
HAL Id: hal-00531368
https://hal.science/hal-00531368v1

Submitted on 2 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAM : Semantic Agent Model for SWRL rule-based
agents

Julien Subercaze, Pierre Maret

To cite this version:
Julien Subercaze, Pierre Maret. SAM : Semantic Agent Model for SWRL rule-based agents. Inter-
national Conference on Agents and Artificial Intelligence, Jan 2010, Valencia, Spain. pp.244-248.
�hal-00531368�

https://hal.science/hal-00531368v1
https://hal.archives-ouvertes.fr

SAM
Semantic Agent Model for SWRL rule-based agents

Julien Subercaze
Université de Lyon, LIRIS UMR 5205, INSA de Lyon, Villeurbanne, France

julien.subercaze@liris.cnrs.fr

Pierre Maret
Université de Lyon, LaHC UMR 5516, Université de Saint-Etienne, France

pierre.maret@univ-st-etienne.fr

Keywords: Autonomous agent, agent architecture, rule-based agent, semantic web, behavior exchange, consistency check-
ing, SWRL.

Abstract: Semantic Web technologies are part of multi-agent engineering, especially regarding knowledge base support.
Recent advances in the field of logic for the semantic web enable a new range of applications. Among them,
programming agents based on semantic rules is a promising field. In this paper we present a semantic agent
model that allows SWRL programming of agents. Our approach, based on the extended finite state machine
concept, results in a three layers architecture. We detail the architecture, the syntax of the rules , the agent
interpreter cycle and present a prototype validating the concept. We present two distinguished features of our
approach : behavior exchanges and consistency checking.

1 Introduction and motivation

Since the publishing of the agent roadmap in 2003
(Luck et al., 2003) that pointed out the lack of con-
nection between Multi-Agent Systems and Seman-
tic Web technologies, many applications and frame-
works have been developed to bridge this gap. Se-
mantic Web languages and tools are widely used to
represent agents’ knowledge. TAGA (Zou et al.,
2003) uses OWL and RDF as knowledge representa-
tion in the field of a trading agent competition, using
a FIPA compliant framework. AgentOWL (Laclavik
et al., 2006) extends JADE agents with OWL sup-
port for their knowledge Base (KB). It also introduces
an OWL based semantic agent model. Knowledge
Agents, introduced by (Aridor et al., 2000), are used
for domain specific web search. In this case, agents
KB is based on RDF. RDF is also used in CORESE
(Corby et al., 2004) which is a semantic web search
engine for corporate knowledge developed within the
COMMA (Corporate Memory Management through
Agents) european IST project. The JADE framework,
which is currently the most used in research and in-
dustry supports natively RDF for representing agents’
knowledge.

These examples show us that semantic web tech-

nologies are widely used for representing agent
knowledge. However, agent behaviour programming
has difficulties to take advantage of these technolo-
gies. We have just identified some emerging pro-
posals in this field. Buhler et al. (Buhler and Vi-
dal, 2003) introduced a language called Picola in
which agent behaviour is a composition of Seman-
tic Web Services. More recently, the S-APL (Seman-
tic agent programming language) was introduced by
Katasonov (Katasonov and Terziyan, 2008). This lan-
guage, which is the most advanced attempt of agent
semantic programming is built on top of JADE and
CWM (Closed World Machine), a rule based reason-
ing engine. CWM performs first order predicate logic
inference. Consequently S-APL doesn’t take advan-
tage of the description logic that underpins semantic
web technologies. In practical terms, agent knowl-
edge base are represented in RDF and first order pred-
icate logic inferences are performed using CWM. The
fact that S-APL is based on CWM means that it is re-
stricted to closed world assumption (Damasio et al.,
2006). Closed world assumption implies that everty-
thing that is not known to be true, is false. The op-
posite of closed world assumption is the open world
assumption. Open world assumption states that ev-
erything that is not known is undefined. As stated in

(Damásio et al., 2006), the incompleteness of knowl-
edge owned by agents is the reason for using the open
world assumption in MAS.

Our motivation is to build an agent model that
takes advantage of Description Logic expressivity and
its reasoning tools. Figure 1 shows the current status
of specification in the Semantic Web layer cake. The
logic part, which is of primary interest for us, is still
work in progress. For this layer, two proposals are
pending. The most well known one is the Seman-
tic Web Rule Language (SWRL)1 (Horrocks et al.,
2004), it is based on a combination of the OWL DL
with the RuleML language. The second proposal is
the Web Rule Language (WRL)2 initiative that was
influenced by the Web Service Modeling Language
WSML. Whereas WRL is at a draft stage, the seman-
tic web community is focusing its research towards
SWRL. Indeed Protege 3, Pellet 4 and Jess 5 already
provide support for SWRL even if the reference doc-
ument is only at the submission stage, and RIF (Rule
Interchange Format) 6 which specifies the interoper-
ation with data and ontology languages, is in close
spirit with SWRL. Due to these advances in imple-
mentation, it is now possible to develop agents based
on semantic rules. Thus our choice naturally went to
SWRL for the design of the Semantic Agent Model
(SAM).

Figure 1: The Semantic Web Layer Cake advances

SWRL presents two main advantages compared
to other rule languages. First it allows the writing
rules in terms of OWL concepts (i.e. classes, individ-
uals, properties and data values) because it is an OWL
based language. To these OWL concepts, the SWRL
specification adds several built-ins functions for com-
parisons, math, strings and time (Horrocks et al.,
2004). From a more agent programming point of

1http://www.w3.org/Submission/SWRL/
2http://www.w3.org/Submission/WRL/
3http://protege.cim3.net/cgi-bin/wiki.pl?

SWRLTab
4http://clarkparsia.com/pellet/
5http://herzberg.ca.sandia.gov/jess/
6http://www.w3.org/TR/rif-core/

view, concepts of the agent knowledge base can be di-
rectly manipulated in the rule language. Thus, knowl-
edge and behaviors are stored and manipulated at the
same level of the agent architecture. Together with
the agent model defined in section 3, manipulating
knowledge and behaviour at the same level enables
behavior exhanges without the overhead of an explicit
behaviour description layer, such as in (Decker and
Sycara, 1996; Katasonov and Terziyan, 2008). Sec-
ondly, the decidable subset of Description Logic (DL)
that is used (DL safe rules) in SAM, possesses com-
plete and sound reasoning mechanisms (Baader et al.,
2003). We describe in section 4 how these reason-
ing mechanims are used in SAM for maintaining the
consistency of the agent’s knowledge base.

In the next section we explain the construction of
our agent’s model. We first introduce the layered ar-
chitecture, then detail the control structure and give
a formal description of the SAM grammar. In sec-
tion 3 we describe the ontological model of the agent
that results from the architecture. After the descrip-
tion of the agent architecture and its semantic model,
we present in section 4 behaviour exchanges and con-
sistency checking features and their applications in
Multi-Agent Systems. Our conclusions are presented
in section 6.

2 Building Agents with Semantic
Rules

2.1 SAM agent Architecture

Programming agent behaviour using a rule language
can be carried out in two ways. The first way consists
in extending a logic programming language in order
to support traditional agent features (i.e. message
passing, threading, etc.). The second way consists
in building a layered architecture using the rule lan-
guage at an upper layer. Agent features are delegated
to a lower layer. Commonly, in this type of archi-
tecture, the lower level language (i.e. Java, C++,etc.)
is used to handle communication, file access, thread
management, etc. The main idea behind this approach
is to reuse the required features for MAS that are al-
ready implemented in another language and to define
an agent interpreter to support a particular architec-
ture, such as BDI for instance. The literature shows
examples of both approaches. Clark et al. (Clark
et al., 2001) follows the first approach by extend-
ing Qu-Prolog with multi-threading support and inter-
thread message communication. However, this ap-
proach is not scalable and does not comply with the

Agent Communication Language (ACL) specified by
the FIPA 7. FIPA-ACL is currently recognized as the
standard for agent communication and ensures inter-
operability between MAS frameworks. S-APL, that
we discussed in the previous section, follows the same
approach but some direct calls to JAVA functions are
inserted into the rules.

Figure 2: SAM Agent Architecture

Standard MAS languages rely on the second ap-
proach. Agent0, the first agent dedicated language,
which is an implementation of Shoham’s Agent Ori-
ented Programming was developed on top of LISP.
Equally, 3APL, 3APL-m, JASON and the BDI agent
system Jadex are based on JAVA.

Our architecture follows the second approach and
results in the following layered architecture (Fig. 2) :

1. Knowledge Base

2. Engine

3. MAS framework and low level actions

2.1.1 Knowledge Base

The knowledge base is the upper layer of the SAM ar-
chitecture. The knowledge base contains the knowl-
edge of the agent which, in our approach, is com-
posed of static knowledge and behaviour. Behaviour
of agent is expressed using SWRL rules. As SWRL
is based upon OWL, terms of the knowledge base are
directly manipulated in the rules. Terms of the knowl-
edge base can appear in both antecedent and conse-
quent of rules. A formal specification of the rule syn-
tax is given in section 2.3.

7http://www.fipa.org/repository/aclspecs.
html

2.1.2 Engine

As SWRL buid-ins do not cover all the requirements
for agent programming , we have introduced addi-
tional low level actions (3rd layer). This middle layer
is the control structure that make the interface be-
tween the rules contained in the knowledge base and
the low level actions. Rules from the knowledge base
are fired by the engine, one at a time. If the rule im-
plies to call low level actions, the engine layer carries
out this call.

2.1.3 Low level actions and MAS Framework

This layer contains the implementation of the low
level actions that are complementary to SWRL built-
ins. An extensive list of these actions is given in sec-
tion 3. Notice that these actions are introduced as
instances of OWL class Actions in the syntax of the
rules (1st layer). Communication between agents re-
lies on an existing MAS framework. Messages are
structured following the FIPA-ACL standard, conse-
quently the MAS framework has to be FIPA compli-
ant (our implementation is based upon JADE). Mes-
sages from other agents are received through the MAS
framework, then converted into an OWL representa-
tion and finally added to the knowledge base.

2.2 Control structure

Rule-based agents constitutes an important part of
the research on MAS. In (Hindriks et al., 1999b),
Hindriks et al. define the requirement for a mini-
mal agent programming language that includes rules
and goals. They also defined formalization tools
that were applied to three standard agent program-
ming languages AGENT-0(Shoham, 1991), AgentS-
peak(L)(Rao, 1996) (that was later implemented and
extended in JASON(Bordini and Hubner, 2006)) and
3APL(Hindriks et al., 1999a). Their definition of an
agent program for goal directed agents includes a set
of rules Γ called the rule base of the agent. They
identify rule ordering as a crucial issue in rule-based
agents. However, this presents us with the follow-
ing problem : when several rules from the ruleset can
be fired, there must be an order to determine the se-
quence of execution of those rules. So the order in
which the rules will be sorted must be defined. Hin-
driks et al. (Hindriks et al., 1999b) proposed that
all rules fall into one of the following categories :
reactive(R), means-end(M), failure(F) and optimisa-
tion(O) with an order based on intuition :

R > F > M > O

As SWRL doesn’t support rule ordering, we are also
confronted with the same issue. However, instead
of deciding an arbitrary order, we have decided to
use another model of behavior, a slightly modi-
fied version of the Extended Finite State Machine
(EFSM) model (Cheng and Krishnakumar, 1993),
that guarantees the execution of only one rule at
a time. In EFSM, transitions between states are

Figure 3: SAM Agent Interpreter

expressed using if statements. A transition is fired
if trigger conditions are valid. Once the transition
has been fired, the machine is brought from current
state to next state and a set of specified operations
are performed. Our choice is to use atomic actions
to fullfill basic MAS requirements. We differentiate
two kinds of atomic actions, external and internal.
Internal actions have an effect on the agent internal
knowledge Base. External actions are the interac-
tions of the agent within its environment. These
actions include environment perception, action on
the environment, message reception and emission.
External actions are not included in SWRL built-ins
whereas a subset of internal actions is. In section 3
we detail the list of atomic actions that are not SWRL
built-ins. A deterministic EFSM is a restriction
of EFSM in which there is at most one possible
transition for each state and set of triggering condi-
tions. We used this restriction to ensure that only
one rule can be triggered at a time. A pseudo code
algorithm for the interpreter is defined in algorithm 1.

Algorithm 1: SAM Interpreter
begin

CurrentState←− sBegin
while CurrentState 6= sEND do

temp←− nextStateValue()
if temp 6= currentState then

removeProperty(currentState,stateValue)
actionList←− getActionList()
if executeAction(actionList) then
addProperty(currentState, temp)
else
addProperty(currentState,errorState)

end

2.3 Language Syntax

The syntax of the rule language that we designed
(given in figure 4) is expressed in Extended Backus-
Naur Form (EBNF). This syntax is based on the ex-
isting SWRL EBNF syntax as specified in (Horrocks
et al., 2004). SAM grammar is a subset of the SWRL
grammar. In the antecedent of a SAM rule (SAMan-
tecedent) it is mandotary to specify to which state the
rule applies. This is set up by the hasStateValue prop-
erty. The previous property, currentState, ensures
that the rule will be fired when the current state of
the EFSM is the one to which the rule applies. The
second part of the antecedent contains the triggering
conditions. In this part, conditions under which the
transition will be triggered are defined. The range of
these conditions is the knowledge base of the agent.
These conditions are represented by atom* which is
not modified from the original SWRL specification.
Conditions can test the validity of class belonging,
property between classes or between individuals, in-
cluding received messages.

The rule consequent term (SAMconsequent) spec-
ifies the destination state of the transition and the se-
quence of atomic actions to be executed. Each ac-
tion has different parameters. Parameters are passed
using two properties, hasParameterName and hasPa-
rameterValue. The first property applies to the action
which is to be executed and specifies the name of the
parameter. Then hasParameterValue is applied to the
name of the parameter in order to specify its value.

3 Semantic Agent Model

The architecture, control structure and language
syntax we have just seen enable us to elaborate the se-

SAMrule ::= ’Implies(’ [URIreference]

{ annotation }

SAMantecedent SAMconsequent ’)’

SAMantecedent::= currentState(’i-variable’)’

hasStateValue’(’i-variable’)’ atom*

SAMconsequent::= hasNextState’(’i-variable’)’

hasActionList’(a-list’)’ atom*

a-list ::= hasValue(action) hasNext(a-list)

| endlist

action ::= URIreference hasParameterName(a-name)

a-name ::= hasParameterValue(i-object)

atom ::= description ’(’ i-object ’)’

| dataRange ’(’ d-object ’)’

| individualvaluedPropertyID ’

(’ i-object i-object ’)’

| datavaluedPropertyID ’

(’ i-object d-object ’)’

| sameAs ’(’ i-object i-object ’)’

| differentFrom ’(’ i-object i-object ’)’

| builtIn ’(’ builtinID { d-object } ’)’

builtinID ::= URIreference

endlist ::= URIreference

i-object ::= i-variable | individualID

d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’

d-variable ::= ’D-variable(’ URIreference ’)’

Figure 4: EBNF interpreted by SAM

mantic agent model. Using the previous given archi-
tecture, we built an OWL representation of the agent
with different components (Figure 5. The compo-
nents of which we will now detail. First of all, there is
a finite number state, a list of possible atomic actions
and the parameters for the actions. We defined two
specials states, sBegin and sEnd that specify the be-
ginning and end states of the EFSM. Every agent’s be-
haviour must start with sBegin and end with sEnd. En-
vironment interactions are modelized by the received
messages queue.

Possible actions that are not SWRL built-ins are
divided into two categories : internal and external ac-
tions. Here we detail the different atomic actions that
we require in both categories.

Figure 5: The semantic agent model

Internal Actions : agent knowledge is expressed
using OWL concepts : classes, properties, individ-
uals and data value. For each concept, three basic
operations are needed : creation, modification, dele-
tion. Unfortunately only the first one is supported by
SWRL built in. SWRL supports assertion but does not
support negation. In practical terms, it is possible to
assert that properties apply to individuals or classes in
the rule consequent. The following example is taken
from the SWRL proposal document and shows the as-
sertion of the uncle property by composing parent and
brother properties :

parent(?x,?y)∧brother(?y,?z)⇒ uncle(?x,?z) (1)

However the following rules (2,3) are not possible
since SWRL neither supports negation as a failure (2)
nor non-monotonicity (3). Hence it is not possible to
withdraw information using the rule consequent.

¬Person(?x)⇒ NonHuman(?x) (2)

parent(?x,?y)∧brother(?y,?z)⇒¬aunt(?x,?z) (3)
As only creation is possible using SWRL (at a

higher level), we define additional actions (modifica-
tion, deletion) at lower level:
• Modify/remove property

• Modify/remove class belonging from a ressource

• Modify/delete individual

• Modify/delete datarange property

Among internal actions, we made the distinction
between SWRL built-ins that are executed by the
rule engine and the other required actions that in our
model, are the low level atomic actions. These latter
are called by the agent interpreter.

External Actions refer to the agents’ interactions
with their environment. We restrict our scope to soft-
ware agents that evolve in an electronic environment.
Interactions are then limited to message exchanges
between agents. We rely on the FIPA ACL specifi-
cation for the message structures. Received messages
are stored in the messagelist. In the agent’s KB, mes-
sages are put in a list ReceivedMessages that is an in-
stance of OWLList8. Eventually there as two basic
external actions, sendMessage and receiveMessage.
Following the ACL specification, forging a message
requires several parameters, among them we can cite
sender, receiver, ontology used, performative and so
on. From those simple actions, it is possible to build
complex interactions between actions, for instance
FIPA ACL specifies an extensive communicative act
library including query-answer, contracting, proposal,
subscribing. Different fields of the message are repre-
sented in the OWL knowledge Base using properties,
i.e. hasPerformative, hasContent, hasSender

Figure 6: Semantic agent ontology : Actions

3.1 Defining New Actions

The agent model contains a finite list of basic actions
for communication and knowledge base management
purposes. In SAM there two approaches to define
new actions. The first it to extend the set of avail-
able low level actions. The second one is to define
new actions by combining the existing ones. Defin-
ing new atomic actions requires to implement them

8http://www.co-ode.org/ontologies/lists/

in low level language. This approach is then of low
interoperability and is discouraged by the authors. It
should be applied only in case of an extension of the
model. The regular approach consists in defining new
actions as a sequence of atomic ones. We denoted
these actions as composed actions (Fig. 6). Actually,
behavior of agents is a kind of composed action since
it is composed of a sequence of actions, triggered dur-
ing a transition. To define new composed actions, we
use the same representation as for agent’s behaviours.
Composed actions are a set of rules that represent an
EFSM. These rules should only be active when the
composed actions is called. Therefore these rules are
not stored as SWRL rules in the knowledge base of
the agent but they are instances of the class Rule and
their value is a string representation of the rule (In
Manchester Syntax 9). The process of execution of
a composed action is the following. Assuming that
the agent is firing a transition between state A and B.
During this transition a composed action called comp
is to be executed. First the engine removes the rules
of the current behaviour from the knowledge base and
stores them using a string representation. The engine
also keeps tracks of the current state and transition
sequence that was executed. The engine sets the cur-
rent state of the agent to an intermediate state sBe-
gin. Then it extracts the string representation of the
rules from comp and add them to the knowledge base.
The composed action is then executed following the
same way as an agent behaviour. Once the action is
finished, the engine removes the rules and set back
the agents behaviour context. Note that this process
is recursive and a composed action can call another
composed action.

4 Features and Benefits

This architecture, as described in previous sec-
tions presents two main advantages over existing se-
mantic agent architectures. Firstly, in SAM, behav-
iors are represented using a rule language that fol-
lows the same syntax as the knowledge representation
(SWRL and OWL). This way, behaviour and knowl-
edge are represented and stored in the same layer of
the architecture. Combining this feature with the fact
that agents are aware of their own architecture (Sec-
tion 3), behaviour exchanges among agents are na-
tively enabled in SAM. Agents can extract their be-
haviour (or part of their global behaviour) and trans-
mit this latter to other agents as a set of semantic rules.

9http://www.co-ode.org/resources/reference/
manchester_syntax/

Behaviours exchanges as supported in existing frame-
work are made using an extra layer. For instance S-
APL uses a Reusable Atomic Behaviour Layer that
stores atomic behaviours coded in a non semantic lan-
guage (i.e. JAVA). In SAM, behaviours are a set of
semantic rules and are independent of the implemen-
tation of low level actions. Consequently behaviors
exchanges can be done between different implemen-
tations of the SAM architecture. The interoperability
between agents is then increased since the implemen-
tation language is no more a problem for reusing be-
haviors.

Secondly, the logical foundation of SAM agents
differs from existing agents framework. Description
Logic tools provide reasoning mechanism that allows
consistency checking. From the agent point of view,
being able to deal with the consistency of the knowl-
edge base is of great interest, on a single agent and on
a multi-agent point of view. For a single agent, consis-
tency checking ensures that the received knowledge
from external sources is consistent with its internal
knowledge. Reasoners such as Pellet or Fact++ al-
low incremental consistency checking that is used to
maintain dynamically the consistency of the agent’s
knowledge base. In multi-agent argumentation, and
especially in the frame of negotiation, consistency
checking can be used to provide a great advantage to
agents (Parsons et al., 1998). Indeed, being able to
prove that the argumentation of the other party is valid
or not is a key for successful argumentation. More-
over, DL reasoning tools are not only able to detect
inconsistencies but are also able to provide explana-
tions of these inconsistencies. For argumentation, this
allows to go one step further, after detecting inconsis-
tencies in the argumentation, it is possible to provide
evidence of the argumentation failure.

We implemented examples for both behavior ex-
changes and consistency checking in the prototype
presented in the next section.

5 Implementation

We have developed a JAVA interpreter that
communicates with the knowledge Base using the
Protege-OWL API 10 Pellet is used in combination
with Jena 11 as a OWL and SWRL reasoner. The
JADE framework is used for the low level external
actions and to provide communication facilities be-
tween agents. The framework handles agent registra-
tion, service discovery and message passing. It also

10http://protege.stanford.edu/plugins/owl/
11http://jena.sourceforge.net/

provides an environment that is FIPA-ACL compli-
ant and thus ensures interoperability with FIPA-ACL
compliant frameworks. Since OWL does not support
RDF lists, we used OWLList to represent action se-
quences and for the queue of received messages. The
open-source prototype is available online 12.

Along to the validation of the model, the im-
plementation showed us some limitations. We have
used Pellet as a SWRL reasoner, since it is currently
the most advanced open-source implementation of
SWRL. As developments stands at the moment, sev-
eral important features are not supported by Pellet, for
instance some SWRL built-ins are not yet available.

The implementation results show the feasability of
the proposal and we intend to further develop the pro-
totype to make it fully suitable for the development of
applications.

6 Conclusion and perspectives

In this paper we showed how the next generation
of Semantic Web technologies can be applied in MAS
programming. We presented an agent model called
SAM that enables agent development using the Se-
mantic Web Rule Language (SWRL). We described
the three layer architecture, the OWL agent model, its
rule syntax and we validated our approach by the im-
plementation of a prototype.

We presented two main features of SAM. We de-
scribed how behaviours exchanges in SAM can be
made regardless of the low level implementation lan-
guage, making SAM agents ”real” semantic agents.
Description Logic that underpins and which is in-
herent in SWRL is a very powerful logic and it al-
lows greater agent reasoning capabilities than stan-
dard Prolog. Description Logic tools enable dynamic
consistency checking, that is used to maintain agent’s
knowledge base consistency and to provide explana-
tion of inconsistencies. Further research will focus on
the development of applications based on these fea-
tures, especially in the field of multi-agent argumen-
tation and negotiation.

REFERENCES

Aridor, Y., Carmel, D., Lempel, R., Soffer, A., and Maarek,
Y. S. (2000). Knowledge agents on the web. In CIA
’00: Proceedings of the 4th International Workshop
on Cooperative Information Agents IV, The Future of
Information Agents in Cyberspace, pages 15–26, Lon-
don, UK. Springer-Verlag.

12http://code.google.com/p/semanticagent/

Baader, F., Calvanese, D., McGuinness, D., Patel-
Schneider, P., and Nardi, D. (2003). The description
logic handbook: theory, implementation, and applica-
tions. Cambridge Univ Pr.

Bordini, R. and Hubner, J. (2006). BDI agent program-
ming in AgentSpeak using Jason. In Proceedings of
6th International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA VI), volume 3900,
pages 143–164. Springer.

Buhler, P. and Vidal, J. (2003). Semantic web services
as agent behaviors. Agentcities: Challenges in Open
Agent Environments, pages 25–31.

Cheng, K. and Krishnakumar, A. (1993). Automatic func-
tional test generation using the extended finite state
machine model. In Proceedings of the 30th interna-
tional conference on Design automation, pages 86–
91. ACM New York, NY, USA.

Clark, K., Robinson, P., and Hagen, R. (2001). Multi-
threading and message communication in Qu-
Prolog. Theory and Practice of Logic Programming,
1(03):283–301.

Corby, O., Dieng-Kuntz, R., and Faron-Zucker, C. (2004).
Querying the semantic web with corese search engine.
In ECAI, volume 16, page 705.

Damasio, C., Analyti, A., Antoniou, G., and Wagner, G.
(2006). Supporting open and closed world reasoning
on the web. LECTURE NOTES IN COMPUTER SCI-
ENCE, 4187:149.

Damásio, C. V., Analyti, A., Antoniou, G., and Wagner,
G. (2006). Open and closed world reasoning in the
semantic web. In Proceedings of IPMU 2006), spe-
cial session Works on the Semantic Web, pages 1850–
1857, Paris, France. Editions E.D.K. Participaçãoo
por convite e sujeita a avaliação.

Decker, K. and Sycara, K. (1996). Designing reusable be-
haviors for information agents. Technical report.

Hindriks, K., De Boer, F., Van der Hoek, W., and Meyer, J.
(1999a). Agent programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2(4):357–401.

Hindriks, K., De Boer, F., Van Der Hoek, W., and Meyer,
J. (1999b). Control structures of rule-based agent lan-
guages. In Atal’98: Paris, France, page 384. Springer.

Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S.,
Grosof, B., and Dean, M. (2004). SWRL: A seman-
tic web rule language combining OWL and RuleML.
W3C Member Submission, 21.

Katasonov, A. and Terziyan, V. (2008). Semantic agent
programming language (S-APL): A middleware plat-
form for the Semantic web. In Proc. 2nd IEEE Inter-
national Conference on Semantic Computing, pages
504–511.

Laclavik, M., Balogh, Z., Babik, M., and Hluchý, L.
(2006). Agentowl: Semantic knowledge model and
agent architecture. Computers and Artificial Intelli-
gence, 25(5).

Luck, M., McBurney, P., and Preist, C. (2003). Agent
technology: Enabling next generation computing.
AgentLink II.

Parsons, S., Sierra, C., and Jennings, N. (1998). Agents that
reason and negotiate by arguing. Journal of Logic and
Computation, 8(3):261–292.

Rao, A. (1996). AgentSpeak (L): BDI agents speak out in a
logical computable language. Lecture Notes in Com-
puter Science, 1038:42–55.

Shoham, Y. (1991). AGENT0: A simple agent language and
its interpreter. In Proceedings of the Ninth National
Conference on Artificial Intelligence, volume 2, pages
704–709.

Zou, Y., Finin, T., Ding, L., Chen, H., and Pan, R. (2003).
Using semantic web technology in multi-agent sys-
tems: a case study in the taga trading agent environ-
ment. In ICEC ’03: Proceedings of the 5th interna-
tional conference on Electronic commerce, pages 95–
101, New York, NY, USA. ACM.

