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Abstract—This paper presents system analysis, modeling and 
simulation of an EV with two independent rear wheel drives. 
The traction control system is designed to guarantee the EV 
dynamics and stability in case of no differential gears. Using two 
electrics in-wheel motors give the possibility to have a torque 
and speed control in each wheel. This control level improves the 
EV stability and the safety. The proposed traction control 
system uses the vehicle speed, which is different from wheels 
speed characterized by slip in the driving mode, an input. In this 
case, a generalized neural network algorithm is proposed to 
estimate the vehicle speed. In terms of the analysis and the 
simulations carried out, the conclusion can be drawn that the 
proposed system is feasible. Simulation results on a test vehicle 
propelled by two 37-kW induction motors showed that the 
proposed control approach operates satisfactorily. 

 
Index Terms—Electric vehicle, electric motor, speed 

estimation, neural networks, traction control. 
 

I. INTRODUCTION 
 

Recently, Electric Vehicles (EVs) including fuel-cell and 
hybrid vehicles have been developed very rapidly as a 
solution of energy and environmental problems. From the 
point of view of control engineering, EVs have much 
attractive potential. Since electric motors and inverters are 
utilized in drive system, they have great advantages over 
internal combustion engine vehicles such as quick torque 
response and individual control of each wheel. Although 
several control methods have been proposed using these 
merits, their controllers depend on some immeasurable 
parameters such as vehicle velocity, slip angle, etc. 

The principal constraints in vehicle design for personal 
mobility are the development of a nonpolluting high safety 
and comfortable vehicle. Taking into account these 
constraints, our interest has been focused on the 2×4 electrical 
vehicles, with independent driving in-wheel motor at the front 
and with classical motors on the rear drive shaft. 
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Torque control can be ensured by the inverter, so this vehicle 
does not require differential gears. However, one of the main 
issues in the design of this vehicle (without mechanical 
differential) is to assume the car stability. During normal 
driving condition, all the drive wheel system requires a 
symmetrical distribution of torque in both sides. This 
symmetrical distribution is not sufficient when the adherence 
coefficient of tires is changing: the wheels have different 
speeds; so the needs for traction control system [1]. This is 
still an open problem as illustrated by a limited available 
literature [2-3]. 

To address this open problem, this paper proposes a neural 
network traction control approach of an electrical differential 
system for an EV propelled by two induction motor drives 
(one for each wheel). In recent years, neural network concepts 
have become an active research area. Because of the necessity 
for adaptive abilities in a network learning process, applying 
neural networks to system identification and control dynamics 
has become a promising alternative to process control [4]. 
Neural networks can be applied to control and identify the 
nonlinear systems since they approximate any desired degree 
of accuracy with a wide range of nonlinear model. 

The rotor speed information of an induction motor in the 
vector control method is obtained using speed sensors. These 
sensors are usually expensive and bulky; therefore, the cost 
and size of the drive systems are increased. Since 1980s the 
concept of rotor speed estimation has been studied 
extensively where the instantaneous stator voltages and 
currents were used to estimate the speed of an induction 
motor such as in model reference adaptive system, extended 
Kalman filter algorithm [5]. However, induction motors have 
highly nonlinear dynamic behaviors and their parameters vary 
with time and operating conditions. Therefore, it is difficult to 
obtain accurate speed estimates with these methods. In this 
paper, a new speed estimation method of an induction motor 
is proposed where a Recurrent Neural Network (RNN) with 
two hidden layers is used [5-6]. This neural network was 
initially proposed by Jordan and then modified by Elman. It is 
also known as Jordan–Elman neural network in the literature. 
The multilayer and recurrent structure of ENN makes it 
robust under parameter variations and system noises. This 
ENN speed estimator can be used in induction motors vector 
control to eliminate expensive speed transducers [6]. 

Moreover, the proposed RNN-based speed estimator, 
which replaces the speed sensor in vector control approach 
scheme takes into account the vehicle aerodynamics, and is 
not applied to the sole induction motors. It should be noted 
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that the induction motor has been adopted for the EV 
propulsion because it seems to be the candidate that better 
fulfils the major requirements for EVs propulsion [7]. 

 
II. VEHICLE MODEL 

 

Compared to previous works, the proposed control 
strategy takes into account the vehicle aerodynamics, and is 
not applied to the sole induction motors. This model is based 
on the principles of vehicle mechanics and aerodynamics [8]. 
The total tractive effort is then given by 

 

= + + + +te rr ad hc la waF F F F F F         (1) 
 

Where Frr  = is the rolling resistance force; 
  Fad  = is the aerodynamic drag; 
  Fhc  = is the hill climbing force; 
  Fla  = is the force required to give linear acceleration; 
  Fwa  = is the force required to give angular  
    acceleration to the rotating motor. 

It should be noted that Fla and Fwa will be negative if the 
vehicle is slowing down and that Fhc will be negative if it is 
going downhill. The power required to drive a vehicle at a 
speed v has to compensate counteracting forces. 

 

( )= = + + + +te te rr ad hc la waP vF v F F F F F      (2) 
 

III. INDUCTION MOTOR MODELING 
 

A. Nomenclature 
 

Vds (Vqs) = d-axis (q-axis) stator voltages; 
ids (iqs)  = d-axis q-axis) stator currents; 
λdr (λqr) = d-axis (q-axis) rotor flux linkages; 
Rs (Rr)  = Stator (rotor) resistance; 
Ls (Lr)  = Stator (rotor) inductance; 
Lm   = Magnetizing inductance; 
Lσ   = Leakage inductance (Lσ = Ls – Lm

2/Lr); 
ωe(ωr)  = Stator (rotor) electrical speed; 
Ω   = Rotor speed (ωr/p); 
ωsl   = Slip frequency, ωsl = ωs − ωr 
B   = Motor damping ratio; 
p   = pole-pair number. 
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B. Induction Motor Dynamic Model 

 

Generally, dynamic modeling of an induction motor drive 
is based on rotating reference-frame theory and a linear 
technique. A system configuration of an induction motor 
drive is shown in Fig. 1. This motor drive consists of an 
induction motor, a bang–bang current-controlled pulse width 
modulated (PWM) inverter, a field-orientation mechanism, a 
coordinate translator and a speed controller. The electrical 
dynamics of an induction motor in the synchronously rotating 
reference frame (d-q-axis) can be expressed by (3-5) [4-9]. 
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Fig. 1. Direct field-oriented induction motor drive. 
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( )1r
r m L

d B T T
dt J J
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( )m t dr qs qr dsT k i i= λ − λ           (5) 
 

IV. NEURAL NETWORK TRACTION CONTROL 
 

A. Why Neural Network Traction Control? 
 

Recent development in Artificial Neural Network (ANN) 
traction control technology has made it possible to train an 
ANN to represent a variety of complicated nonlinear systems. 
ANN is the simulation of human brain nervous system and is 
constructed of artificial neurons and their interconnections. 
Like the human brain the ANN can be trained to solve the 
most complex nonlinear problems with variable parameters. 
There have been several applications of ANN in AC drive 
systems such as adaptive flux control, current control, speed 
control, and field oriented control [10]. 

 
B. The Neural Network Controller 

 

The dynamic behavior of an induction motor can be 
described by voltage and current models (with decoupling 
control λqr = 0 and λdr = λ = constant) is derived from (3-5). 
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The RNN model based in speed estimator replaces the 
adaptive current model. In this case, each output neuron uses 
the linear activation function. The solution of the voltage 
model generates the desired flux components. These signals 
are compared with the RNN output signals and the weights 
are trained on-line so that the error ξ(k+1) tends to zero. It is 
assumed that the training speed is fast enough so that the 
estimated speed and actual speed can track well [11]. The 
current model equations can be discretized and written as 
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Where TS is the sampling time, Lm the magnetizing 
inductance, and Tr the rotor time constant. The above 
equation can also be written in the form 
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Where W11 = 1 – Ts / Tr, W21 = –ωr Ts, W12 = ωr Ts, W22 = 1 – 
Ts / Tr, and W31 = Lm Ts / Tr. 

 
The internal structure of the designed RNN speed 

estimator is shown in Fig. 2, where black circles represent 
context nodes and white circles represent the input, hidden 
and output nodes [11]. The RNN with a linear transfer 
function of unity gain satisfies equation (11). Note that out of 
the six weights in the network, only W21 and W12 (circled in 
the figure) contain the speed term; therefore, for speed 
estimation, it is sufficient if these weights are considered 
trainable, keeping the other weights constant (assuming that 
Tr and Lm are constants) for speed estimation. However, if all 
the weights are considered trainable, the speed as well as the 
rotor time constant can be tuned. 
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Fig. 2. Internal structure of the RNN estimator. 

V. THE ELECTRIC DIFFERENTIAL AND ITS IMPLEMENTATION 
 

Figure 3 illustrates the implemented system (electric and 
mechanical components) in the Matlab-Simulink® environment. 

The proposed control system principle could be 
summarized as follows: (1) A speed network control is used 
to control each motor torque; (2) The speed of each rear 
wheel is controlled using speeds difference feedback. Since 
the two rear wheels are directly driven by two separate 
motors, the speed of the outer wheel will require being higher 
than the speed of the inner wheel during steering maneuvers 
(and vice-versa). This condition can be easily met if the speed 
estimator is used to sense the angular speed of the steering 
wheel. The common reference speed ωref is then set by the 
accelerator pedal command. The actual reference speed for 
the left drive ωref-left and the right drive ωref-right are then 
obtained by adjusting the common reference speed ωref using 
the output signal from the RNN speed estimator. If the 
vehicle is turning right, the left wheel speed is increased and 
the right wheel speed remains equal to the common reference 
speed ωref. If the vehicle is turning left the right wheel speed 
is increased and the left wheel speed remains equal to the 
common reference speed ωref [12-13]. 

Usually, a driving trajectory is quite enough for an 
analysis of the vehicle system model. We have therefore 
adopted the Ackermann-Jeantaud steering model as it is 
widely used as driving trajectory. In fact, Ackermann steering 
geometry is a geometric arrangement of linkages in the 
steering of a car or other vehicle designed to solve the 
problem of wheels on the inside and outside of a turn needing 
to trace out circles of different radii. Modern cars do not use 
pure Ackermann-Jeantaud steering, partly because it ignores 
important dynamic and compliant effects, but the principle is 
sound for low speed maneuvers [14]. It is illustrated in Fig. 4. 

From this model, the following characteristic can be 
calculated. 

 

tan
LR =

δ
              (9) 

 

Where δ is the steering angle. Therefore, each wheel drive 
linear speed is given by 
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Fig. 3. EV propulsion and control systems schematic diagram. 
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Fig. 4. Driving trajectory model. 
 

and their angular speed by 
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The difference between wheel drive angular speeds is then 
 

1 2
tan

est est V
d

L
δ∆ω = ω − ω = − ω        (12) 

 

and the steering angle indicates the trajectory direction. 
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         (13) 

 

In accordance with the above described equation, Fig. 5 
show the electric differential system block diagram as used 
for simulations. 

 
VI. SIMULATION RESULTS 

 

Numerical simulations have been carried out on an EV 
propelled by two 37-kW induction motor drives which ratings 
are summarized in the appendix. In the appendix are also 
given the electrical vehicle mechanical and aerodynamic 
characteristics. The objectives of the carried out simulations 
are to assess the efficiency and dynamic performances of the 
proposed neural network control strategy. 

 

∆ω = f(δ,ωV)

K1 

K2

ωref_Left
ωref_Right

ωref

+

+

_

_

∆ω = f(δ,ωV)

ωest1

K1 

K2

ωref_Left
ωref_Right

+

+

_

_

δ

ωest2

ωV = (ωest1 – ωest2)/2
∆ω = f(δ,ωV)

K1 

K2

ωref_Left
ωref_Right

ωref

+

+

_

_

∆ω = f(δ,ωV)

ωest1

K1 

K2

ωref_Left
ωref_Right

+

+

_

_

δ

ωest2

ωV = (ωest1 – ωest2)/2

 
 

Fig. 5. Block diagram of the electric differential system. 

The test cycle is the urban ECE-15 cycle (Fig. 6) [15]. A 
driving cycle is a series of data points representing the vehicle 
speed versus time. This driving cycle represents urban 
driving. It is characterized by low vehicle speed (maximum 
50 km/h) and is useful for testing small electrical vehicles 
performance. 

The electric differential performance are first illustrated 
by Fig. 7 that shows each wheel drive speeds during steering 
for 0 < t <1180 sec. It is obvious that the electric differential 
operates satisfactorily. 

Figures 8 and 9 illustrate the EV dynamics, respectively, 
the flux (λdr) in each induction motor and the developed 
torque on the left and right wheel drives, with changes in the 
acceleration pedal position (Fig 10) and a varied road profile 
(rising and downward portions). It should be noticed that flux 
and torque variations are as large as are the variations of the 
accelerator pedal and the road profile. 

The RNN speed estimator performances are illustrated by 
Fig.11 that shows the measured speed and the estimated one. 
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Fig. 6. European urban driving schedule ECE-15. 
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Fig. 7. Vehicle wheels speed. 
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Fig. 8. Flux λdr. 
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Fig. 9. Motor torque. 
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Fig. 10. Acceleration pedal position. 
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Fig. 11. Estimated and measured vehicle speed. 
 

Figure 12 illustrates the power required to move the EV. 
To find the power taken from the battery to provide the 
tractive effort, we have to be able to find various efficiencies 
at all operating points. 

 
VII. CONCLUSION 

 

In this paper, a neural network traction control algorithm 
for an electrical vehicle with two separate wheel drives has 
been proposed. This algorithm is necessary to improve the EV 
steerability and stability during trajectory changes. An 
electrical differential was implemented and take account of 
the speed difference between the two wheels when cornering. 
Moreover, as traction control systems impose a very precise 
knowledge of the vehicle dynamics, a vehicle dynamics 
model was exhaustively detailed and applied. 

Numerical simulations have been carried out, on an EV 
propelled by two 37-kW induction motor drives. The test 
cycle was in our case the urban ECE-15 cycle. 
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Fig. 12. Power required to propel the EV. 

858



During traction and regenerative braking, a correlation of 
traction control with motor performances has been realized. 
The obtained results seem to be very promising. 

The neural network controller (RNN) speed estimator 
eliminates the need for an expensive speed transducer with a 
reasonable accuracy. It is shown that the proposed method 
estimates the speed accurately over the entire speed range 
from zero to full speed. Moreover, it has robust speed 
estimation performance even at step load change or under 
variable speed operation. 

 

APPENDIX 
 

RATED DATA OF THE SIMULATED INDUCTION MOTOR 
 
 

37 kW, 50 Hz, 400/230 V, 64/111 A, 24.17 Nm, 2960 rpm 
Rs = 85.1 mΩ, Rr = 65.8 mΩ 

Ls = 31.4 mH, Lr = 29.1 mH, Lm = 29.1 mH 
J = 0.23 kg.m² 

 

 
EV MECHANICAL AND AERODYNAMIC PARAMETERS 

 
 

m = 1540 kg (two 70 kg passengers), A = 1.8 m2, r = 0.3 m 
µrr1=0.0055, µrr2=0.056, Cad = 0.19, G = 104, ηg = 0.95 

T =57.2 Nm (stall torque), v0 = 4.155 m/sec 
g = 9.81 m/sec2, ρ = 0.23 kg/m3 
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