O) 2 with div u k = 0
	C 1 ([t k , t k+1 ]) for almost every x ∈ R 2 , which satises the following measure preserving
	property (see [3, Section III]),		
	f ψ(t; t k+1 , x) dx =	f (y) dy,		(3.5)
	A	ψ(t;t k+1 ,A)	
	for all function f		

  2 .(7.37) Let us now estimate the rst term in the right hand side of the inequality (7.37). To this end, we remark that since ρ k+1

	h	= ρ k h • X	k h (see (5.8)), one can write

  3/2 ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . (7.39)We also recall (see[18, Eq.(7.9)]) that|ζ(t k+1 ) -ζ k+1 h | ≤ |ζ(t k ) -ζ k h | + C∆t U k h -u k h L 2 (O) 2 + C∆t 2 ,then since the estimate of the projection (7.36) holds, we get C∆t 2 . (7.40)Therefore, taking into account the inequality (7.40) in the estimate (7.39), one can deduce that

	|ζ(t k+1 ) -ζ k+1 h | ≤ |ζ(t k ) -ζ k h | + C∆t	ρ k h U	k h -u k h	L 2 (O) 2

+ Ch∆t +

  3/2 ∂u ∂t L 2 (O×(t k ,t k+1 )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(t k ,t k+1 )) 2 . (7.41)By applying the discrete Gronwall Lemma in (7.41), there exists a positive constant independent of h such that Using the hypothesis (3.12), the estimate of the projection (7.36), Lemma 5.6 in[START_REF]Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF], and the fact thatρ k h ≥ min{ √ ρ f , √ ρ s } > 0, we get u(t k ) -u k h L 2 (O) 2 + |ζ(t k ) -ζ k h | ≤ C ∆t +Then, for ∆t small enough and h ≤ C 0 ∆t 1+α with 0 < α ≤ 1, we conclude that the estimate (7.43) becomesu(t k ) -u k h L 2 (O) 2 + |ζ(t k ) -ζ k h | ≤ C∆t α ∀k ∈ {0, . . . , N },(7.44)which is the conclusion of Theorem 4.1.

	√	h +	h ∆t	∀k ∈ {0, . . . , N }.	(7.43)
	ρ k h (U				

k h -u k h ) L 2 (O) 2 + |ζ(t k ) -ζ k h | ≤ C 1 ∆t + √ h + h ∆t + (∆t) 3/2 ∂u ∂t L 2 (O×(0,T )) 2 + (∆t) 3/2 d 2 dt 2 [u • ψ] L 2 (O×(0,T )) 2

, (7.42) for all k ∈ {0, . . . , N }.
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