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Adaptive Density Estimation in the Pile-up Model
Involving Measurement Errors

Fabienne Comte, Tabea Rebafka1

Abstract

Motivated by fluorescence lifetime measurements this paper considers the
problem of nonparametric density estimation in the pile-up model. Adaptive
nonparametric estimators are proposed for the pile-up model in its simple form
as well as in the case of additional measurement errors. Furthermore, oracle
type risk bounds for the mean integrated squared error (MISE) are provided.
Finally, the estimation methods are assessed by a simulation study and the
application to real fluorescence lifetime data.

Keywords. Adaptive nonparametric estimation. Deconvolution. Fluorescence life-
times. Projection estimator.

1 Introduction

This paper is concerned with nonparametric density estimation in a specific inverse
problem. Observations are not directly available from the target distribution, but
suffer from both measurement errors and the so-called pile-up effect. The pile-up
effect refers to some right-censoring, since an observation is defined as the minimum
of a random number of i.i.d. variables from the target distribution. The pile-up
distribution is thus the result of a nonlinear distortion of the target distribution. In
our setting we also take into account measurement errors, that is the pile-up effect
applies to the convolution of the target density and a known error distribution. The
aim is to estimate the target density in spite of the pile-up effect and additive noise.

The pile-up model is encountered in time-resolved fluorescence when lifetime
measurements are obtained by the technique called Time-Correlated Single-Photon
Counting (TCSPC) (O’Connor and Phillips, 1984). The fluorescence lifetime is the
duration that a molecule stays in the excited state before emitting a fluorescence
photon (Lakowicz, 1999; Valeur, 2002). The distribution of the fluorescence lifetimes
associated with a sample of molecules provides precious information on the underlying
molecular processes. Lifetimes are used in various applications as e.g. to determine
the speed of rotating molecules or to measure molecular distances. This means that
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6, UPMC, France, email: tabea.rebafka@upmc.fr. The authors wish to thank PicoQuant GmbH,
Berlin, Germany for kindly providing the TCSPC data.

1



the knowledge of the lifetime distribution is required to obtain information on physical
and chemical processes.

In the TCSPC technique, a short laser pulse excites a random number of molecules,
but for technical reasons, only the arrival time of the very first fluorescence photon
striking the detector can be measured, while the arrival times of the other photons
are unobservable. The arrival time of a photon is the sum of the fluorescence lifetime
and some noise, which is some random time due to the measuring instrument as
e.g. the time of flight of the photon in the photon-multiplier tube. Hence, TCSPC
observations can be described by a pile-up model with measurement errors. The goal
is to recover the distribution of the lifetimes of all fluorescence photons from the
piled-up observations.

Until recently TCSPC was operated in a mode where the pile-up effect is negligible.
However, a shortcoming of this mode is that the acquisition time is very long. Recent
studies have made clear that from an information viewpoint it is a better strategy to
operate TCSPC in a mode with considerable pile-up effect (Rebafka et al., 2010, 2011).
Consequently, an estimation procedure is required that takes the pile-up effect into
account. The concern of this paper is to provide such a nonparametric estimator of the
target density and furthermore to include measurement errors in the model in order
to deal with real fluorescence data. Therefore, we develop adequate deconvolution
strategies for the correction in the pile-up model and test those methods on simulated
data as well as on real fluorescence data.

It is noteworthy that the pile-up model is connected to survival analysis, since it
can be considered as a special case of the nonlinear transformation model (Tsodikov,
2003). Indeed, it is straightforward to extend the methods proposed in this paper
to the more general case. Moreover, the model can also be viewed as a biased data
problem with known bias (Brunel et al., 2005). As a consequence, the first part of the
study is rather classical. Nonetheless, the consideration of measurement errors in the
second part is new and fruitful. Indeed, we show that deconvolution methods can be
used to complete the study in the spirit of Comte et al. (2006). These techniques are
of unusual use in both survival analysis and pile-up model studies. Numerical results
confirm the adequacy of these methods in practice.

In Section 2 a nonparametric estimation strategy for the pile-up model (without
measurement errors) is presented to recover the target density. More precisely, a
projection estimator is developed based on finite dimensional functional spaces and
a tool is proposed to automatically select the model dimension achieving the best
possible rate of convergence. In Section 3 additional measurement errors are taken
into consideration leading to an estimator based on Fourier deconvolution methods.
The rates obtained in this framework depend on the smoothness of the error density
and on the choice of a cut-off parameter. Furthermore, a cut-off selection strategy is
proposed to achieve an adequate bias-variance trade-off. In Section 4 the performance
of the methods is assessed via simulations and by an application on a dataset of
fluorescence lifetime measurements. All proofs are relegated to Section 5.
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2 Nonparametric Estimator for the Pile-up Model

This section introduces the pile-up model and presents the nonparametric estimation
approach in the easier setting of the pile-up model before extending it in Section 3 to
the pile-up model including additive noise.

2.1 The pile-up model

Let {Yk, k ≥ 1} be a sequence of independent positive random variables with target
probability density function (pdf) fY and cumulative distribution function (cdf) F .
Moreover, let N be a random variable taking its values in N

∗ = {1, 2, . . .} indepen-
dently of this sequence. Then an observation of the pile-up model is distributed as the
random variable Z taking values in R+ defined by Z = min{Y1, . . . , YN}. In Rebafka
et al. (2010) it is shown that the cdfG of Z, referred to as the pile-up distribution
function, is given by

G(z) = 1−M(1− F (z)), z ∈ R+ , (1)

where M is the probability generating function associated with N defined as M(u) =
E(uN) for u ∈ [0, 1]. Moreover, if F admits a density fY with respect to the Lebesgue
measure on R+, then G admits a density g. Denoting Ṁ(u) = E(NuN−1), M̈(u) =
E(N(N − 1)uN−2) for all u ∈ [0, 1], the pile-up density g is given by

g(z) = fY (z)Ṁ(1− F (z)) , z ∈ R+ . (2)

Note that the generating function M : [0, 1] → [0, 1] is bijective for any distribution
of N and we denote its inverse function by M−1. If E[N2] < ∞ and P(N = 1) 6=
0,P(N = 2) 6= 0, then the functions Ṁ and M̈ are bounded by some constants
0 < a < b < +∞ satisfying

a < Ṁ(u) < b and a < M̈(u) < b for all u ∈ [0, 1] . (3)

Remark 2.1 In the more general nonlinear transformation model the function M :
[0, 1] → [0, 1] in (1) is not necessarily a probability generating function, but any func-
tion M such that G given by (1) is a cdf (Tsodikov, 2003). That is G is still the result
of a distortion of the target distribution F , but the interpretation as a minimum is no
longer valid. Those models are studied in survival analysis. The estimators proposed
in this paper for the pile-up model are also applicable for nonlinear transformation
models.

Main example. In the fluorescence application it is assumed that the number N of
photons per excitation cycle follows a Poisson distribution with known parameter µ.
Note that the events where no photon is detected, i.e. N = 0, are discarded. Hence,
we consider a Poisson distribution restricted on N

∗ with renormalized probability
masses given by P(N = k) = µk/k!/(eµ − 1). As µ is supposed to be known, the
functions M and Ṁ are known as well and given by M(u) = (eµu − 1)/(eµ − 1) and
Ṁ(u) = µeµu/(eµ − 1).
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2.2 Estimator of the target density in the pile-up model

The goal is to estimate the target density fY from i.i.d.observations Z1, . . . , Zn of
the pile-up distribution G. We propose a nonparametric estimator by searching in a
collection of functions the one that best fits the data or, in other words, the orthogonal
projection of fY onto the function space. If S is an adequate subspace of L2, the
orthogonal projection of fY on S in the L2-sense is the minimizer of ‖fY − h‖2 for h
in S, or equivalently, the minimizer of ‖h‖2 − 2〈h, fY 〉.

As 〈h, fY 〉 = E(h(Y )), we need an approximation of moments E[h(Y )] based on
pile-up observations. We note that inverting relation (1) gives 1 − F (z) = M−1(1 −
G(z)). Plugging this relation into (2), we obtain

fY (z) =
g(z)

Ṁ(M−1(1−G(z)))
= w ◦G(z) g(z) with w(u) =

1

Ṁ(M−1(1− u))
.

This allows us to relate moments of the target distribution F with moments of
the pile-up distribution G. More precisely, for any bounded function h the following
equality holds

E[h(Y )] = E [h(Z) w ◦G(Z)] . (4)

To construct an estimator of the moment E[h(Y )] based on pile-up observations,
relation (4) suggests to replace the distribution function G by its empirical version
Ĝn(z) =

∑n
i=1 1{Zi≤z}/n. Then an estimator of E[h(Y )] is given by

1

n

n∑

i=1

h(Zi) w ◦ Ĝn(Zi) =
1

n

n∑

i=1

h(Z(i))w(i/n) , (5)

as w ◦ Ĝn(Z(i)) = w(i/n) and where Z(i) denotes the i-th order statistic associated
with (Z1, . . . , Zn) satisfying Z(1) ≤ · · · ≤ Z(n). In the literature such weighted sums
of order statistics are known as L-statistics.

The approximation of moments E[h(Y )] by an L-statistic is the key property used
in the nonparametric estimation strategy that is proposed in the following. In the
pile-up model the weights w(i/n) can be viewed as “corrections” of the observations
Zi as they do not follow the target distribution F , but the pile-up distribution G.
The weights are bounded because inequality (3) ensures that there exist constants
w0, w1 such that

∀u ∈ [0, 1], 0 < w0 ≤ w(u) ≤ w1 < ∞ . (6)

The computation of the estimator in (5) requires the knowledge of the weight function
w, which is entirely determined by the distribution of N . Hence, in the example above
on the Poisson distribution w writes

w(u) =
1− e−µ

µ(u(e−µ − 1) + 1)
, (7)

with corresponding constants w0 = (1− e−µ)/µ and w1 = (eµ − 1)/µ.
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A standard estimation approach of the target density fY consists in approxi-
mating the orthogonal projection of fY onto some function space. More precisely,
we suppose that the restriction of fY on some interval A is square integrable, i.e.
fY 1A ∈ L

2(A). For a given orthonormal sequence (ϕλ)λ∈Λm
in L

2(A) define the sub-
space Sm = Span(ϕλ, λ ∈ Λm). The cardinality of Λm (which is also the dimension of
Sm) is denoted by Dm and supposed to be finite.

By using the moment estimator proposed in (5), an approximation of the projec-
tion of fY onto Sm can be defined as

f̂m = arg min
h∈Sm

γn(h) with γn(h) = ‖h‖2 − 2

n

n∑

i=1

h(Z(i)) w(i/n) ,

since γn(h) is an estimator of ‖h‖2 − 2E[h(Y )]. Note that the explicit formula of the
estimate is given by

f̂m =
∑

λ∈Λm

âλϕλ with âλ =
1

n

n∑

i=1

ϕλ(Z(i))w(i/n) . (8)

For this estimator the following risk bound is shown in Section 5.

Proposition 2.1 Let fm be the orthogonal projection in the L
2-sense of fY on Sm.

Assume that (6) holds and that w is Lipschitz continuous, i.e.

there exists cw > 0 such that |w(x)− w(y)| ≤ cw|x− y| . (9)

Assume moreover that

there exists Φ0 > 0 such that ‖
∑

λ∈Λm

ϕ2
λ‖∞ ≤ Φ0Dm , (10)

then

E(‖f̂m − fY 1A‖2) ≤ ‖fY 1A − fm‖2 + C
Dm

n
, (11)

where C depends on Φ0, w1 and the Lipschitz constant cw of w.

Remark 2.2 It follows from equation (3) that the Lipschitz constant cw verifies
cw ≤ b/a3 since w′(u) = M̈ ◦M−1(1− u)/[Ṁ ◦M−1(1− u)]3. In the Poisson example
where w is given by (7) we have cw = (eµ − 1)2/µ.

2.3 Examples of model collections

Our goal is the estimation of fY in a nonparametric setting without knowledge of
the best approximation space. Instead of a single space Sm, we rather consider a
collection {Sm, m ∈ Mn} of models and we thus have to face the problem of model
selection. Before presenting an estimator of the model m, we give some illustrating
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examples of model collections Sm and we discuss some general conditions for the
approximation spaces under which our estimation approach performs well.

In the following A is supposed to be a compact set. For simplicity, we set A = [0, 1].
[T] Trigonometric spaces Sm are generated by the functions

{1, 21/2 cos(2πjx), 21/2 sin(2πjx) for j = 1, . . . , m} .

The dimension of Sm is Dm = 2m+1 and we may take m ∈ Mn = {1, . . . , [n/2]−1}.
[DP] Dyadic piecewise polynomials spaces of degree r on the partition of [0, 1] given
by the subintervals Ij = [(j − 1)/2p, j/2p] for j = 1, . . . , 2p, see Birgé and Massart
(1997), Section 4.2.2.
[W] Dyadic wavelet generated spaces with regularity r and compact support, see e.g.
Daubechies (1992); Donoho et al. (1996).

We now give the key properties that a general model collection {Sm, m ∈ Mn}
must fulfill to fit into our framework.

(H1) Norm connection: {Sm, m ∈ Mn} is a collection of finite dimensional linear sub-
spaces of L2([0, 1]) with dimension dim(Sm) = Dm satisfying Dm ≤ Nn ≤ n,
∀m ∈ Mn and

There exists Φ0 > 0 such that ‖t‖∞ ≤ Φ0D
1/2
m ‖t‖, for all m ∈ Mn, t ∈ Sm.

(12)

Let (ϕλ)λ∈Λm
be an orthonormal basis of Sm, where |Λm| = Dm. It follows from Birgé

and Massart (1997) that Property (12) in the context of (H1) is equivalent to (10)
for all m ∈ Mn. This condition is easily checked for collection [T] with Φ0 = 1. For
collection [DP] see a detailed description in Birgé and Massart (1997), Section 2.2,
showing that condition (10) holds with Φ2

0 = r + 1. It is known that (10) is also
satisfied for wavelet bases [W].

Additionally, for results concerning adaptive estimators the following assumption
is required.

(H2) Nesting condition: {Sm, m ∈ Mn} is a collection of models such that there
exists a space Sn belonging to the collection such that Sm ⊂ Sn for all m ∈ Mn.
Denote by Nn the dimension of Sn, i.e. dim(Sn) = Nn ≤ n.

This condition ensures that Dm ≤ Nn for all m ∈ Mn.

Another key property of those spaces lies in the bias evaluation. Indeed, if we
assume that fY 1A = fA belongs to a ball of some Besov space Bα,2,∞(A) with r+1 ≥ α,
then for ‖fA‖α,2,∞ ≤ L we have ‖fA − fm‖2 ≤ C(α, L)D−2α

m (Barron et al., 1999,
Lemma 12). Thus, choosing Dm∗ = O(n1/(2α+1)) in Inequality (11) yields that the
mean square risk satisfies E(‖f̂m∗ − fA‖2) ≤ O(n−2α/(2α+1)). This rate is known to be
optimal in the minimax sense for density estimation for direct observations (Donoho
et al., 1996).
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2.4 Adaptive estimator

From the risk bound (11) it is clear that a bias-variance trade-off must be achieved.
The idea consists in searching the model m that minimizes the risk bound (11). As
‖fY −fm‖2 = ‖fY ‖2−‖fm‖2, this is equivalent to minimize −‖fm‖2+CDm/n, where
the term −‖fm‖2 can be estimated by −‖f̂m‖2 = γn(f̂m). Consequently, we propose
the following model selection device

m̂ = arg min
m∈Mn

[γn(f̂m) + pen(m)] , (13)

where the penalty term pen(m) is of the same order as the variance, i.e. CDm/n.
Using this approach the following result can be shown.

Theorem 2.1 Consider collections [DP] or [W] with Nn ≤ O(n) or collection [T]
with Nn ≤ O(

√
n) and assume that fY is bounded on A, i.e. ‖fY ‖∞ < ∞. Let m̂ be

defined by (13) with

pen(m) = κ

(∫ 1

0

w2(u)du

)
Dm

n
. (14)

Then there exists a numerical constant κ such that we have

E(‖f − f̂m̂‖2) ≤ C inf
m∈Mn

(
‖f − fm‖2 +

(∫ 1

0

w2(u)du

)
Dm

n

)
+K

ln2(n)

n
, (15)

where C is a numerical constant and K depends on cw, ‖fY ‖∞ and the basis.

Risk bounds of the form (15 ) are often called oracle inequality. Note that the last
term c ln2(n)/n is clearly negligible with respect to the order of the infimum (in
particular, in all Besov cases described above).

In practice, the numerical constant κ is calibrated by simulation experiments based
on a few samples. The selection of m̂ in (13) is numerically easy, since the values of
γn(f̂m) are given by = −

∑
λ∈Λm

â2λ with âλ is defined in (8).
The proof of the theorem relies on Talagrand’s inequality and follows the line of

the proof of Theorem 4.2 in Brunel and Comte (2005). Therefore, only a sketch of
the proof is provided in Section 5.

3 Pile-up Model with Measurement Errors

In this section we consider the context where the random variables Yi are affected by
additional measurement errors. More precisely, the observations have the following
form Z = min{Y1+η1, . . . , YN+ηN}, where the measurement errors ηi are independent
of Yi and have known density fη with support in R

+. The pdf f of X = Y + η is the
convolution of fY and fη denoted by f = fY ∗ fη. We denote by u(t) =

∫
e−itxu(x)dx

the Fourier transform of an integrable function u.

7



3.1 Estimation procedure and risk bound

In the context of piled-up observations with measurement errors, since obviously
f ∗
Y = f ∗

X/f
∗
η , one may consider the natural plug-in estimator of fY given by f̂Y,m(x) =

(2π)−1
∫ πm

−πm
eixuf̂ ∗

m̂(u)/f
∗
η (u)du, provided that the Fourier transform of f̂m̂ exists.

However, this approach leads to an accumulation of the estimation errors of the two
stages. It is known that especially the application of the inverse Fourier transform is
particularly unstable. Hence a better solution may be obtained by a direct approach.

To this end we note that in this set-up the “pile-up property” given by (4) holds
for X = Y + η, that is E(h(X)) = E(h(Z)w ◦G(Z)). Hence, a direct estimator of the
Fourier transform f ∗

X is given by

f̂ ∗
X(u) =

1

n

n∑

k=1

e−iZ(k)u w(k/n) , (16)

and finally an estimator of the target density fY can be defined as

f̄m(x) =
1

2π

∫ πm

−πm

eiux
f̂ ∗
X(u)

f ∗
η (u)

du . (17)

For this estimator, the following risk bound can be shown.

Proposition 3.1 Assume that w satisfies (6) and (9). Let fY,m denote the function
verifying f ∗

Y,m = f ∗
Y 1[−πm,πm]. Then

E(‖f̄m−fY ‖2) ≤ ‖fY −fY,m‖2+C
∆η(m)

n
where ∆η(m) =

1

2π

∫ πm

−πm

du

|f ∗
η (u)|2

, (18)

and C depends on
∫ 1

0
w2(u)du and on the Lipschitz constant cw of w.

Note that ‖fY − fY,m‖2 = (2π)−1
∫
|u|≥πm

|f ∗
Y (u)|2du.

Obviously, the variance depends crucially on the rate of decrease to 0 of f ∗
η near

infinity. For instance, if fη is the standard normal density, the variance is proportional
to
∫
|u|≤πm

eu
2/2du/n, whereas for the Laplace distribution (i.e. fη(x) = e−|x|/2) we

have 1/f ∗
η (u) = 1 + u2 and a variance of order O(m4/n).

3.2 Other ways to view the estimator

The estimator f̄m can also be derived in a different way. Recall that in Subsection 2.2
we defined an estimator by minimizing the contrast γn(h) which is an approximation
of ‖h‖2 − 2E[h(Y )]. Writing E[h(Y )] = 〈h, f〉 = (2π)−1〈h∗, f ∗

Y 〉 = 1
2π
〈h∗, f ∗

X/f
∗
η 〉

suggests to consider functions h in S̄m = {h, support(h∗) ⊂ [−πm, πm]} and the
new contrast

γ†
n(h) = ‖h‖2 − 1

π

∫
h∗(−u)

f̂ ∗
X(u)

f ∗
η (u)

du ,

8



where f̂ ∗
X is given by (16). Now we can see that the estimator f̄m minimizes the

contrast γ†
n. Indeed, note that f̄ ∗

m(u) = f̂ ∗
X/f

∗
η (u) 1[−πm,πm](u) and thus f̄m ∈ S̄m.

By Parseval’s formula 〈h, f̄m〉 = (2π)−1〈h∗, f̄ ∗
m〉. This yields that γ†

n(h) = ‖h‖2 −
2〈h, f̄m〉 = ‖h− f̄m‖2 − ‖f̄m‖2. Therefore, f̄m = argminh∈S̄m

γ†
n(h).

Another expression of the estimator is obtained by describing more precisely the
functional spaces S̄m on which the minimization is performed. To that aim, let us
define the sinc function and its translated-dilated versions by

ϕ(x) =
sin(πx)

πx
and ϕm,j(x) =

√
mϕ(mx− j) , (19)

where m is an integer that can be taken equal to 2ℓ. It is well known that {ϕm,j}j∈Z is
an orthonormal basis of the space of square integrable functions having Fourier trans-
forms with compact support in [−πm, πm] (Meyer, 1990, p.22). Indeed, as ϕ∗(u) =
1[−π,π](u), an elementary computation yields that ϕ∗

m,j(x) = m−1/2e−ixj/m
1[−πm,πm](x).

Thus, the functions ϕm,j are such that S̄m = Span{ϕ
m,j

, j ∈ Z} = {h ∈ L2(R), supp(h
∗) ⊂

[−mπ,mπ]}. For any function h ∈ L2(R), let Πm(h) denote the orthogonal projection
of h on S̄m given by Πm(h) =

∑
j∈Z am,j(h)ϕm,j with am,j(h) =

∫
R
ϕm,j(x)h(x)dx. As

am,j(h) = (2π)−1〈ϕ∗
m,j, h

∗〉, it follows that Πm(h)
∗ = h∗

1[−πm,πm], and thus fY,m =
Πm(fY ). Since f̄m minimizes γ†

n, this yields that the estimator f̄m can be written in
the following convenient way

f̄m =
∑

j∈Z

ām,jϕm,j with ām,j =
1

2π

∫
ϕ∗
m,j(−u)

f̂ ∗
X(u)

f ∗
η (u)

du . (20)

Consequently ‖f̄m‖2 =
∑

j |ām,j|2.
Finally, one can see that

∑
j∈Z ϕ

∗
m,j(u)ϕm,j(x) = e−ixu

1|x|≤πm. This is another
way to see that (20) and (17) actually define the same estimator.

Remark 3.1 An interesting remark follows from equation (20). In the case where
no noise has to be taken into account, i.e. f ∗

η (u) ≡ 1, the integral in (20) becomes∫
ϕ∗
m,j(−u)e−iuZkdu = 2πϕm,j(Zk). Hence, ām,j = (1/n)

∑n
k=1 ϕm,j(Z(k))w(k/n). We

recognize the coefficients of the estimators given by formula (8) of the setting in
Subsection 2.2, when the orthonormal basis (ϕλ)λ is the sinc basis.

3.3 Discussion on the type of noise

To determine the rate of convergence of the MISE, it is necessary to specify the type
of the noise distribution. Here two cases are considered. First, the noise distribution
can be exponential with density given by fη(x) = θe−θx

1x>0 , for some θ > 0. Then
we have f ∗

η (u) = θ/(θ + iu), |f ∗
η (u)|2 = 1/(1 + u2/θ2) and ∆η(m) = m+ π2m3/(3θ2).

In the fluorescence setting, we found that TCSPC noise distributions can be ap-
proximated by densities of the following form

fη(x) =

(
αν

α− β
e−νx − βτ

α− β
e−τx

)
1{x>0} , (21)
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Figure 1: Normalized histogram based on a sample of the noise distribution (solid
line) and the fitted density (dashed line) having the form of (21) with α̂ = 0.961,
β̂ = 0.941, ν̂ = 5.74, τ̂ = 5.89.

with constraints α > β, ν < τ , βτ/(αν) ≥ 1. Figure 1 presents a dataset with 259,260
measurements from the noise distribution of a TCSPC instrument (independently
from the fluorescence measurements) and the corresponding estimated density having
form (21) obtained by least squares fitting. Even though the fit is not perfect, the
estimated density captures the main features of the dataset. Thus densities of the
form (21) can be considered as a good approximative model of the noise distribution
in the fluorescence setting. In the general case of (21) we have

f ∗
η (u) =

αν

α− β

1

ν + iu
− βτ

α− β

1

τ + iu
.

In the simulation study we will consider a noise distribution of the form (21) with
parameters α = 2, β = 1, ν = 1, τ = 2. In this case we get

|f ∗
η (u)|2 =

4

(1 + u2)(4 + u2)
and ∆η(m) = m+

5

12
π2m3 +

1

20
π4m5 . (22)

From the application viewpoint it is hence interesting to consider the class of noise
distributions η whose characteristic functions decrease in the ordinary smooth way of
order γ, denoted by η ∼ OS(γ), defined by c0(1 + u2)−γ ≤ |f ∗

η (u)|2 ≤ C0(1 + u2)−γ.
Clearly, we find that ∆η(m) = O(m2γ+1).

3.4 Rates of convergence on Sobolev spaces

In classical deconvolution the regularity spaces used for the functions to estimate are
Sobolev spaces defined by

C(a, L) =
{
g ∈ (L1 ∩ L

2)(R),

∫
(1 + u2)a|g∗(u)|2du ≤ L

}
.

10



If fY belongs to C(a, L), then

‖fY − fY,m‖2 =

∫

|u|≥πm

|f ∗
Y (u)|2du =

∫

|u|≥πm

(1 + u2)a|f ∗
Y (u)|2/(1 + u2)adu

≤ (1 + (πm)2)−aL ≤ L(πm)−2a .

Therefore, if fY ∈ C(a, L) and η ∼ OS(γ), Proposition 3.1 implies that E(‖f̄m −
fY ‖2) ≤ C1m

−2a + C2n
−1m2γ+1. The optimization of this upper bound provides the

optimal choice of m by mopt = O(n1/(2a+2γ+1)) with resulting rate E(‖f̂m − fY ‖2) ≤
O(n−2a/(2a+2γ+1)). More formally, one can show the following result.

Proposition 3.2 Assume that the assumptions of Proposition 3.1 are satisfied and
that fY ∈ C(a, L) and η ∼ OS(γ), then for mopt = O(n1/(2a+2γ+1)), we have

E(‖f̄mopt
− fY ‖2) ≤ O(n−2a/(2a+2γ+1)) .

Obviously, in practice the optimal choice mopt is not feasible since a is and part of
the constants involved in the order are unknown. Therefore, another model selection
device is required to choose a relevant f̄m in the collection.

3.5 Model selection

The general method consists in finding a data driven penalty pen(.) such that the
following model

m̄ = arg min
m∈Mn

(γ†
n(f̄m) + pen(m)) (23)

achieves a bias-variance trade-off, where Mn has to be specified. In contrast to
this general approach our result involves an additional ln(n)-factor in the penalty
compared to the variance order, which implies a loss with respect to the expected
rate derived in Section 3.4.

Theorem 3.1 Assume that fY is square integrable on R, η ∼ OS(γ) and w satisfies
(6) and (9). Consider the estimator f̄m̄ with model m̄ defined by (23) with penalty

pen(m) = κ′

(∫ 1

0

w2(u)du+ κ′′c2w ln(n)

)
∆η(m)

n
, (24)

where κ′ and κ′′ are numerical constants. Assume moreover that η is ordinary smooth,
i.e. η ∼ OS(γ), and that the model collection is described by Mn = {m ∈ N,∆η(m) ≤
n} = {1, . . . , mn}. Then, there exist constants κ′, κ′′ such that

E
(
‖f̄m̄ − fY ‖2

)
≤ C

(
inf

m∈Mn

‖fY − fY,m‖2 + pen(m)

)
+ C ′ ln(n)

n
, (25)

where C is a numerical constant and C ′ depends on cw and the bounds on w.

11



As previously, the numerical constants κ′ and κ′′ are calibrated via simulations. In
practice, to compute m̄ by (23), we approximate γ†

n(f̄m) by −
∑

|j|≤Kn
|ām,j |2, where

the sum is truncated to Kn of order n.
In the fluorescence set-up, the noise distribution fη is generally unknown. How-

ever, independent, large samples of the noise distribution are available. Hence one
may still use the procedure proposed above by replacing f ∗

η with the estimate f̂ ∗
η (u) =∑n

k=1 e
−iuη−k/n, where (η−k)1≤k≤M denotes the independent noise sample. In Comte

and Lacour (2009) the same substitution is considered for deconvolution methods. It
is shown that for ordinary smooth noise this leads to a risk bound exactly analogous
to the one given in (25). The main constraint given in Comte and Lacour (2009)
is that M ≥ n1+ǫ, for some ǫ > 0. As the noise samples provided in fluorescence
have huge size, this condition is certainly fulfilled in our practical examples. In the
following numerical study we consider the estimator with both the exact f ∗

η and an

estimated f̂ ∗
η .

4 Numerical results for simulated and real data

In this section we first give details on the practical implementation of the estima-
tion methods. Then a simulation study is conducted to test the performance of the
methods in different settings. Finally, an application to a sample of fluorescence data
shows that the estimation method gives satisfying results on real measurements.

4.1 Practical computation of estimators

In the case of no additional noise, we apply the method described in Section 2 with the
trigonometric basis [T]. To determine the best model m̂ we compute γn(m)+pen(m)
for all m = 1, . . . , [n/2]− 1. This is computationally easy as the following recursive
relation can be used. We have γn(0) + pen(0) = −â20 + κW/n, γn(1) + pen(1) =
−â20 − â21,1− â21,2+ κ3W/n and γn(m+1)+pen(m+1) = γn(m) +pen(m)− â2m+1,1 −
â2m+1,2+2κW/n, for all m ≥ 1, where W =

∫ 1

0
w2(u)du. The coefficients are given by

(8). Then m̂ is the value where γn(m) + pen(m) achieves its minimum. Finally, the
estimator of f is given by f̂m̂ =

∑
λ∈Λm̂

âλϕλ.
In the case of additional noise, we use the estimator proposed in Section 3 based

on the sinc basis. Its computation is more intensive as no similar recursive relation
holds. First one has to compute the coefficients ām,j defined in (20). For j ≥ 0 they
can be approximated as follows

ām,j =
1

2π

∫
ϕ∗
m,j(−u)

f̂ ∗
X(u)

f ∗
η (u)

du = (−1)j
√
m

2

∫ 2

0

eiπjv
f̂ ∗
X(πm(v − 1))

f ∗
η (πm(v − 1))

dv

≈ (−1)j
√
m

T

T−1∑

t=0

ei2πjt/T
f̂ ∗
X(πm(2t

T
− 1))

f ∗
η (πm(2t/T − 1))

= (−1)j
√
m(IFFT(H))j = ăm,j ,

12
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Figure 2: True density and 25 estimated curves without measurement errors. Esti-
mation with the trigonometric basis for different levels of the pile-up effect. Numbers
below the figures are the MISE.

where IFFT(H) is the inverse fast Fourier transform of the T -vector H whose t-th

entry equals f̂ ∗
X(πm(2t/T−1))/f ∗

η (πm(2t/T − 1)). Similarly, for j < 0 the coefficients

ām,j are approximated by ăm,j = (−1)j
√
m(IFFT(H))j.

The integral ∆η(m) appearing in the penalty term pen(m) defined in (24) is explic-
itly known if fη is known (see Section 3.3). In the case when we only have an estimator

f̂η, ∆η(m) can be approximated by a Riemann sum of the form (m/S)
∑S

s=0 |f̂ ∗
η (−πm(1− 2s

S
))|−2.

Then the best model m̄ is selected as the point of minimum of the criterion given in
(23). Finally, we obtain the estimator f̄m̄ =

∑T
j=−T ăm̄,jϕm̄,j with the sinc functions

ϕm,j defined in (19).

Figure 2 and 3 present the visual summary of our simulation results. We imple-
mented the estimation methods when fY has one of the following pdfs.

1. a Gamma(3, 3) p.d.f, 1/(2!33)x2 exp(−x/3)1x>0, to have a benchmark with a
smooth distribution,

2. an exponential pdf, (1/3) exp(−x/3)1x>0,
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Gamma Exponential Pareto Weibull
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Figure 3: True density and 25 estimated curves. Estimation by deconvolution with
sinc basis for different noise levels and different levels of the pile-up effect. Numbers
below the figures indicate mean and standard deviation of the selected model m̄.

3. a Pareto(1/4, 1, 0) pdf (1 + x/4)−5
1x>0,

4. a Weibull(1/4, 3/4) pdf (3/4)(1/4)−3/4x−1/4 exp(−(4x)3/4)1x>0.

The last two densities are inspired by chemical results about fluorescence phenomena
given in Berberan-Santos et al. (2005a,b).

4.2 Simulation study

When no noise is added we applied the method described in Section 2 with the
simple trigonometric basis. The numerical constant κ of the penalty (14) is set to 0.5
resulting from a previous calibration by simulation. The Poisson parameter varies
from 0.01 over 0.5 to 2. The mean MISE over 25 paths are computed on the intervals
of representation. From Figure 2 one can see that the results are rather good, in
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Exponential noise

(σ2
, µ) (0.2, 0.5) (0.2, 1.5) (0.2, 2) (1, 0.5) (1, 1.5) (1, 2)

Gamma .063 (.042) .081 (.045) .112 (.026) .061 (.039) .088 (.040) .115 (.028)
.063 (.042) .081 (.045) .112 (.026) .061 (.039) .087 (.040) .115 (.028)

Exponential 1.11 (0.22) 1.20 (0.26) 1.45 (0.21) 1.36 (0.26) 1.40 (0.24) 1.67 (0.27)
1.11 (0.22) 1.19 (0.25) 1.46 (0.21) 1.36 (0.27) 1.40 (0.24) 1.67 (0.27)

Pareto 4.25 (0.82) 4.55 (0.58) 5.45 (0.84) 6.62 (1.5) 6.58 (0.95) 8.09 (1.2)
4.23 (0.83) 4.56 (0.61) 5.47 (0.83) 6.62 (1.6) 6.58 (1.0) 8.09 (1.2)

Weibull 10.6 (6.7) 9.46 (5.0) 9.22 (2.7) 21.4 (4.1) 26.7 (5.6) 39.5 (5.9)
8.54 (4.7) 9.40 (4.8) 9.30 (2.3) 22.1 (4.8) 26.7 (5.7) 40.1 (5.7)

Bi-exponential noise

(σ2
, µ) (0.2, 0.5) (0.2, 1.5) (0.2, 2) (1, 0.5) (1, 1.5) (1, 2)

Gamma .060 (.032) .075 (.040) .113 (.023) .061 (.048) .088 (.043) .114 (.025)
.060 (.032) .075 (.040) .113 (.023) .062 (.048) .089 (.043) .114 (.025)

Exponential 1.06 (0.20) 1.14 (0.17) 1.49 (0.26) 1.23 (0.27) 1.37 (0.28) 1.62 (0.28)
1.06 (0.20) 1.14 (0.16) 1.48 (0.25) 1.25 (0.26) 1.37 (0.28) 1.62 (0.27)

Pareto 4.15 (0.76) 4.31 (0.69) 5.08 (0.71) 6.08 (1.5) 6.41 (1.1) 7.43 (1.0)
4.14 (0.77) 4.30 (0.69) 5.07 (0.72) 6.11 (1.6) 6.49 (1.2) 7.45 (1.1)

Weibull 10.2 (6.1) 8.89 (5.6) 8.29 (2.1) 24.7 (3.9) 29.4 (4.5) 40.1 (5.2)
8.25 (4.3) 8.75 (5.4) 8.31 (2.2) 24.9 (4.3) 29.5 (4.9) 40.4 (5.3)

Table 1: 100 × mean MISE and standard deviation in parentheses. First lines corre-
spond to exact noise distribution, second lines give results obtained with estimated
noise distribution.

spite of small side effects which would be avoided with piecewise polynomial bases.
From this point of view all representations in Figure 2 are cut on the right. We see
that the estimator performs well for a large range of values of the Poisson parameter.
The first row corresponds to data where the pile-up effect is negligible, as the Poisson
parameter is equal to 0.01, and hence serves as a benchmark. Here estimation errors
are mainly due to the choice of a trigonometric basis, that easily recovers the Gamma
density while the Weibull density is much harder to approximate in this basis. In the
other rows the pile-up effect is considerably increased, however the accuracy is hardly
affected and the estimator is still rather stable. The pile-up effect is hence correctly
taken into account in the estimation procedure.

The adaptive estimator described in Section 3 is tested with the numerical con-
stants κ′ = 1 and κ′′ = 0.001 in (24). The value of κ′′ is very small and makes the
logarithmic term in general negligible except when c2w is large (for instance c2w ≈ 416
for µ = 2). The results are given in Figure 3. Now the observations are Y = X + η,
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where η = σε. In the first row, the pile-up effect is almost negligible (µ = 0.01), but
σ is rather large. That is, the first row illustrates the performance of the deconvo-
lution step of the estimation procedure. In contrast, for the last row σ is taken to
be small, but the pile-up effect is significant (µ = 2), to see how the estimator copes
with the pile-up effect. The second row is an intermediate situation, illustrating how
the estimator performs when the variance of the noise and the pile-up effect are both
non negligible.

The 25 curves indicate variability bands for the estimation procedure. They show
that the estimator is quite stable, especially in the last rows. Moreover, the selected
model order m̄ is different from one example to the other. Globally the dimension m
increases when going from example 1 to 4. That means that the estimator adapts to
the peaks that are more and more difficult to recover.

In Table 1 the MISE of the estimation procedure is analyzed. The table gives
the empirical mean and standard deviation of the MISE obtained over 100 simulated
datasets. This is done for the same four examples of distributions as above. We
compare the error for the estimator using the exact noise distribution to the estimator
based on an approximation of the noise distribution based on an independent noise
sample of size 500. Moreover, we study the influence of the noise distribution on the
estimator. Therefore, we consider, on the one hand exponential noise with variances
σ2 ∈ {0.2, 1}, and on the other hand density (21) with α = 2, β = 1, ν = 1, τ = 2
(multiplied with adequate constants to have same variance σ2 as for the exponential
distributions).

From Table 1 it is clear that increasing the variance of the noise distribution
increases the error. Furthermore, changing the type of the noise does not influence a
lot the estimation procedure. Indeed, the second case (21) is just slightly less favorable
than the exponential distribution. This difference is in accordance with Proposition
3.2 that holds with γ = 1 for the exponential and with γ = 2 for the other density.
The comparison with the results based on an approximated noise distribution (second
lines) reveals that there is rarely a difference between the two methods. Indeed, using
an approximation of the noise does not corrupt the results, in some cases we even
observe an improvement of the error. We show in Figure 4 that it is indispensable to
take into account both the pile-up correction (which is omitted in (b) where w(i/n)
is replaced by i/n ) and the deconvolution correction (which is omitted in (c) where
the estimation is done with the method of Section 2 and the trigonometric basis).
Thus, we conclude from these simulation results for the fluorescence setting that it is
justified to use an estimate of the noise instead of the theoretical distribution.

4.3 Application to Fluorescence Measurements

We finally applied the estimation procedure to real fluorescence lifetime measurements
obtained by TCSPC. The data analyzed here are graphically presented in Figure 5 (a)
by the histogram of the fluorescence lifetime measurements and the histogram of the
noise distribution based on a sample obtained independently from the fluorescence
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Figure 4: (a) Estimation with pile-up correction and deconvolution. (b) No pile-up
correction. (c) No deconvolution.

measurements. The sample size of the fluorescence measurements is n = 1, 743, 811.
The same sample of the noise distribution has already been considered in Figure 1,
where it is compared to the parameterized density given by (21). In this setting the
true density is known to be an exponential distribution with mean 2.54 nanoseconds
and the Poisson parameter equals 0.166. The knowledge of the true density allows
to evaluate the performance of our estimator. More details on the data and their
acquisition can be found in Patting et al. (2007).

We applied the estimator from Section 3 with the sinc basis to this dataset. The
numerical constants are κ′ = 1 and κ′′ = 0.001. Figure 5 (b) shows the estimation
result in comparison to the exponential density with mean 2.54. We observe that the
estimated function is quite close to the ‘true’ one. This indicates that the estimation
procedure takes the errors present in the real data adequately into account and that
the modeling by the pile-up distortion and additive measurement errors is appropriate.

We conclude that the estimation methods proposed in this paper have a satis-
factory behavior in various settings and give rather good results on both synthetic
and real data. Nevertheless, we observed that the performance depends on the choice
of the basis and on the smoothness of the target density. Here only two bases are
considered, but others should work as well and may improve the results in certain
settings.

5 Proofs

5.1 Proof of Proposition 2.1.

Pythagoras formula yields ‖f − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2. By definition of
the orthogonal projection fm =

∑
λ∈Λm

aλϕλ and by using equality (4), we have
aλ = 〈ϕλ, fY 〉 = E(ϕλ(Y )) = E(ϕλ(Z1)w ◦ G(Z1)). This, together with formula (8)
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Figure 5: (a) Fluorescence lifetime measurements (solid line) and independent sample
of the noise distribution (dashed). (b) Density estimator (solid) and ‘true’ exponential
density with mean 2.54 (dashed).

implies that ‖fm − f̂m‖2 =
∑

λ∈Λm
(aλ − âλ)

2. If we define

νn(h) =
1

n

n∑

i=1

[h(Zi)w ◦G(Zi)− E(h(Zi) w ◦G(Zi))], (26)

Rn(h) =
1

n

n∑

i=1

h(Zi)[w ◦ Ĝn(Zi)− w ◦G(Zi)] , (27)

then we get ‖fm − f̂m‖2 ≤ 2
∑

λ∈Λm
(νn(ϕλ)

2 +Rn(ϕλ)
2). We have, on the one hand,

∑

λ∈Λm

E(ν2
n(ϕλ)) =

∑

λ∈Λm

1

n
Var(ϕλ(Zi)w ◦G(Zi)) ≤

∑

λ∈Λm

1

n
E
[
ϕ2
λ(Z1)(w ◦G(Z1))

2
]

≤ 1

n
E

[
‖
∑

λ∈Λm

ϕ2
λ‖∞(w ◦G(Z1))

2

]
≤ Φ0

Dm

n
E[(w ◦G(Z1))

2] ≤ Φ0w
2
1

Dm

n
, (28)

because the basis satisfies (10). On the other hand, we have

∑

λ∈Λm

E(R2
n(ϕλ)) ≤

∑

λ∈Λm

E



(
1

n

n∑

i=1

ϕλ(Zi)[w ◦ Ĝn(Zi)− w ◦G(Zi)]

)2



≤ 1

n

n∑

i=1

∑

λ∈Λm

E

(
ϕ2
λ(Zi)[w ◦ Ĝn(Zi)− w ◦G(Zi)]

2
)

≤ c2w
∑

λ∈Λm

E

(
‖G− Ĝn‖2∞ϕ2

λ(Zi)
)
≤ c2wΦ0DmE

(
‖G− Ĝn‖2∞

)
≤ c2wΦ0

Dm

n
(29)

with (9) and because of E
(
‖G− Ĝn‖2∞

)
≤ 1/n (see e.g. Brunel and Comte, 2005, p.

462). By gathering all terms, we obtain the risk bound stated in Proposition 2.1. �
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5.2 Sketch of proof of Theorem 2.1

We can write γn(t) − γn(s) = ‖t − fY ‖2 − ‖s − fY ‖2 − 2νn(t − s) − 2Rn(t − s),
where νn and Rn are defined by (26) and (27). By definition of f̂m̂ we have for all
m ∈ Mn, γn(f̂m̂)+pen(m̂) ≤ γn(fm)+pen(m). This can be rewritten as ‖f̂m̂−fY ‖2 ≤
‖fm − fY ‖2 + pen(m) + 2νn(f̂m̂ − fm)− pen(m̂) + 2Rn(f̂m̂ − fm). Using this and and
that 2xy ≤ x2/θ + θy2 for all nonnegative x, y, θ, we obtain

‖fY − f̂m̂‖2 ≤ ‖fY − fm‖2 + pen(m) + 2νn(f̂m̂ − fm)− pen(m̂) + 2Rn(f̂m̂ − fm)

‖fY − f̂m̂‖2 ≤ ‖fY − fm‖2 + pen(m) + 2‖f̂m̂ − fm‖ sup
t∈Sm̂+Sm,‖t‖=1

|νn(t)| − pen(m̂)

+ 2‖f̂m̂ − fm‖ sup
t∈Sm̂+Sm,‖t‖=1

|Rn(t)|

≤ ‖fY − fm‖2 + pen(m) +
1

4
‖f̂m̂ − fm‖2 + 2 sup

t∈Sm̂+Sm,‖t‖=1

[νn(t)]
2

− pen(m̂) +
1

8
‖f̂m̂ − fm‖2 + 8 sup

t∈Sm̂+Sm,‖t‖=1

[Rn(t)]
2 .

As ‖f̂m̂ − fm‖2 ≤ 2(‖f̂m̂ − f‖2 + ‖fm − f‖2), this yields

1

4
E[‖f − f̂m̂‖2] ≤ 7

4
‖f − fm‖2 + 2pen(m) + 8E

(
sup

t∈Smn ,‖t‖=1

[Rn(t)]
2

)

+4E

(
sup

t∈Sm̂+Sm,‖t‖=1

[νn(t)]
2 − (pen(m) + pen(m̂))/4

)

+

.

Then the term E
(
supt∈Sm̂+Sm,‖t‖=1[νn(t)]

2 − (pen(m) + pen(m̂))/4
)
+
is bounded

by C/n by using Talagrand Inequality in a standard way (see e.g. Brunel et al., 2005).
For the last term E

(
supt∈Smn ,‖t‖=1[Rn(t)]

2
)
, we define ΩG by

ΩG = {
√
n‖Ĝn −G‖∞ ≤

√
ln(n)}. (30)

Now, we know from Massart (1990) that

P(
√
n‖Ĝn −G‖∞ ≥ λ) ≤ 2e−2λ2

. (31)

This implies that P(Ωc
G) ≤ 2/n2. Then we write that E

(
supt∈Smn ,‖t‖=1[Rn(t)]

2
)
is less

than

E

(
sup

t∈Smn ,‖t‖=1

[Rn(t)1ΩG
]2

)
+ E

(
sup

t∈Smn ,‖t‖=1

[Rn(t)1Ωc
G
]2

)
:= R1 +R2.
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For the first term, we have

R1 ≤ c2wE

[
‖Ĝn −G‖2∞1ΩG

E

(
sup

t∈Smn ,‖t‖=1

(
1

n

n∑

i=1

|t(Zi)|)2
)]

≤ c2w
ln(n)

n
E

(
sup

t∈Smn ,‖t‖=1

(
1

n

n∑

i=1

t2(Zi))

)

≤ 2c2w
ln(n)

n

[
E

(
sup

t∈Smn ,‖t‖=1

|ν ′
n(t

2)|
)

+ sup
t∈Smn ,‖t‖=1

E(t2(Z1))

]

where ν ′
n(t) = 1

n

∑n
i=1(t(Zi) − E(t(Z1)). It is proved in Brunel and Comte (2005)

that E
(
supt∈Smn ,‖t‖=1 |ν ′

n(t
2)|
)
≤ C ln(n) if the density of Z1 is bounded and Nn ≤

O(n) for bases [DP] and [W] and Nn ≤ O(
√
n) for basis [T]. Moreover E(t2(Z1)) ≤

‖t‖2‖fY ‖∞/w0. We obtain R1 ≤ C ln2(n)/n. On the other hand, we have

R2 ≤
∑

λ

E(R2
n(ϕλ)1Ωc) ≤ c2wΦ0nE

1/2(‖Ĝn −G‖4∞)P1/2(Ωc
G) ≤

C

n
.

This yields E
(
supt∈Smn ,‖t‖=1[Rn(t)]

2
)
≤ C ln2(n)/n. Finally we obtain that, for all

m ∈ Mn, E[‖f − f̂m̂‖2] ≤ 7‖f − fm‖2 +8pen(m) +Kln2(n)/n, which ends the proof.
�

5.3 Proof of Proposition 3.1.

We have ‖f̄m − fY ‖2 = (2π)−1‖f̄ ∗
m − f ∗

Y ‖2 = (2π)−1(‖f̄ ∗
m − f ∗

Y,m‖2 + ‖f ∗
Y,m − f ∗

Y ‖2).

‖f̄ ∗
m − f ∗

Y,m‖2 =
∫ πm

−πm

du

|f ∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkw ◦ Ĝn(Zk)− E(e−iuZkw ◦G(Zk))

]∣∣∣∣∣

2

≤ 2

∫ πm

−πm

du

|f ∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkw ◦ Ĝn(Zk)− e−iuZkw ◦G(Zk)

]∣∣∣∣∣

2

+ 2

∫ πm

−πm

du

|f ∗
η (u)|2

1

n2

∣∣∣∣∣
n∑

k=1

[
e−iuZkw ◦G(Zk)− E(e−iuZkw ◦G(Zk))

]
∣∣∣∣∣

2

. (32)

The expectation of the first term on the right-hand side of (32) is less than or equal
to

2

n

n∑

k=1

∫ πm

−πm

du

|f ∗
η (u)|2

E(|w ◦ Ĝn(Zk)− w ◦G(Zk)|2)

≤ c2wE
(
‖Ĝn −G‖2∞

)∫ πm

−πm

du/|f ∗
η (u)|2 ≤ 2πc1c

2
w

∆η(m)

n
,
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by using E(‖Ĝn−G‖2k∞) ≤ ck/n
k (see e.g. Lemma 6.1 p. 462, Brunel and Comte (2005)

which is a straightforward consequence of Massart (1990)). Here ck is a numerical
constant that depends on k only. The expectation of the second term on the right-
hand side of (32) is a variance and less than or equal to

2

n

∫ πm

−πm

du

|f ∗
η (u)|2

Var(e−iuZ1w ◦G(Z1)) ≤ 4π
∆η(m)E[(w ◦G(Z1))

2]

n
.

Gathering the terms completes the proof of Proposition 3.1. �

5.4 Proof of Theorem 3.1.

We have the following decomposition of the contrast for functions s, t in S̄m,

γ†
n(t)− γ†

n(s) = ‖t− fY ‖2 − ‖s− fY ‖2 − 2ν̄n(t− s)− 2R̄n(t− s) , (33)

where

ν̄n(t) =
1

2πn

n∑

k=1

∫
t∗(−u)

[
e−iuZk(w ◦G)(Zk)− E(e−iuZk(w ◦G)(Zk))

]

f ∗
η (u)

du , (34)

and

R̄n(t) =
1

2πn

n∑

k=1

∫
t∗(−u)e−iuZk

f ∗
η (u)

du [(w ◦ Ĝn)(Zk)− (w ◦G)(Zk)] . (35)

We start with decomposition (33). We take t = f̄m̄ and s = fY,m. Since γ†
n(f̄m̄) +

pen(m̄) ≤ γ†
n(fm) + pen(m), we get

1

4
E[‖fY − f̄m̄‖2] ≤ 7

4
‖fY − fY,m‖2 + pen(m) + 4E

(
sup

t∈Bm,m̄

[ν̄n(t)]
2

)
− E(pen(m̄))

+8E

(
sup

t∈Bm,m̄

[R̄n(t)]
2

)
, (36)

where ν̄n(t) and R̄n(t) are defined by (34) and (35) and Bm = {t ∈ S̄m, ‖t‖ = 1},
and Bm,m′ = {t ∈ S̄m + S̄m′ , ‖t‖ = 1}. Following a classical application of Talagrand
Inequality in the deconvolution context for ordinary smooth noise (Comte et al.,
2006), we deduce the following Lemma.

Lemma 5.1 Under the Assumptions of Theorem 3.1,

E

(
sup

t∈Bm,m̄

[ν̄n(t)]
2 − p1(m, m̄)

)

+

≤ c

n
,

where p1(m,m′) = 2E((w ◦G)2(Z1))∆η(m ∨m′)/n = 2(
∫ 1

0
w2(u)du)∆η(m ∨m′)/n.

21



Moreover for the study R̄n(t) we have the following Lemma.

Lemma 5.2 Under the assumptions of Theorem 3.1,

E

(
sup

t∈Bm,m̄

[R̄n(t)]
2 − p2(m, m̄)

)
≤ 0,

where p2(m,m′) = c2w∆η(m ∨m′) ln(n)/n.

It follows from the definition of pi(m,m′), i = 1, 2, that there exist numerical constants
κ′ and κ′′, namely κ′, κ′′ ≥ 8, such that 4p1(m,m′)+8p2(m,m′) ≤ pen(m)+pen(m′).

Now, starting from (36), we get, by applying Lemmas 5.1 and 5.2,

1

4
E[‖fY − f̄m̄‖2] ≤

7

4
‖fY − fY,m‖2 + pen(m) + 4E

(
sup

t∈Bm,m̄

[ν̄n(t)]
2 − p1(m, m̄)

)

+

+ 8E

(
sup

t∈Bm,m̄

[R̄n(t)]
2 − p2(m, m̄)

)
+ E[4p1(m, m̄) + 8p2(m, m̄)− pen(m̄)]

≤ 7

4
‖fY − fY,m‖2 + 2pen(m) +

c

n
.

Therefore if κ ≥ 16, we get (1/4)E[‖fY − f̄m̄‖2] ≤ (7/4)‖fY −fY,m‖2+2pen(m)+ c/n.
This completes the proof of Theorem 3.1. �

Proof of Lemma 5.2. First we remark that, with Cauchy-Schwarz inequality, we have

|R̄n(t)|2 ≤ 1

4π2

∣∣∣∣∣

∫
t∗(−u)

f ∗
η (u)

(
1

n

n∑

k=1

e−iuZk [(w ◦ Ĝn)(Zk)− (w ◦G)(Zk)]du

)∣∣∣∣∣

2

≤ 1

4π2

∫
|t∗(u)|2du

∫ πm∨m̄

−πm∨m̄

du

|f ∗
η (u)|2

(
1

n

n∑

k=1

|(w ◦ Ĝn)(Zk)− (w ◦G)(Zk)|2
)
.

Then Parseval Formula gives ‖t∗‖2 = 2π‖t‖2 and we find

sup
t∈Bm,m̄

|R̄n(t)|2 ≤ c2w∆η(m∨m̄)

(
1

n

n∑

k=1

|Ĝn(Zk)−G(Zk)|2
)

≤ c2w∆η(m∨m̄)‖Ĝn−Ĝ‖2∞.

Now, we write supt∈Bm,m̄
|R̄n(t)|2 = R1+R2 by inserting again the indicator functions

1ΩG
and 1Ωc

G
where ΩG is defined by (30). Therefore

E

(
sup

t∈Bm,m̄

[R̄n(t)]
2 − p2(m, m̄)

)
≤ E(R1 − p2(m, m̄)) + E(R2)

≤ c2wE

(
∆η(m ∨ m̄)(‖Ĝn − Ĝ‖2∞1ΩG

− ln(n)

n
)

)
(37)

+ cw2∆η(mn)E(‖Ĝn −G‖2∞1Ωc
G
).
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Next (‖Ĝn− Ĝ‖2∞1ΩG
− ln(n)/n)) ≤ 0 by definition of ΩG for the first right-hand-side

term of (37). For the second term, ∆(mn) ≤ n by the definition ofmn, ‖Ĝn−G‖∞ ≤ 1
and it follows from (31) that P(Ωc

G) ≤ 2/n2. Therefore

E

(
sup

t∈Bm,m̄

[R̄n(t)]
2 − p2(m, m̄)

)
≤ c2wnP(Ω

c
G) ≤ 2c2w/n.

Gathering the bounds gives the result of Lemma 5.2. �
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