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Abstract – We introduce acyclic track polygraphs, a notion of complete categorical
cellular models for small categories: they are polygraphs containing generators, with
additional invertible cells for relations and higher-dimensional globular syzygies. We
give a rewriting method to realise such a model by proving that a convergent pre-
sentation canonically extends to an acyclic track polygraph. For that, we introduce
normalising strategies, defined as homotopically coherent ways to relate each cell of
a track polygraph to its normal form, and we prove that acyclicity is equivalent to the
existence of a normalisation strategy.

Using track polygraphs, we extend to every dimension the homotopical finiteness
condition of finite derivation type, introduced by Squier in string rewriting theory, and
we prove that it implies a new homological finiteness condition that we introduce here.
The proof is based on normalisation strategies and relates acyclic track polygraphs to
free Abelian resolutions of the small categories they present.
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Introduction

INTRODUCTION

The two dimensions of rewriting

The notion of presentation of higher-dimensional categories was introduced by Burroni, under the name
of polygraph, [9], and by Street, under the terminology of computad, [40, 41]. Here we stick to the first
name, as usual in rewriting theory, [33, 14, 15, 31]. An n-polygraph is a family (Σ0, . . . , Σn), where Σ0
is a set and, for every 0 ≤ k < n, Σk+1 is a (globular) cellular extension of the free k-category Σ∗k
over Σk, i.e., a family of parallel k-cells of Σ∗k.

An n-polygraph is a system of generators of an n-category and, also, a presentation of an (n − 1)-
category by generators (cells up to the syntactic dimensionn−1) and relations (cells of dimensionn). For
example, monoids and small categories are generated by 1-polygraphs and presented by 2-polygraphs:
they have syntactic dimension 1. Lawvere’s algebraic theories, pro(p)s and, more generally, monoidal
categories and 2-categories are generated by 2-polygraphs and presented by 3-polygraphs: they have
syntactic dimension 2.

In Section 1, after some reminders on track n-categories, introduced in [15], we define the notions of
track (n, p)-category and of track (n, p)-polygraph. A track (n, p)-category is an n-category enriched
in p-groupoids, i.e., an (n+p)-category whose cells of dimension n+ 1 or above are invertible. A track
(n, p)-polygraph is an (n+ 1)-polygraph (Σ0, . . . , Σn+1) equipped, for every 1 < k < p, with a cellular
extension Σn+k+1 of the free track (n, k)-category Σ> over Σn+k.

We use track (n, p)-polygraphs as higher-dimensional presentations of n-categories, where the di-
mensions above n contain generating cells for higher-dimensional syzygies. We say that a track poly-
graph Σ is acyclic when, for every 0 < k < p, every (n+ k)-dimensional syzygy of Σ> is the boundary
of an (n+ k+ 1)-cell of Σ>.

Given an n-category C, an acyclic track (n, p − 1)-polygraph that presents C is called a track-
polygraphic resolution of C of length p. This notion is linked to the one of polygraphic resolution, [33],
and extends the ones of generation by an n-polygraph, of presentation by an (n + 1)-polygraph and of
presentation by an (n+1)-polygraph with a given homotopy basis, which respectively correspond to the
cases p = 0, p = 1 and p = 2. We say that an n-category is of finite p-derivation type (FDTp) when
it admits a finite track-polygraphic resolution of length p. This generalises to n-categories and in every
dimension the homotopical finiteness property of finite derivation type for monoids, [39]. The notion of
track-polygraphic resolution also permits the definition of the polygraphic dimension of an n-category,
as the minimal length of its complete track-polygraphic resolutions.

Normalisation strategies

Reduction strategies appear in many different contexts of rewriting theory and, in particular, in several
rule-based programming languages, see 2.1. Among reduction strategies, we are particularly interested
in normalisation ones, which are coherent choices of reduction paths from a term to a normal form.
Following this idea, we introduce the notion of normalisation strategy for a track (n, p)-polygraph Σ as
a homotopically coherent choice, for every k-cell f of Σ, of a k-cell f̂, the normal form of f, together
with a (k+ 1)-cell σf from f to f̂, see 2.2.2.
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Introduction

We particularly study the case of normalisation strategies for track (1, p)-polygraphs. In 2.3, we give
an explicit description of normalisation strategies in the lower dimensions, up to p = 3. Then we exhibit
two natural classes of normalisation strategies: left ones and right ones which, informally, normalise
cells starting from the left or from the right, respectively.

Our first theorem relates the acyclicity of a track (1, p)-polygraph with the fact that it is normalising,
meaning that it admits a normalisation strategy:

Theorem 2.3.6. Let Σ be a track (1, p)-polygraph, then

Σ is acyclic iff Σ is normalising iff Σ is left (resp. right) normalising.

In particular, a small category C is of finite p-derivation type if and only if there exists a normalising
track (1, p− 1)-polygraph that presents C.

Squier has used a kind of normalisation strategy in order to construct a contracting homotopy for
the Fox Jacobian and, thus, to give a characterisation of the 2-dimensional homological syzygies of a
convergent presentation of a monoid. The notion of normalisation strategy we introduce here allows a
generalisation of Squier’s construction in every dimension, for convergent track (1, p)-polygraphs.

The case of convergent presentations

Convergent (i.e., terminating and confluent) rewriting systems play an important role in rewriting theory.
Indeed, they guarantee the existence of unique normal forms. In particular, when an n-category admits
a presentation by a finite, convergent (n + 1)-polygraph, the normal form algorithm is a solution to its
word problem.

In Section 3, we recall the notion of convergent 2-polygraph and refer the reader to [15] for a more
comprehensive study of polygraphic rewriting, in particular for higher dimensions. Then, we give a
methodology to extend a convergent 2-polygraph Σ into an acyclic track (1,∞)-polygraph, denoted
by c∞(Σ). The p-cells of c∞(Σ), for p ≥ 3, are computed from the (p − 1)-fold critical branchings
of Σ, a notion we introduce here as a higher-dimensional generalisation of critical branchings, themselves
being the potential obstructions to the confluence of the 2-polygraph Σ. The whole construction is based
on the inductive definition of a higher-dimensional normalisation strategy. The main theorem of Section 3
follows:

Theorem 3.4.4. A category with a finite convergent presentation is of finite∞-derivation type.

In particular, if a small category admits a convergent presentation with no critical p-fold branching, for
some p ≥ 2, then its polygraphic dimension is at most p.

Homological finiteness conditions

In the eighties, an important question drew the attention of the rewriting community: does a finitely
presented monoid with a decidable word problem have a finite convergent presentation, [17, 4, 18, 6]? If
that was true, one could always decide the word problem in a finitely presented monoid by the normal
form algorithm. Squier answered this question by the negative by showing that, if a monoid admits a
finite convergent presentation, then it is of homological type left-FP3 and, then, by exhibiting decidable
and finitely presentable monoids that are not of homological type left-FP3, [38].
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Squier also introduced the homotopical condition of finite derivation type for monoids. This prop-
erty characterises the existence of a finite homotopy basis making the derivation graph aspherical, [39].
He showed that, if a monoid admits a finite convergent presentation, then it is of finite derivation type.
The homotopical property implies the homological one, [11, 36], and they are equivalent in the case of
groups, [12], the latter result being based on the Brown-Huebschmann isomorphism between homotopi-
cal and homological syzygies.

In Section 4, we relate the homotopical property FDTp to a new homological property FPp we in-
troduce here, based on natural systems. Proposition 4.2.4 relates the property FPp to other homological
finiteness conditions, the following implications being equivalences for groupoids:

FPp ⇒ bi-FPp ⇒ left-FPp or right-FPp ⇒ top-FPp.

Then we present an extension to small categories of the Fox differential calculus, originally introduced
for presentations of groups, [13]. To every track (1, p)-polygraph Σ, we associate a chain complex of
natural systems, denoted by FC[Σ] and called the Reidemeister-Fox-Squier complex, see 4.3.3.

We prove that, if a track (1, p)-polygraph Σ is acyclic, then the complex FC[Σ] is acyclic, see The-
orem 4.4.3. The proof is based on using a normalisation strategy to explicitly define contracting homo-
topies. From this result, we deduce that, if a small category admits a finite convergent presentation, then
it is of homological type FP∞. We also obtain the following sufficient condition for the homological
property FPp:

Theorem 4.5.2. For small categories and for every p ≥ 1, the property FDTp implies the property FPp.

We close this section by giving an interpretation relating the properties FDT3 and FP3 of a finitely gener-
ated small category, on the one hand, to a finiteness condition on the natural system of identities among
relations of any of its presentations. The notion of identities among relations was introduced for presen-
tations of groups, [35, 37] and, by the Brown-Huebschmann isomorphism, [8], the modules of identities
among relations and of 2-homological syzygies of a presentation of a group are isomorphic. Here we
extend this result to small categories:

Theorem 4.6.5. For every 2-polygraph Σ, the natural systems of homological 2-syzygies and of identities
among relations of Σ are isomorphic.

We also introduce the property of Abelian finite derivation type (FDTab): an n-polygraph Σ is FDTab
if the free Abelian track n-category it generates is of finite derivation type, see 4.7. We prove that Σ is
FDTab if and only if the natural system of identities among relations of Σ is finitely generated. Thus, we
obtain an equivalence between the homological property FP3 and the Abelianised version FDTab of the
homotopical property FDT3:

Theorem 4.7.3. For a category C with a finite presentation Σ, the following conditions are equivalent:

i) the category C is of homological type FP3,

ii) the natural system of homological 2-syzygies of Σ is finitely generated,

iii) the natural system of identities among relations of Σ is finitely generated,

iv) the category C is FDTab.

Section 5 concludes this paper with examples of track-polygraphic resolutions of small categories.
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1. Resolutions by track polygraphs

1. RESOLUTIONS BY TRACK POLYGRAPHS

1.1. Higher-dimensional track categories

We recall some notions from [15]. Let n be a natural number and let C be an n-category (we always
consider strict, globular n-categories). We denote by Ck the set (and the k-category) of k-cells of C. If f
is in Ck, then si(f) and ti(f) respectively denote the i-source and i-target of f; we drop the suffix i when
i = k− 1. The source and target maps satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1.

We respectively denote by f : u → v, f : u ⇒ v, f : u V v a 1-cell, a 2-cell, a 3-cell f with source u
and target v.

If f and g are i-composable k-cells, that is when ti(f) = si(g), we denote by f?ig their i-composite;
we simply use fg when i = 0. The compositions satisfy the exchange relations given, for every i 6= j

and every possible cells f, g, h and k, by:

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?k k).

If f is a k-cell, we denote by 1f its identity (k + 1)-cell. When 1f is composed with cells of dimension
k+ 1 or higher, we simply denote it by f. A cell is degenerate when it is an identity cell.

1.1.1. Track (n, p)-categories. In an n-category C, a k-cell f, with i-source x and i-target y, is i-
invertible when there exists a (necessarily unique) k-cell g in C, with i-source y and i-target x in C,
called the i-inverse of f, that satisfies

f ?i g = 1x and g ?i f = 1y.

When i = k−1, we just say that f is invertible and we denote by f− its inverse. As in higher-dimensional
groupoids, if a k-cell f is invertible and if its i-source x and i-target y are invertible, then f is i-invertible,
with i-inverse given by

x− ?i−1 f
− ?i−1 y

−.

For natural numbers n and p, a track (n, p)-category is an n-category enriched in p-groupoids, i.e., an
(n + p)-category whose last p-dimensions are made of invertible cells. In particular, a track (n, 0)-
category is an n-category, a track (n−1, 1)-category is a track n-category, as defined in [15], and a track
(0, n)-category is an n-groupoid. By extension, we define a track (n,∞)-category as an n-category
enriched in∞-groupoids. Let us note that track (n, p)-categories are also known as (n+p, n)-categories.

1.1.2. Acyclicity and asphericity. Let C be a track (n, p)-category and let k be a natural number, with
0 ≤ k ≤ n + p. A k-sphere of C is a pair γ = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g) and
t(f) = t(g); we call f the source of γ and g its target. A k-sphere is degenerate when its source and
target coincide.

The track (n, p)-category C is aspherical when each (n + p)-sphere of C is degenerate. One says
that C is acyclic when, for every k-sphere (f, g) of C, with n < k < n + p, there exists a (k + 1)-cell
with source f and target g in C. In other terms, C is acyclic if and only if, for every 0 < k < p, the
quotient track (n, k)-category Cn+k/Cn+k+1 is aspherical.
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1. Resolutions by track polygraphs

1.2. Track polygraphs

1.2.1. Cellular extensions. Let C be an n-category. A cellular extension of C is a set Γ equipped with
a map ∂ from Γ to the set of n-spheres of C. By considering all the formal compositions of elements
of Γ , seen as (n + 1)-cells with source and target in C, one builds the free (n + 1)-category generated
by Γ over C, denoted by C[Γ ]. The size of an (n+ 1)-cell f of C[Γ ] is the number of (n+ 1)-cells of Γ it
contains.

The quotient of C by Γ , denoted by C/Γ , is the n-category one gets from C by identification of the
n-cells s(γ) and t(γ), for every n-sphere γ of Γ . We write f ≡Γ g when parallel n-cells f, g of C are
identified in C/Γ .

If C is a track (n, p)-category and Γ is a cellular extension of C, then the free track (n, p+1)-category
generated by Γ over C is denoted by C(Γ) and defined as follows:

C(Γ) = C
[
Γ, Γ−

] /
Inv(Γ)

where Γ− contains the same (n+ p+ 1)-cells as Γ , with source and target reversed, and Inv(Γ) is made
of two (n+ p+ 2)-cells γ ?n+p+1 γ

− → 1sγ and γ− ?n+p+1 γ→ 1tγ for each (n+ p+ 1)-cell γ in Γ .

1.2.2. Homotopy bases. Let C be a track (n, p)-category. A cellular extension Γ of C is a homotopy
basis when any one of the following three equivalent conditions holds:

• The track (n, p)-category C/Γ is aspherical.

• For every (n+ p)-sphere γ of C, we have s(γ) ≡Γ t(γ).

• For every (n+ p)-sphere γ of C, there exists an (n+ p+ 1)-cell with source s(γ) and target t(γ)
in the track (n, p+ 1)-category C(Γ).

In particular, the track (n, p)-category C is acyclic if and only if, for every k in {0, . . . , p− 1}, the cellular
extension Cn+k+1 of (n+ k+ 1)-cells of the track (n, k)-category Cn+k is a homotopy basis.

1.2.3. Track (n, p)-polygraphs. Let n be a natural number. A track (n, 0)-polygraph is an n-poly-
graph, i.e., a family Σ = (Σ0, . . . , Σn) made of a set Σ0 and, for every 0 ≤ k ≤ n − 1, a cellular
extension Σk+1 of the free k-category Σ∗k = Σ0[Σ1] · · · [Σk]. For p a non-zero natural number, a track
(n, p)-polygraph is a family Σ = (Σ0, . . . , Σn+p) made of:

• an (n+ 1)-polygraph (Σ0, . . . , Σn, Σn+1);

• for every 1 < k < p, a cellular extension Σn+k+1 of the free track (n, k)-category

Σ>n+k = Σ∗n(Σn+1) · · · (Σn+k).

Finally, a track (n,∞)-polygraph is a family Σ = (Σk)k∈N such that, for every natural number p, the
subfamily (Σ0, . . . , Σn+p) is a track (n, p)-polygraph.

A track (n, p)-polygraph is finite when it has finitely many cells in every dimension. A track (n, p)-
polygraph Σ is acyclic or aspherical when the free track (n, p)-category Σ> is.
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1.3. Resolutions by track polygraphs

Remark. A track (n, p)-polygraph yields a diagram which is similar to the one given in the original
definition of n-polygraphs, [9]:

Σ∗0 (· · · )oooo Σ∗noo oo Σ>n+1oooo (· · · )oo oo Σ>n+p−1oooo

Σ0 (· · · )

ddIIIIIIIIII

ddIIIIIIIIII

Σn

ddIIIIIIIIII

ddIIIIIIIIII OO

OO

Σn+1

ddIIIIIIIIII

ddIIIIIIIIII OO

OO

(· · · )

ddIIIIIIIII

ddIIIIIIIII

Σn+p−1

ddIIIIIIIIII

ddIIIIIIIIII OO

OO

Σn+p

ddIIIIIIIII

ddIIIIIIIII

This diagram contains the source and target attachment maps of generating (k + 1)-cells on composite
k-cells, their extension to composite (k+ 1)-cells and the inclusion of generating k-cells into composite
k-cells.

1.3. Resolutions by track polygraphs

1.3.1. Track-polygraphic resolutions. Let Σ be a track (n, p)-polygraph. We denote by Σ the n-
category presented by its underlying track (n, 1)-polygraph, that is the quotient n-category

Σ = Σ∗n
/
Σn+1.

We usually write π : Σ∗n � Σ the canonical projection and, when no confusion may occur, we use f
instead of π(f). If f is a k-cell of Σ>, with n + 1 ≤ k ≤ n + p, we also denote by f the n-cells sn(f)
and tn(f), which are equal by definition of the n-category Σ. A track (n, p)-polygraph Σ and a track
(n, q)-polygraph Υ are Tietze-equivalent when the n-categories Σ and Υ are isomorphic.

Let C be an n-category. For p a non-zero natural number, a track-polygraphic resolution of C of
length p is an acyclic track (n, p− 1)-polygraph Σ such that Σ is isomorphic to C. In particular, for low
values of p, we have:

• A track-polygraphic resolution of length 1 of C is a generating n-polygraph for C, i.e., an n-
polygraph Σ such that C is isomorphic to a quotient of the free n-category Σ∗ by a set of n-spheres
of Σ∗.

• A track-polygraphic resolution of length 2 of C is a presentation by a track (n, 1)-polygraph, i.e.,
a track (n, 1)-polygraph Σ such that C is isomorphic to Σ.

• A track-polygraphic resolution of length 3 of C is a presentation by a track (n, 1)-polygraph Σ,
extended with a homotopy basis Γ of the track (n, 1)-category Σ>, so that C is isomorphic to Σ
and Σ>/Γ is aspherical.

Remark. The definition of track-polygraphic resolution is linked to the notion of polygraphic resolution,
introduced in [33]. A polygraphic resolution with length k of an n-category C is a k-polygraph Σ
equipped with a surjective k-functor Φ : Σ∗ → C such that, for every 0 ≤ i ≤ k and every i-sphere
(x, y) of Σ∗ with Φ(x) = Φ(y), there exists an (i + 1)-cell u : x → y in Σ∗. Thus, if C is free up to
dimension n − 1 and if Φ is the identity on dimensions up to n − 1, then a polygraphic resolution with
length n+ p yields a track-polygraphic resolution of C with length p+ 1.
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2. Normalisation strategies for track polygraphs

1.3.2. Higher-dimensional finite derivation type. Let C be an n-category. For p a non-zero natural
number, one says that C is of finite p-derivation type (FDTp) when C admits a finite track-polygraphic
resolution of length p, i.e., a resolution by a finite, acyclic track (n, p− 1)-polygraph. Similarly, C is of
finite∞-derivation type (FDT∞) when C admits a resolution by a finite, acyclic track (n,∞)-polygraph,
i.e., when C is FDTp for every non-zero natural number.

In particular, C is FDT1 when it is finitely generated and FDT2 when it is finitely presented. The
property FDT3 corresponds to the finite derivation type homotopical finiteness property originally in-
troduced by Squier for monoids, [38], and extended by the authors to n-categories, [15]. The property
FDT4 was introduced in [28].

1.3.3. Polygraphic dimension. Let C be an n-category. The polygraphic dimension of C is defined,
when it exists, as the lowest 0 ≤ p ≤ ∞ such that C admits a resolution by an aspherical, acyclic track
(n, p)-polygraph. In that case, we denote by dpol(C) the polygraphic dimension of C.

2. NORMALISATION STRATEGIES FOR TRACK POLYGRAPHS

2.1. Strategies in rewriting theory

In a rewriting system, one specifies a set of rules that describe valid replacements of subformulas by
other ones, [43, 34]. For good references on word rewriting, see [7], and, on term rewriting, see [2, 42].
On some formulas of a rewriting system, the rewriting rules may produce conflicts, when two or more
rules can be applied. In order to transform a rewriting system into a computation algorithm, one needs to
specify a way to apply the rules in a deterministic way. To do this, one specifies what is called a reduction
strategy.

For example, in a word rewriting system, formulas are elements of a free monoid and we have
two canonical reduction strategies: the leftmost one and the rightmost one, where one always uses the
rewriting rule that can be applied on the leftmost or the rightmost subformula:

u

u ′

v

v ′

w
left
EY

right��

In term rewriting, formulas are morphisms of a Lawvere algebraic theory, [22]. There exist many pos-
sible rewriting strategies for term rewriting systems. Among them, one finds outermost and innermost
reduction strategies, where one first uses the rules that apply closer to the root or closer to the leaves of
the term:

inner
_ey

outer _%9
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2.2. Normalisation strategies

In modern programming languages that are based on rewriting mechanisms, such as Caml, [23], and
Haskell, [27], reduction strategies are implicitly used by the compiler to transform rewriting systems into
deterministic algorithms. In that setting, the innermost strategies include the call-by-value evaluation,
while the outermost strategies contain the call-by-need evaluation. Some programming languages, like
Tom, [3], include a dedicated grammar to explicitly construct user-defined reduction strategies.

In order to study the computational properties of reduction strategies, several models have been in-
troduced. In abstract rewriting, a reduction strategy is defined as a subgraph of the ambient abstract
rewriting system. This definition allows the introduction of some properties: for example, a normalisa-
tion strategy is a reduction strategy that reaches normal forms, [42]. Strategies in programming languages
are usually classified by corresponding notions of strategies in the λ-calculus, [25]. This has led to an
axiomatic treatment of a general setting of standardisation in rewriting theory, where strategies are seen
as standardisation systems of rewriting paths, [29].

Here, we introduce a notion of normalisation strategy for higher-dimensional rewriting systems that,
in turn, induces a notion of normal forms in every dimension, together with a homotopically coherent
reduction of every cell to its normal form.

2.2. Normalisation strategies

2.2.1. Sections of track polygraphs. Let n, p be natural numbers (or p = ∞) and let Σ be a track
(n, p)-polygraph. A section of Σ is a choice, for every n-cell f : u → v of the presented n-category Σ,
of an n-cell f̂ : u→ v in Σ∗ that satisfies the relation π(f̂) = f and the functorial conditions

1̂x = 1x and f̂ ?k g = f̂ ?k ĝ

for every (n− 1)-cell x of Σ and every pair (f, g) of k-composable n-cells of Σ, with 0 ≤ k < n− 1.
Let us note that such an assignment f 7→ f̂ is not assumed to be functorial with respect to the highest

composition ?n−1 of Σ. Indeed, such a property could only be required for a track (n, 0)-polygraph, i.e.,
when Σ is a free n-category.

Since, by hypothesis, the assignment f 7→ f̂ is compatible with the quotient map π, it extends to a
mapping of each n-cell f in Σ∗ to a parallel n-cell in Σ∗, still denoted by f̂, in such a way that f = g is
equivalent to f̂ = ĝ. Thereafter, we assume that, with every track (n, p)-polygraph we consider, comes
an implicitly chosen section.

2.2.2. Normalisation strategies. Let Σ be a track (n, p)-polygraph. A normalisation strategy for Σ is
a mapping σ of every k-cell f of Σ>, with n ≤ k < n+ p, to a (k+ 1)-cell

f
σf
//
f̂

where, for k ≥ n + 1, the notation f̂ stands for the k-cell f̂ = σs(f) ?k−1 σ
−
t(f), such that the relation

σ
f̂
= 1

f̂
is satisfied, together with the functorial condition

σf?ig = σf ?i σg

for every pair (f, g) of i-composable k-cells of Σ>, with n < k ≤ n+ p, 0 ≤ i < k and i 6= n− 1. Let
us note that 1̂x = 1x implies σ1x = 11x for every (n− 1)-cell x in Σ>.

9



2. Normalisation strategies for track polygraphs

A track (n, p)-polygraph is normalising if it admits a normalisation strategy. This property is inde-
pendent of the chosen section. Indeed, let us consider a track (n, p)-polygraph Σ, let us fix two sections
f 7→ f̂ and f 7→ f̃ of Σ and let us assume that σ is a normalisation strategy for Σ, equipped with the section
f 7→ f̂. Then, one checks that we get a normalisation strategy τ for the other section by defining τf as the
following composite:

f
σf
//
f̂

(σ
f̃
)−
//
f̃

2.2.3. Lemma. Let Σ be a track (n, p)-polygraph. A normalisation strategy σ for Σ satisfies the follow-
ing properties, for every possible k-cell f of Σ>, with k ≥ n:

σ1f = 11f and σf− = f− ?k−1 σ
−
f ?k−1 f̂

−.

Proof. We have σ1f = σ1f?k1f = σ1f ?k σ1f . Since σ1f is invertible for ?k, the first relation holds. For
the second relation, we have:

σf ?k−1 σf− = σf?k−1f− = σ1s(f) = 11s(f) .

Thus, σf− is the inverse for ?k−1 of σf, yielding:

σf− = s(σf)
− ?k−1 σ

−
f ?k−1 t(σf)

− = f− ?k−1 σ
−
f ?k−1 f̂

−.

2.3. The case of track (1, p)-polygraphs

Let Σ be a track (1, p)-polygraph. In the lower dimensions, a normalisation strategy σ for Σ specifies the
following assignments:

• For every 1-cell u of Σ>, a 2-cell

u
σu %9 û

of Σ> that satisfies σû = 1û and thus, in particular, σ1ξ = 11ξ for every 0-cell ξ of Σ.

• For every 2-cell f : u⇒ v of Σ>, a 3-cell

u
f

!5

σu �1

v

û
σ−v

>R
σf���

of Σ> that satisfies σ
f̂
= 1

f̂
and the following relations:

– If u is a 1-cell of Σ>, then σ1u = 11u :

u
1u

!5

σu �1

u

û
σ−u

=Q
σ1u���

= u

1u

�)

1u

5I11u���
u

10



2.3. The case of track (1, p)-polygraphs

– If f : u⇒ v and g : v⇒ w are 2-cells in Σ>, then σf?1g = σf ?1 σg:

u

f ?1 g
!5

σu �1

w

û
σ−w

=Q
σf?1g���

=
u

f
!5

σu �1

v

g
!5

σv
???

???

�)???
???

w

û

σ−v����

5I����σf ��� c©
û

σ−w

=Q
σg���

– If f : u⇒ v is a 2-cell in Σ>, then f̂− = σv ?1 σ
−
u and σf− = f− ?1 σ

−
f ?1 f̂

−:

v
f−

!5

σv �1

u

û
σ−u

=Q
σf−���

=

û
σ−v

� 
v
f− %9 u

σu
-A

f

)= v
σ−f��� σv %9 û

σ−u %9 u

• For every 3-cell A : fV g : u⇒ v of Σ>, a 4-cell

u

f

�)

g

5I vA���

σA �? u

f

�$

g

:Nσu %9 û σ−v
%9

σf���

σ−g���

v

of Σ> with σ
Â
= 1

Â
and such that the following relations hold:

– If f is a 2-cell of Σ>, then σ1f = 11f :

u

f

�)

f

5I v1f���

11f �? u

f

�$

f

:Nσu %9 û σ−v
%9

σf���

σ−f
���

v

– If A : fV f ′ : u⇒ v and B : gV g ′ : v⇒ w are 3-cells of Σ>, then σA?1B = σA ?1 σB:

u

f

�)

f ′

5IA���
v

g

�)

g ′

5IB���
w

σA ?1 σB �? u

f

�$

f ′

:Nσu %9 û σ−v
%9

σf���

σ−f ′
���

v

g

�$

g ′

:Nσv %9 û σ−w
%9

σg���

σ−g ′���

w

11



2. Normalisation strategies for track polygraphs

– If A : fV g : u⇒ v and B : gV h : u⇒ v are 3-cells of Σ>, then σA?2B = σA ?2 σB:

u

f

�#
g %9

h

;O

A���

B���

v
σA ?2 σB �? u

f

�$

h

:Nσu %9 û σ−v
%9

σf���

σ−h
���

v

– If A : fV g : u⇒ v is a 3-cell of Σ>, then Â = σf ?2 σ
−
g and σA− = A− ?2 σ

−
A ?2 Â

−:

u

g

��f
�-

g
1E

f

?Sv

A−���

Â���

Â−���

A− ?2 σ
−
A ?2 Â

−

�? u

g

��f
�-

g
1E

f

?Sv

A−���

A���

Â−���

2.3.1. Lemma. Let Σ be a track (1, p)-polygraph. Normalisation strategies for Σ are in bijective cor-
respondence with families of (k+ 1)-cells

σuϕv : uϕv → ûϕv

for every k in {1, . . . , p− 1}, every k-cell ϕ of Σ and every pair (u, v) of 1-cells of Σ∗ such that the
composite k-cell uϕv is defined.

Proof. We proceed by induction on the size of cells of Σ>. We already know that a normalisation
strategy σ has fixed values on identities, inverses and ?i-composites for i ≥ 1. As a consequence, using
the exchange relations, we get that the values of σ are entirely and uniquely determined by its values on
k-cells with shape uϕv, where ϕ is a k-cell of Σ and u, v are 1-cells of Σ>.

2.3.2. An alternative form of normalisation strategies. Let σ be a normalisation strategy for a track
(1, p)-polygraph Σ. For every k-cell f in Σ>, with 1 ≤ k ≤ p, we denote by f∗ the following k-cell
of Σ>:

f∗ = ((f ?k−1 σtk−1(f)) ?k−2 · · · ) ?1 σt1(f) .

This k-cell has source s(f) and target t̂(f)∗. If 1 ≤ k < p, then we have

σf∗ = σ∗f ,

which is a (k+1)-cell of Σ> with source f∗ and target f̂∗. Since every k-cell of Σ> is invertible for k ≥ 2,
one can recover σ from σ∗, so that the normalisation strategy σ is uniquely and entirely determined by
the values

σ∗uϕv : (uϕv)∗ → ûϕv
∗

12



2.3. The case of track (1, p)-polygraphs

for every k in {1, . . . , p− 1}, every k-cell ϕ of Σ and every pair (u, v) of 1-cells of Σ> such that uϕv
is defined. In the lowest dimensions, the alternative form σ∗ of the strategy σ consists of the following
data:

• For every 1-cell u of Σ>, we have σ∗u = σu.

• For every 2-cell f : u⇒ v of Σ>, a 3-cell

v
σ∗v

!
u

f
-A

σ∗u

)= û

σ∗f���

of Σ> such that the following relations hold:

– if u is a 1-cell of Σ>, then σ∗1u = 1σ∗u ,

u
σ∗u

!
u

1u
-A

σ∗u

)= û

σ∗1u���
= u

σ∗u

�)

σ∗u

5I1σ∗u���
u

– if f : u⇒ v and g : v⇒ w are 2-cells in Σ>, then σ∗f?1g = (f ?1 σ
∗
g) ?2 σ

∗
f :

w
σ∗w

�"
u

f ?1 g
-A

σ∗u

)= û

σ∗f?1g���
=

w

σ∗w

	�

v

g
,@

σ∗v
OOOOOO

OOOOOO

�1OOOOOO
OOOOOO

u

f
-A

σ∗u

(< û

σ∗g ���

σ∗f���

– If f : u⇒ v is a 2-cell in Σ>, then σ∗f− = f− ?1 (σ
∗
f )

−:

u
σ∗u

!
v

f−
-A

σ∗v

)= û

σ∗f−���
=

u

σ∗u
!5

f
???

???

�)???
???

û

v

f−
-A

c©
v σ∗v

AU
(σ∗f )

−���

13



2. Normalisation strategies for track polygraphs

• For every 3-cell A : fV g : u⇒ v of Σ>, a 4-cell

v σ∗v

�*
u

f �3

g

3G

σ∗u

(< û

A2�"
2222

2222
2222

σ∗g���

σ∗A �?

v
σ∗v

!
u

f
-A

σ∗u

)= û

σ∗f���

of Σ> such that the following relations hold:

– if f is a 2-cell of Σ>, then σ∗1f = 1σ∗f :

v
σ∗v

!
u

f
-A

σ∗u

)= û

σ∗f���

1σ∗f �?

v
σ∗v

!
u

f
-A

σ∗u

)= û

σ∗f���

– if A : f V f ′ : u ⇒ v and B : g V g ′ : v ⇒ w are 3-cells of Σ>, then σ∗A?1B =
(f ?1 σ

∗
B) ?2 σ

∗
A:

w

σ∗w

��

v

σ∗v
NNNN

NNNN

�0NNNNNNN

NNNNNNN

g
�3

g ′

2F

u

f �3

f ′

3G

σ∗u

(< û

A2�"
2222

2222
2222

B0!
0000

0000
0000

σ∗f ′���

σ∗g ′���

(f ?1 σ
∗
B)

?2σ
∗
A

�?

w

σ∗w

��

v

σ∗v
NNNN

NNNN

�0NNNNNNN

NNNNNNN

g
)=

u

f
)=

σ∗u

(< û

σ∗f���

σ∗g
���

– if A : f V g : u ⇒ v and B : g V h : u ⇒ v are 3-cells of Σ>, then σ∗A?2B =
((A ?1 σ

∗
v) ?2 σ

∗
B) ?3 σ

∗
A:

v σ∗v

�*
u

f
�0

g

$8

h

3G

σ∗u

(< û

A4�#
444444

B1�"
111111

σ∗h���

(A ?1 σ
∗
v)

?2σ
∗
B

�?

v σ∗v

�*
u

f �3

g

3G

σ∗u

(< û

A2�"
2222

2222
2222

σ∗g���

σ∗A �?

v
σ∗v

!
u

f
-A

σ∗u

)= û

σ∗f���

14



2.3. The case of track (1, p)-polygraphs

– if A : fV g : u⇒ v is a 3-cell of Σ>, then σ∗A− = (A− ?1 σ
∗
v) ?2 (σ

∗
A)

−:

v σ∗v

�*
u

g
�3

f

3G

σ∗u

(< û

A−
2�"

2222
2222

2222

σ∗f���

(A− ?1 σ
∗
v)

?2(σ
∗
A)

−

�?

v
σ∗v

!
u

g
-A

σ∗u

)= û

σ∗g���

2.3.3. Left and right normalisation strategies. Let Σ be a (1, p)-polygraph. A normalisation strat-
egy σ for Σ is a left one when it satisfies the following properties:

• For every pair (u, v) of 0-composable 1-cells of Σ>, we have σuv = σuv ?1 σûv:

uv
σuv

"6

σuv �1

ûv

ûv
σûv

<P
c©

• For every pair (f, g) of 0-composable k-cells of Σ>, with 2 ≤ k ≤ p, t1(f) = u ′ and s1(g) = v,
we have

σfg = σfv ?1 σu ′g.

In particular, when f : u⇒ u ′ and g : v⇒ v ′ are 0-composable 2-cells of Σ>:

uv

fg
"6

σuv �1

u ′v ′

ûv
σ−u ′v ′

:N
σfg��� =

u ′v u ′g

�,
σu ′v

CCC
CCC

�+CCC
CCC

uv

fv $8

σuv %9

σuv

2Fûv

σ−u ′v{{{{

3G{{{{

σûv %9 ûv
σ−u ′v ′

%9 u ′v ′

σfv���
σu ′g ���

c©

c©

In a symmetric way, a normalisation strategy σ is a right one when it satisfies:

σuv = uσv ?1 σuv̂ and σfg = uσg ?1 σfv ′ .

A track (1, p)-polygraph is left (resp. right) normalising when it admits a left (resp. right) normalisation
strategy.

2.3.4. Lemma. Let Σ be a track (1, p)-polygraph. Let k be in {2, . . . , p+ 1}, let f be k-cell f of Σ> with
1-source u and 1-target v and let w, w ′ be 1-cells of Σ> such that wfw ′ is defined. Then, if σ is a left
normalisation strategy for Σ, we have:

σwfw ′ = σwuw
′ ?1 σŵfw

′ ?1 σ
−
wvw

′ and σ∗wfw ′ = σ∗wuw
′ ?1 σ

∗
ŵfw

′ ?1 σ
∗
ŵuw ′ .

Symmetrically, if σ is a right normalisation strategy, then we have:

σwfw ′ = wuσw ′ ?1 wσfŵ ′ ?1 wvσ
−
w ′ and σ∗wfw ′ = wuσ∗w ′ ?1 wσ

∗
fŵ ′ ?1 σ

∗
wûw ′

.

15



2. Normalisation strategies for track polygraphs

Proof. In the case of a left normalisation strategy, the proof for right normalisation strategies being
symmetric, we have:

σfw ′ = σfw
′ ?1 σ1vw ′ = σfw

′ ?1 11vw ′ = σfw
′.

Then, using the exchange relation, we get:

σσwf = σwf?1σwv = σwf ?1 σσwv = σwf ?1 1σwv = σwf ?1 σwv.

Moreover, the definition of left normalisation strategy implies:

σσwf = σσwu ?1 σŵf = σwu ?1 σŵf.

From the last two computations, we deduce:

σwf = σwu ?1 σŵf ?1 σ
−
wv.

Finally, we have:

σ∗wfw ′ = σ(wfw ′)∗

= σwf∗w ′ ?1 σwvw ′

= σwuw
′ ?1 σŵf∗w

′ ?1 σ
−
wvw

′ ?1 σwvw ′

= σwuw
′ ?1 σŵf∗w

′ ?1 σŵvw
′ ?1 σŵuw ′

= σ∗wuw
′ ?1 σ

∗
ŵfw ′ ?1 σ

∗
ŵuw ′ .

2.3.5. Corollary. Let Σ be a track (1, p)-polygraph. Left (resp. right) normalisation strategies on Σ are
in bijective correspondence with families

σûϕ : ûϕ → ûϕ ( resp. σϕû : ϕû → ϕ̂u )

of (k + 1)-cells, indexed by 1 ≤ k ≤ p + 1, by k-cells ϕ of Σ and by 1-cells u of C such that the
composite ûϕ (resp. ϕû) exists.

Proof. Let us assume that σ is a left normalisation strategy. The property satisfied by σ on 1-cells of Σ>

gives, by induction on the size of 1-cells, that the values of σ on 1-cells of Σ> are determined by the
2-cells σûx, for x a 1-cell of Σ and u a 1-cell of Σ such that ûx is defined. Then, Lemma 2.3.1 tells us
that the values of σ on higher-dimensional cells of Σ> are determined by the values of σ on k-cells uϕ̂v
of Σ>, where ϕ is a k-cell of Σ and u, v are 1-cells of Σ>. We use Lemma 2.3.4 to conclude.

2.3.6. Theorem. Let Σ be a track (1, p)-polygraph. The following assertions are equivalent:

i) Σ is acyclic,

ii) Σ is normalising,

iii) Σ is left normalising,

iv) Σ is right normalising.
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3. Track-polygraphic resolutions generated by convergent 2-polygraphs

Proof. Let us assume that there exists a normalisation strategy σ for Σ. We consider a k-cell f in Σ>, for
some 1 ≤ k ≤ p. By definition of a normalisation strategy, the (k+ 1)-cell σf has source f and target f̂.
Thus, if g is a k-cell which is parallel to f, the (k + 1)-cell σf ?k σ−g of Σ> has source f and target g,
proving that Σk+1 forms a homotopy basis of Σ>k . Hence Σ is acyclic.

Conversely, let us assume that Σ is acyclic and let us define a right normalisation strategy σ (the case
of a left one is symmetric). We can choose a 2-cell

σxû : xû⇒ x̂u

for every 1-cell x in Σ and every 1-cell u in C such that xû is defined. Then, let us consider k ∈
{1, . . . , p− 2}. Using the fact that Σk+2 is a homotopy basis of Σ>k+1, we choose an arbitrary (k+ 2)-cell

σϕû : ϕû −→ ϕ̂u

for every (k+ 1)-cell ϕ in Σ and every 1-cell u in Σ>. We use Corollary 2.3.5 to conclude.

2.3.7. Corollary. Let C be a small category and let p be a non-zero natural number. Then C is FDTp if
and only if there exists a finite, (left, right) normalising track (1, p− 1)-polygraph presenting C.

3. TRACK-POLYGRAPHIC RESOLUTIONS

GENERATED BY CONVERGENT 2-POLYGRAPHS

3.1. Convergent 2-polygraphs

Let us recall notions and results from rewriting theory for 2-polygraphs [14, 15]. We fix a 2-polygraph Σ.

3.1.1. Normal forms and termination. We say that a 1-cell u of Σ∗1 reduces to a 1-cell v when Σ∗

contains a non-degenerate 2-cell with source u and target v. We say that u is a normal form when it
does not reduce to a 1-cell. A normal form of u is an 1-cell v which is a normal form and such that u
reduces to v. A reduction sequence is a countable family (ui)i∈I of 1-cells such that each ui reduces to
the following ui+1.

We say that Σ terminates when it has no infinite reduction sequence. In that case, every 1-cell has
at least one normal form. Moreover, Noetherian induction allows definitions and proofs of properties of
1-cells by induction on the maximum size of the 2-cells leading to normal forms.

3.1.2. Branchings and confluence. A branching is a non-ordered pair (f, g) of 2-cells of Σ∗ with the
same source. For f : u ⇒ v and g : u ⇒ w, the source of (f, g) is u and its target is (v,w), which we
write (f, g) : u⇒ (v,w). A branching (f, g) is local when f and g have size 1 and, in that case, it is:

• aspherical when f = g ;

• Peiffer when there exist 2-cells f ′, g ′ and an i ∈ {0, 1} such that

f = f ′ ?i s(g
′) and g = s(f ′) ?i g

′ ;

• overlapping otherwise.
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3. Track-polygraphic resolutions generated by convergent 2-polygraphs

Branchings are compared by the order ⊆ generated by the relations

(f, g) ⊆
(
h ?i f ?i k, h ?i g ?i k)

given for any branching (f, g), any 2-cells h, k and any i ∈ {0, 1}. A branching is minimal when it
is a minimal element for ⊆. A critical branching is a minimal overlapping branching. The terminol-
ogy "aspherical" and "Peiffer" comes from the corresponding notions for spherical diagrams in Cayley
complexes associated to presentations of groups, see [26]. The term "critical" comes from rewriting
theory, [7, 2].

A branching (f, g) is confluent when there exists a pair (f ′, g ′) of 2-cells of Σ∗ with the following
shape:

· f ′

�#
·

f ';

g #7

·

· g ′

;O

We say that Σ is confluent (resp. locally confluent) when all of its branchings (resp. local branching) are
confluent.

In a confluent 2-polygraph, every 1-cell has at most one normal form. Local confluence is equivalent
to confluence of critical branchings. For terminating 2-polygraphs, Newman’s Lemma ensures that local
confluence and confluence are equivalent properties, [34].

3.1.3. Convergence. We say that Σ is convergent when it terminates and it is confluent. In that case,
every 1-cell u has a unique normal form. Such a Σ is a convergent presentation of Σ and has a canonical
section ι sending u to the corresponding normal form û. Moreover, we have u ≡Σ2 v if and only if
û = v̂. As a consequence, a finite and convergent 2-polygraph Σ yields a representation of the 1-cells of
the category Σ, together with a decision procedure for the corresponding word problem.

3.1.4. Reduced 2-polygraphs. A 2-polygraph Σ is reduced when, for every 2-cell ϕ : u ⇒ v in Σ,
then u is a normal form for Σ2 \ {ϕ} and v is a normal form for Σ2. Let us note that, in that case, for
every 1-cell u of Σ∗, there exists finitely many 2-cells with size 1 and source u in Σ∗: indeed, we have
exactly one such 2-cell for every decomposition u = vwv ′ such that w is the source of a 2-cell of Σ and
the number of decompositions u = vwv ′ is finite in a free category.

3.1.5. Lemma. For every (finite) convergent 2-polygraph, there exists a (finite) Tietze-equivalent, re-
duced and convergent 2-polygraph.

Proof. Let Σ be a (finite) convergent 2-polygraph Σ. We successively transform Σ as follows. First, we
replace every 2-cell ϕ : u ⇒ v in Σ with ϕ ′ : u ⇒ û. Then, if there exist several 2-cells in Σ with
the same source, we drop all of them but one. Finally, we drop all the remaining 2-cells whose source is
reducible by another 2-cell. After each step, we check that the (finite) 2-polygraph we get is convergent
and that it is Tietze-equivalent to the former one. Moreover, the result is a reduced 2-polygraph.

Remark. This result was proved by Métivier for term rewriting systems, [30], and by Squier for word
rewriting systems, [38]. The proof works for any type of rewriting systems, including n-polygraphs for
any n.
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3.1. Convergent 2-polygraphs

3.1.6. The order relation on branchings. Let Σ be a reduced 2-polygraph and let u be a 1-cell in Σ∗.
We define the relation � on 2-cells of Σ∗ with size 1 and source u as follows. If ϕ and ψ are 2-cells
of Σ and if f = vϕv ′ and g = wψw ′ have source u, then we write f � g when v is smaller than w,
i.e., informally, when the part of u on which f acts is more at the left than the part on which g acts.
By convention, we denote branchings of Σ in increasing order, i.e., (f, g) when f � g, which is always
possible thanks to the following result.

3.1.7. Lemma. Let Σ be a reduced 2-polygraph. The relation � is an order, whose restriction to 2-cells
with size 1 and source u is total, for any 1-cell u.

Proof. From its definition, we already know that the relation � is reflexive, transitive and total. For
antisymmetry, we assume that f = vϕv ′ and g = wψw ′ are 2-cells with size 1 and source u, such that
f � g and g � f, i.e., such that v and w have the same size. Then, using the fact that Σ∗1 is free, we
have v = w and either s(ϕ) = s(ψ) or s(ϕ) = s(ψ)a or s(ϕ)a = s(ψ): the latter two cases cannot
occur, because Σ is reduced and, from that same hypothesis we get, in the first case, that ϕ = ψ, hence
f = g.

3.1.8. The leftmost and rightmost normalisation strategies. Let Σ be a reduced 2-polygraph. If u is
a 1-cell of Σ∗ that is not in normal form, we denote by λu and ρu the minimum and maximum elements
for � of the (finite, non-empty) set of 2-cells with size 1 and source u in Σ∗. We sometimes use λ(u)
and ρ(u) to denote the respective targets of λu and ρu. We note that, if (u, v) is a pair of composable
1-cells of Σ∗, we have λuv = λuv when u is reducible and ρuv = uρv when v is reducible.

If Σ is also terminating, the leftmost and the rightmost normalisation strategies are respectively de-
noted by λ∗ and ρ∗ and defined by Noetherian induction on 1-cells of Σ∗ as follows:

λ∗û = 1û λ∗u = λu ?1 λ
∗
λ(u)

ρ∗û = 1û ρ∗u = ρu ?1 ρ
∗
ρ(u).

3.1.9. Lemma. The normalisation strategies λ∗ and ρ∗ are respectively left and right normalisation
strategies for Σ such that, for every 1-cell u in Σ∗, the 2-cells λ∗u and ρ∗u are in Σ∗.

Proof. Let us check that λ∗ is a leftmost normalisation strategy, the proof for ρ∗ being symmetric. We
must prove that, for every pair (u, v) of composable 1-cells of Σ∗, the following relation holds:

λ∗uv = λ∗uv ?1 λ
∗
ûv.

We proceed by Noetherian induction on the 1-cell u. If u is a normal form, then λ∗u = 1u and λ∗ûv = λ
∗
uv,

so that the relation is satisfied. Otherwise, we have, using the definition of λ∗:

λ∗uv = λuv ?1 λ
∗
λ(uv) = λuv ?1 λ

∗
λ(u)v.

We apply the induction hypothesis to λ(u)v to get:

λ∗uv = λuv ?1 λ
∗
λ(u)v ?1 λ

∗
ûv = λ∗uv ?1 λ

∗
ûv.

The fact that λ∗u is in Σ∗ is also proved by Noetherian induction on u, using the definition of λ∗ and the
facts that both 1û and λu are 2-cells of Σ∗.
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3. Track-polygraphic resolutions generated by convergent 2-polygraphs

Remark. A reduced and terminating 2-polygraph can have several left or right strategies, beside the
leftmost and the rightmost ones. Indeed, let us consider the reduced and terminating 2-polygraph Σ with
one 0-cell, three 1-cells a, b, c and the following three 2-cells:

aac
α %9 a bb

β %9 cc acc
γ %9 c

Let us prove that Σ admits at least two different left normalisation strategies. For that, we examine the
1-cell aabb and all the 2-cells of Σ∗ from aabb to its normal form ac:

aabb
aaβ %9 aacc

αc
�/

aγ

/C ac

Thus, if σ is a normalisation strategy, the 2-cell σaabb must be either aaβ ?1 αc or aaβ ?1 aγ. Since the
1-cells a, aa and aab are normal forms, assuming that σ is a left strategy still leaves us with the same
choice. Hence, we can define a left normalisation strategy σ for Σ as follows:

σu =

{
aaβ ?1 aγ if u = aabb

λ∗u otherwise.

Thus, we have a left normalisation strategy for Σ, distinct from λ∗, as proved thereafter:

σaabb = aaβ ?1 aγ 6= aaβ ?1 αc = λaabb ?1 λaacc = λ∗aabb.

Let us note that this phenomenon does not come from the fact that Σ is not confluent, since we can add
the 2-cell δ : bcc ⇒ ccb to Σ to get a reduced, convergent 2-polygraph which still has at least two left
normalisation strategies. From Σ, we build a symmetric (for ?0) 2-polygraph that admits at least two
right normalisation strategies.

However, we can ensure that, if σ is a left (resp. right) normalisation strategy for a reduced and
terminating 2-polygraph Σ such that, for every 1-cell u of Σ∗, the 2-cell σu is in Σ∗, then this same 2-cell
admits a decomposition

σu = λu ?1 gu (resp. σu = ρu ?1 gu )

with gu a 2-cell of Σ∗. Indeed, if σ is a left strategy, we consider the decomposition λu = vϕw. By
definition of λu, the 1-cell vs(ϕ) is the source of only one 2-cell of Σ∗ with size 1, namely vϕ. Hence,
since σvs(ϕ) is a 2-cell of Σ∗ with source vs(ϕ), it admits a decomposition

σvs(ϕ) = λvs(ϕ) ?1 h

with hu a 2-cell of Σ∗. We define the 2-cell gu of Σ∗ as

gu = hw ?1 σv̂s(ϕ)w

and use the hypothesis on σ to get:

σu = σvs(ϕ)w ?1 σv̂s(ϕ)w = λvs(ϕ)w ?1 gu = λu ?1 gu.

The case of a right normalisation strategy is symmetric.
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3.2. The acyclic track (1, 2)-polygraph of generating confluences

3.2. The acyclic track (1, 2)-polygraph of generating confluences

We fix a reduced convergent 2-polygraph Σ and its rightmost normalisation strategy, thereafter denoted
by σ.

3.2.1. Critical branchings of 2-polygraphs. By case analysis on the source of critical branchings of Σ,
we can conclude that they must have one of the following two shapes

u1
//   u2 //

FF v
//

ϕ
EY

ψ ��

u1
//

��
u2 //

BB
v
//

ϕ
EY

ψ��

where ϕ, ψ are 2-cells of Σ. The 2-polygraph Σ being reduced, the first case cannot occur since, oth-
erwise, the source of ϕ would be reducible by ψ. Thus, every critical branching of Σ must have shape
(ϕv, u1ψ). We write the branching in that order since, by definition of �, we have ϕv � u1ψ.

We also note that the 1-cells u1, u2 and v are normal forms and cannot be identities. Indeed, they are
normal forms since, otherwise, at least one of the sources of ϕ and of ψ would be reducible by another
2-cell, preventing Σ from being reduced. Ifwwas an identity, then the branching would be Peiffer. Thus,
if u1 (resp. v) was an identity, then the source of ψ (resp. ϕ) would be reducible by ϕ (resp. ψ).

Finally, if we write u = u1u2, the definitions of λuv and of ρuv imply that we have:

λuv = ϕv and ρuv = u1ψ.

From all those observations, we conclude that every critical branching b of Σ must have shape

b =
(
ϕv̂, ρuv̂

)
where u and v are 1-cells of Σ∗ such that uv is defined and where ϕ is a 2-cell of Σ with source u. As a
consequence, a finite, convergent and reduced 2-polygraph has finitely many critical branchings.

3.2.2. The basis of generating confluences. The basis of generating confluences of Σ is the cellular
extension c2(Σ) of Σ> made of one 3-cell

ûv̂ σûv̂

�(
uv̂

ϕv̂ )=

σuv̂

.B ûv
ωb���

for every critical branching b = (ϕv̂, ρuv̂) of Σ. Alternatively,ωb can be pictured as follows:

uv̂

(ϕv̂)∗

�+

ϕ̂v
∗

3G ûv
ωb���
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3. Track-polygraphic resolutions generated by convergent 2-polygraphs

3.2.3. Lemma. The rightmost normalisation strategy of Σ extends to a right normalisation strategy
of c2(Σ).

Proof. First, we define a 3-cell σ∗f : f
∗ V f̂∗ in c2(Σ)>, for f a 2-cell of Σ∗, by Noetherian induction on

the source of f. If this source is a normal form u, then f = f∗ = 1u and σ∗f must be 11u . Now, let us
fix a 1-cell u, that is not a normal form. Let us assume that, for every 1-cell v in which u reduces and
every 2-cell f in Σ∗ with source v, we have defined σ∗f . Let us start by defining a 3-cell σ∗ϕŵ in c2(Σ)>

for every 2-cell ϕ : v⇒ v̂ in Σ and every 1-cell w in Σ such that u = vŵ. We proceed by case analysis
on the type of local branching of b = (ϕŵ, ρu).

• If b is aspherical, then ρu = ϕŵ. In that case, we define σ∗ϕŵ = 1(ϕŵ)∗ .

• The branching b cannot be Peiffer, by hypothesis.

• Otherwise, we have ŵ = ŵ1ŵ2 and b1 = (ϕŵ1, ρvŵ1) is a critical branching of Σ. We define the
3-cell σ∗ϕŵ of c2(Σ)> as the following composite:

v̂ŵ

σv̂ŵ1ŵ2

IIIIII

�.IIII

ωb1ŵ2

���

σv̂ŵ

�0
u

ϕŵ
3G{{{{{{{{

{{{{{{{{

ρu �+CCCCCCCC

CCCCCCCC v̂w1ŵ2 σv̂w1ŵ2 %9 û

u ′ŵ2

σu ′ŵ2uuu uuu

0Duuu uuu

σu ′ŵ2

/C

(σ∗σv̂ŵ1 ŵ2
)−���

σ∗σu ′ ŵ2���

Hence, we have defined a 3-cell σ∗ϕŵ : (ϕŵ)∗ ⇒ ϕ̂w
∗ in c2(Σ)>. We extend this definition to every

2-cell f in Σ∗ with source u by using the commutation properties of a right normalisation strategy with
the compositions.

Then, we extend σ to every 2-cell of c2(Σ)> by using the commutation properties of a normalisation
strategy with the inverse.

3.2.4. Proposition. The track (1, 2)-polygraph c2(Σ) is acyclic.

Remark. This result is already contained in [15], with a different proof. Indeed, there it was shown
that the generating confluences of a convergent n-polygraph Σ form a homotopy basis of the track n-
category Σ>.

3.2.5. Corollary. A category with a finite convergent presentation is FDT3.

3.2.6. Corollary (Squier, [39]). A monoid with a finite convergent presentation has finite derivation
type.

3.3. The acyclic track (1, 3)-polygraph of generating triple confluences

Let Σ be a reduced and convergent 2-polygraph.
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3.3. The acyclic track (1, 3)-polygraph of generating triple confluences

3.3.1. Triple branchings of 2-polygraphs. A triple branching of Σ is a triple (f, g, h) of 2-cells of Σ∗

with the same source and such that f � g � h. The triple branching (f, g, h) is local when f, g and h
have size 1. A local triple branching (f, g, h) is:

• aspherical when either (f, g) or (g, h) is aspherical;

• Peiffer when either (f, g) or (g, h) is Peiffer;

• overlapping, otherwise.

Triple branchings are ordered by inclusion, similarly to branchings. A critical triple branching is a
minimal overlapping triple branching. Such a triple branching can have two different shapes, whereϕ,ψ
and χ are generating 2-cells (those two shapes of critical triple branchings are sufficient for a reduced
2-polygraph but, in a general situation, the other possible shape of critical branchings, with an inclusion
of one source into the other one, generates several other possibilities):

u1
//

��
u2 // BBu3 //

��
u4 // v

//

ϕ
EY

ψ
��

χ
EY

or
u1
//

��
u2 // BB

u3
// u4 //

��

v
//

ϕ
EY

ψ
��

χ
EY

We note that, in either case, the corresponding critical triple branching b has shape

b =
(
(f, g)v̂, ρuv̂

)
=
(
fv̂, gv̂, ρuv̂

)
where (f, g) is a critical branching of Σ with source u and v is a 1-cell of Σ∗. Indeed, for the first (resp.
second) case, we note that v must be a normal form for Σ to be reduced, we write u = u1u2u3u4,
f = ϕu4 (resp. f = ϕu3u4), g = u1ψ and we use the definition of ρuv to conclude that ρuv = u1u2χ

(resp. ρuv = u1u2u3χ). As a consequence of this classification, a finite, reduced and convergent 2-
polygraph has a finite number of critical triple branchings.

3.3.2. The basis of generating triple confluences. The basis of generating triple confluences of Σ is
the cellular extension c3(Σ) of c2(Σ)> made of one 4-cell

ûv̂ σûv̂

�+
uv̂

f∗v̂  4

g∗v̂

2F

σuv̂

'; ûv

ωf,gv̂1�"
1111

1111
1111

σ∗g∗v̂���

ωb �?

ûv̂
σûv̂

�"
uv̂

f∗v̂
-A

σuv̂

(< ûv

σ∗f∗v̂���

for every critical triple branching b = (fv̂, gv̂, ρuv̂) of Σ. By definition of the notations A∗ and Â for a
2-cell or 3-cell A, the 4-cellωb can also be written

uv̂

(f∗v̂)∗

�'

(f̂v)∗

7Kûv
ωb �? uv̂

(f∗v̂)∗

�'

(f̂v)∗

7Kûv(ωf,gv̂)
∗

���
ω̂f,gv

∗
���
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3. Track-polygraphic resolutions generated by convergent 2-polygraphs

3.3.3. Lemma. The right normalisation strategy of c2(Σ) extends to a right normalisation strategy
of c3(Σ).

Proof. First, we define a 4-cell σ∗A : A∗ �? Â∗, for A a 3-cell of c2(Σ)∗ by Noetherian induction on the
1-source of A. If this source is a normal form, then we define σ∗A = 111u . Now, let us fix a 1-cell u
that is not a normal form. We assume that, for every 1-cell v in which u reduces and every 3-cell A in
c2(Σ)∗ with 1-source v, we have defined the 4-cell σ∗A. We start by defining a 4-cell σ∗ωf,gŵ, for every

critical branching (f, g) of Σ with source v and every 1-cell w in Σ such that u = vŵ. We proceed by
case analysis on the type of local triple branching of b = (fŵ, gŵ, ρu).

• If b is aspherical, then ρu = gŵ. In that case, we define σ∗ωf,gŵ = 1(ωf,gŵ)∗ .

• The triple branching b cannot be Peiffer, by hypothesis.

• Otherwise, we have ŵ = ŵ1ŵ2 and b1 = (fŵ1, gŵ1, ρvŵ1) is a critical triple branching of Σ. We
define the 4-cell σ∗ωf,gŵ as the following composite:

v ′ŵ

σv ′ŵ1ŵ2

JJJJJJ

�.JJJJ

ωb1ŵ2

σv ′ŵ

�0
vŵ

fŵ
2Fxxxxxxxx

xxxxxxxx

ρvŵ1ŵ2 �,EEEEEEEE

EEEEEEEE v̂w1ŵ2 σv̂w1ŵ2 %9 v̂w

w ′ŵ2

σw ′ŵ2uuu uuu

0Duuu uuu

σw ′ŵ2

.B

(σ∗σv ′ŵ1 ŵ2
)−���

σ∗σw ′ ŵ2���

Hence, we have defined a 4-cell σ∗ωf,gŵ : (ωf,gŵ)
∗ ⇒ ω̂f,gw

∗ in c3(Σ)>. We extend this definition to
every 3-cell A in c2(Σ)∗ with 1-source u by using the commutation properties of a right normalisation
strategy with the compositions.

Then, we use the commutation properties of a normalisation strategy with the inverse to extend σ to
any 3-cell of c2(Σ)>.

3.3.4. Proposition. The track (1, 3)-polygraph c3(Σ) is acyclic.

3.3.5. Corollary. A category with a finite convergent presentation is FDT4.

3.4. The acyclic track (1,∞)-polygraph generated by a convergent 2-polygraph

Let Σ be a reduced and convergent 2-polygraph and let us extend it into an acyclic track (1,∞)-polygraph
denoted by c∞(Σ) and whose generating p-cells, for p ≥ 3, are (indexed by) the (p − 1)-fold critical
branchings of Σ. We proceed by induction on p, having already seen the base cases, for p = 2 and p = 3.
The induction case follows the construction of c3(Σ), so we go faster here.
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3.4. The acyclic track (1,∞)-polygraph generated by a convergent 2-polygraph

3.4.1. Higher branchings of 2-polygraphs. A p-fold branching of Σ is a family (f1, . . . , fp) of 2-cells
of Σ∗ with size 1, with the same source and such that f1 � · · · � fp. We define local, aspherical, Peiffer,
overlapping, minimal and critical branchings in a similar way to the cases p = 2 and p = 3. As before,
we study the possible shapes of a p-fold critical branching b of Σ and we conclude that it must have
shape

b =
(
cv̂, ρuv̂

)
where c is a critical (p− 1)-fold branching of Σ with source u. Hence, if Σ is finite, it has finitely many
critical p-fold branchings.

3.4.2. The basis of generating p-fold confluences. The basis of generating p-fold confluences of Σ is
the cellular extension cp(Σ) of cp−1(Σ)> made of one (p+ 1)-cell

ωb :
(
ωcv̂

)∗ −→ ω̂cv
∗

for every critical p-fold branching b = (cv̂, ρuv̂) of Σ.
The extension of the right normalisation strategy to cp(Σ) is made in the same way as in the case

p = 3. It relies on a Noetherian induction and a case analysis, whose main point is to define a (p+1)-cell

σ∗ωcŵ : (ωcŵ)
∗ −→ ω̂cw

∗

in cp(Σ)> for every local p-fold branching

b =
(
cŵ, ρvŵ

)
of Σ such that ŵ = ŵ1ŵ2 and such that b1 = (cŵ1, ρvŵ) is a critical p-fold branching of Σ. As in the
case p = 3, we define the (p+ 1)-cell σ∗ωcŵ as the following composite, where f is the first 2-cell of the
critical p-fold branching c:

v ′ŵ

σv ′ŵ1ŵ2

JJJJJJ

�.JJJJ

ωb1ŵ2

σv ′ŵ

�0
vŵ

fŵ
2Fxxxxxxxx

xxxxxxxx

ρvŵ1ŵ2 �,EEEEEEEE

EEEEEEEE v̂w1ŵ2 σv̂w1ŵ2 %9 v̂w

w ′ŵ2

σw ′ŵ2uuu uuu

0Duuu uuu

σw ′ŵ2

.B

(σ∗σv ′ŵ1 ŵ2
)−���

σ∗σw ′ ŵ2���

As a conclusion of this construction, we get that the track (1, p)-polygraph cp(Σ) is acyclic.

3.4.3. Theorem. Every convergent 2-polygraph Σ extends to a Tietze-equivalent, acyclic track (1,∞)-
polygraph c∞(Σ), whose generating p-cells, for every p ≥ 3, are indexed by the critical (p − 1)-fold
branchings of Σ.

As a consequence, we have proved:

3.4.4. Theorem. A category with a finite convergent presentation is FDT∞.

3.4.5. Corollary. If C is a category with a convergent presentation with no critical p-fold branching,
for some p ≥ 2, then dpol(C) ≤ p.
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4. Abelianisation of track-polygraphic resolutions

4. ABELIANISATION OF TRACK-POLYGRAPHIC RESOLUTIONS

4.1. Resolutions of finite type

4.1.1. Modules over a category, [32]. Let C be a small category. A C-module is a functor from C to
the category of Abelian groups Ab. The C-modules and natural transformations between them form an
Abelian category with enough projectives, denoted by Mod(C). Equivalently, Mod(C) can be described
as the category of additive functors from ZC to Ab, where ZC is the free Z-category over C: its objects
are the ones of C and each hom-set ZC(x, y) is the free Abelian group generated by C(x, y).

A free C-module is a coproduct of representable functors ZC(p,−), denoted by Cp. A C-moduleM
is finitely generated if there exists an epimorphism of C-modules F→M, with F free.

The tensor product over C of a Co-module M and a C-module N is the Abelian group M ⊗C N

defined by:

M⊗C N =

⊕
x∈C0

M(x)⊗Z N(x)

 /
Q

where Q is the subgroup of
⊕
x∈C0

M(x)⊗Z N(y) generated by the elements

M(u)(a)⊗ b− a⊗N(u)(b), u ∈ C(x, y), a ∈M(y), b ∈ N(x).

4.1.2. Modules of type FPp. Let C be a small category. A C-module M is of homological type FPp,
for 0 ≤ p ≤ ∞, when there exists a projective, finitely generated resolution of M in the category of
C-modules:

Pp // Pp−1 // · · · // P0 //M // 0.

As a generalisation of Schanuel’s lemma, we have, given two exact sequences

0 // Pp // Pp−1 // · · · // P0 //M // 0

and
0 // P ′p // P ′p−1 // · · · // P ′0

//M // 0

with Pi and P ′i projective and finitely generated for every 0 ≤ i ≤ p − 1, then Pp is finitely generated if
and only if P ′p is finitely generated. This yields the following characterisation of the property FPp:

4.1.3. Lemma. Let C be a small category, let M be a C-module and let p be a natural number. The
following assertions are equivalent:

i) The C-moduleM is of homological type FPp.

ii) There exists a free, finitely generated resolution ofM

Fp // Fp−1 // · · · // F0 //M // 0.
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4.2. Categories of finite homological type

iii) The C-module M is finitely generated and, for every 0 ≤ k < p and every finitely generated and
projective resolution ofM

Pk
dk
// Pk−1 // · · · // P0 //M // 0,

the C-module Ker dk is finitely generated.

4.1.4. Lemma. Let LanF : Mod(C) → Mod(D) be the additive left Kan extension along a functor
F : C → D. If M is a C-module of homological type FPp then LanF(M) is a D-module of homological
type FPp.

Proof. Let us assume thatM is a C-module of type FPp. Then there exists a finitely generated, projective
resolution P∗ →M. If ξ is a 0-cell in D, then we have:

LanF(M)(ξ) = ZD(F, ξ)⊗C M.

Since each C-module Pi is finitely generated and projective, then so is the D-module LanF(Pi). Moreover,
the functor LanF is right exact: it follows that LanF(P∗) → LanF(M) is a finitely generated, projective
resolution. This proves that LanF(M) is of type FPp.

4.2. Categories of finite homological type

4.2.1. Natural systems of Abelian groups. Let C be a category. The category of factorisations of C is
the category, denoted by FC, whose objects are the morphisms of C and whose morphisms fromw tow ′

are pairs (u, v) of morphisms of C such that the following diagram commutes in C:

w
//

c© v
��

u

OO

w ′
//

In such a situation, the triple (u,w, v) is called a factorisation of w ′. Composition in FC is defined
by pasting: if (u, v) : w → w ′ and (u ′, v ′) : w ′ → w ′′ are morphisms in FC, then (u, v)(u ′, v ′) is
(u ′u, vv ′). The identity of w is (1s(w), 1t(w)).

A natural system (of Abelian groups) on C is an FC-module D, i.e., a functor D : FC → Ab. As
in [5], we denote by Dw the Abelian group which is the image of w by D. If there is no confusion,
we denote by uav the image of a ∈ Dw through the morphism of groups D(u, v) : Dw → Dw ′ . The
category of natural systems on C is denoted by Nat(C).

4.2.2. Free natural systems. Given a subset X of the set of 1-cells of C, we denote by FC[X] the free
natural system on C generated by X, which is defined by

FC[X] =
⊕

x ∈ XFCx.
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4. Abelianisation of track-polygraphic resolutions

In particular, if Σ is a (1, p)-polygraph such that Σ ' C, we consider:

• The free natural system FC[Σ0] generated by the 1-cells 1x, for x ∈ Σ0. If w is a 1-cell in C, then
FC[Σ0]w is the free Abelian group generated by the pairs (u, v) of 1-cells of C such that uv = w.

• For every 1 ≤ k ≤ p, the free natural system FC[Σk] generated by the 1-cells ϕ, for ϕ ∈ Σk. If w
is a 1-cell in C, then FC[Σk]w is the free Abelian group generated by the triples (u,ϕ, v), thereafter
denoted by u[ϕ]v, made of a k-cell ϕ of Σk and 1-cells u, v of C such that uϕv = w.

4.2.3. Categories of finite homological type. The property for a small category C to be of homological
type FPp is defined according to a category of modules over one of the categories in following diagram

Co ++ q1

��

FC π
// // Co × C

p1 22 22

p2 -- --

C>

C 22 q2

@@

where C> is the groupoid generated by C, π is the projection u 7→ (s(u), t(u)), p1 and p2 are the
projections of the cartesian product, q1 and q2 are the injections uo 7→ u− and u 7→ u. Let us denote
by Z the constant natural system on C given, for any 1-cell u of C, by

Zu = Z and Z(u, 1) = Z(1, u) = 1Z,

The functor Lanπ(Z) is the Co×C-module ZC and the functors Lanpiπ(Z), Lanqipiπ(Z) are the constant
modules equal to Z.

A small category C is of homological type

i) FPp when the constant natural system Z if of type FPp,

ii) bi-FPp when the Co × C-module ZC is of type FPp,

iii) left-FPp when the constant C-module Z is of type FPp,

iv) right-FPp when the constant Co-module Z is of type FPp,

v) top-FPp when the constant C>-module Z is of type FPp.

4.2.4. Proposition. i) For small categories, we have the following implications:

FPp ⇒ bi-FPp ⇒ left-FPp or right-FPp ⇒ top-FPp.

ii) For small groupoids, the conditions FPp, bi-FPp, left-FPp, right-FPp and top-FPp are equivalent.

Proof. Let us prove i). We have Lanπ(Z) = ZC and Lanqi(Z) = Z. Hence the first and last implications
are consequences of Lemma 4.1.4. If P∗ → ZC is a finitely generated resolution of Co × C-modules
then P∗ ⊗C Z (resp. Z ⊗C P∗) is a finitely generated resolution of the C-module (resp. Co-module) Z,
yielding the middle implication.
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4.2. Categories of finite homological type

Let us prove ii). For a groupoid G, the G-modules, Go-modules, Go ×G-modules and G>-modules
coincide. Hence the conditions bi-FPp, left-FPp, right-FPp and top-FPp are equivalent. There remains
to prove that left-FPp implies FPp. First, we define, for every G-module M, a natural system M̃ on G
by M̃g = M(t(g)), for any 1-cell g in G, and M̃(h, k) = M(k) : M(t(g)) → M(t(g ′)), for any
factorisation g ′ = hgk in G. As a direct consequence of this construction, if M is a finitely generated
projective G-module then M̃ is a finitely generated projective natural system on G. Thus, if P∗ → Z is a
projective resolution of finitely generated G-modules, then P̃∗ → Z is a projective resolution of finitely
generated natural systems.

Remark. The converse of the second and third implications in i) of Proposition 4.2.4 do not hold in gen-
eral. Indeed, Cohen constructed a right-FP∞ monoid which is not left-FP1: thus, the properties top-FPp,
left-FPp and right-FPp are not equivalent in general, [10]. Moreover, monoids with a finite convergent
presentation are of types left-FP∞ and right-FP∞, [38, 1, 19], but there exists a finitely presented monoid,
of types left-FP∞ and right-FP∞, which does not satisfy the homological finiteness condition FHT, in-
troduced by Pride and Wang, [20]; since the property FHT and bi-FP3 are equivalent, [21], it follows that
the properties left-FPp and right-FPp do not imply the property bi-FPp in general. We conjecture that the
converse of the first implication is not true either, but this is still an open problem.

4.2.5. Finite homological type and homology. The cohomology of categories with values in natural
system was defined in [44] and [5]. Let us define the homology of a category C with values in a con-
travariant natural system D on C, that is an (FC)o-module.

We consider the nerve N∗(C) of C, with boundary maps di : Nn(C) → Nn−1(C), for 0 ≤ i ≤ n.
For s = (u1, . . . , un) in Nn(C), we denote by s the composite 1-cell u1 · · ·un of C. For every natural
number n, the n-th chain group Cn(C, D) is defined as the Abelian group

Cn(C, D) =
⊕

s∈Nn(C)

Ds.

We denote by ιs the embedding of Ds into Cn(C, D). The boundary map d : Cn(C, D)→ Cn−1(C, D)
is defined, on the component Ds of Cn(C, D), by:

dιs = ιd0(s)u1∗ +

n−1∑
i=1

(−1)iιdi(s) + (−1)nιdn(s)u
∗
n ,

with s = (u1, . . . , un) and where u1∗ and u∗n respectively denoteD(u1, 1) andD(1, un). The homology
of C with coefficients in D is defined as the homology of the complex (C∗(C, D), d∗):

H∗(C, D) = H∗(C∗(C, D), d∗).

We denote by TorFC∗ (D,−) the left derived functor from the functor D ⊗FC −. One proves that there is
an isomorphism which is natural in D:

H∗(C, D) ' TorFC∗ (D,Z).

As a consequence, using Lemma 4.1.3, we get:

4.2.6. Proposition. If a category C is of homological type FPp, for a natural number p, then the Abelian
group Hk(C,Z) is finitely generated for every 0 ≤ k ≤ p.
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4.3. The Reidemeister-Fox-Squier complex

4.3.1. Derivations of a category. Let C be a small category and let D be a natural system on C. We
recall from [5] that a derivation of C with values intoD is a mapping d that sends every 1-cell u of C to
an element of Du, such that, for every composable 1-cells u and v, the following relation holds:

d(uv) = ud(v) + d(u)v.

Thus, in the particular case of a free category Σ∗, a derivation of Σ∗ into D is characterised by its values
on the 1-cells of Σ.

4.3.2. Lemma. Let Σ be a (1, p)-polygraph. For every 1 ≤ k ≤ p, there exists a unique map [·] from Σ>k
to FΣ[Σk] that extends the inclusion of Σk into FΣ[Σk] and such that the following relations hold:

[1x] = 0 [x−] = −[x] [x ?i y] =

{
[x]y+ x[y] if i = 0
[x] + [y] otherwise

Proof. Those relations give a way to define an element [x] of FΣ[Σk] for every k-cell x in Σ>k . To prove
that [x] is uniquely defined, one checks that [·] is compatible with the defining relations of a track (1, p)-
category. For example, we have, for every 0 ≤ i < j ≤ p:

[(x ?i y) ?j (z ?i t)] = [(x ?j z) ?i (y ?j t)] =

{
[x]y+ x[y] + [z]t+ z[t] if i = 0
[x] + [y] + [z] + [t] otherwise

4.3.3. The Reidemeister-Fox-Squier complex. Let Σ be a track (1, p)-polygraph. For 1 ≤ k ≤ p+ 1,
the k-th Reidemeister-Fox-Squier boundary map of Σ is the morphism of natural systems

δk : FΣ[Σk] −→ FΣ[Σk−1]

defined, on a k-cell x in Σ, by:

δk[x] =

{
(x, 1) − (1, x) if k = 1

[s(x)] − [t(x)] otherwise.

The augmentation map of Σ is the morphism of natural systems ε : FΣ[Σ0] → Z defined, for every pair
(u, v) of composable 1-cells of Σ, by:

ε(u, v) = 1.

By induction on the size of cells of Σ>, one proves that, for every k-cell f in Σ>, with k ≥ 1, the
following holds:

δk[f] =

{
(f, 1) − (1, f) if k = 1

[s(f)] − [t(f)] otherwise.

As a consequence, we have εδ1 = 0 and δkδk+1 = 0, for every 1 ≤ k ≤ p. Thus, we get the following
chain complex of natural systems on Σ

FΣ[Σp+1]
δp+1

// FΣ[Σp]
δp
// · · · δ1

// FΣ[Σ0]
ε
// Z,

which we denote by FΣ[Σ] and call the Reidemester-Fox-Squier complex of the track (1, p)-polygraph Σ.

30



4.4. Abelianisation of track-polygraphic resolutions

4.3.4. Homological syzygies. For every k in {1, . . . , p+ 1}, the kernel of δk is denoted by hk(Σ) and
called the natural system of homological k-syzygies of Σ. The kernel of ε is denoted by h0(Σ) and called
the augmentation ideal of Σ.

The natural system h0(Σ) is finitely generated if and only if the small category Σ has homological
type FP1. If Σ is a generating 1-polygraph for a small category C, one checks that h0(C) is generated by
the set {(x, 1) − (1, x) | x ∈ Σ1}. It follows that a category has homological type FP1 if and only if it is
finitely generated.

4.4. Abelianisation of track-polygraphic resolutions

Let us fix a small category C with a track-polygraphic resolution of length p ≥ 1, i.e., an acyclic track
(1, p− 1)-polygraph Σ such that Σ is isomorphic to C.

4.4.1. Contracting homotopies. Since Σ is acyclic, it admits a left normalisation strategy σ. We denote
by σk, for −1 ≤ k ≤ p, the following families of morphisms of groups, indexed by the 1-cells of C:

(σ−1)w : Z −→ FC[Σ0]w
1 7−→ (1,w)

(σ0)w : FC[Σ0]w −→ FC[Σ1]w
(u, v) 7−→ [û]v

(σk)w : FC[Σk]w −→ FC[Σk+1]w
u[x]v 7−→ [σûx]v

4.4.2. Lemma. For every k ∈ {1, . . . , p− 1}, every k-cell f of Σ> and every 1-cells u, v of C such that
ufv exists, we have

σk(u[f]v) = [σûf]v.

Proof. We proceed by induction on the size of f, using the relations satisfied by the derivation [·] and by
the normalisation strategy σ. If f = 1w, for some (k− 1)-cell w of Σ>, then we have:

σk(u[1w]v) = σk(0) = 0 = [11ûw ]v = [σ1ûw ]v.

If f has size 1, then the result holds by definition of σk. Let us assume that f = gh, where g and h are
non-degenerate k-cells of Σ>. Then we use the induction hypothesis on g and h to get, on the one hand:

σk(u[gh]v) = σk(u[g]hv) + σk(ug[h]v) = [σûg]hv+ [σ
ûgh

]v.

On the other hand, since σ is a left normalisation strategy, we have:

[σûgh]v =
[
σûgs(h) ?1 σûgh

]
v = [σûg]hv+ [σ

ûgh
]v.

Finally, let us assume that f = g ?i h, where g and h are non-degenerate k-cells of Σ> and i ≥ 1. Then
we get:

σk(u[g ?i h]v) = σk(u[g]v) + σk(u[h]v) = [σûg]v+ [σûh]v.

And we also have:

[σû(g?ih)]v = [σûg?iûh]v = [σûg ?i σûh]v = [σûg]v+ [σûh]v.

4.4.3. Theorem. If a small category C admits a track-polygraphic resolution Σ of length p, then the
Reidemeister-Fox-Squier complex FC[Σ] is a free resolution of the constant natural system Z on C.
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4. Abelianisation of track-polygraphic resolutions

Proof. Let us prove that σ∗ is a contracting homotopy. Each (σ−1)w is a section of εw, hence ε is an
epimorphism of natural systems. Then we check the relation

δ1σ0(u, v) = (u, v) − (1, uv) = (u, v) − σ−1ε(u, v),

yielding the exactness at FC[Σ0]. Then, we compute

δ2σ1(u[x]v) = δ2([σûx])v = [ûx]v− [ûx]v = [û]xv+ u[x]v− [ûx]v.

and
σ0δ1(u[x]v) = σ0(ux, v) − σ0(u, xv) = [ûx]v− [û]xv.

Hence δ2σ1 + σ0δ1 = 1FC[Σ1], proving exactness at FC[Σ1]. Finally, for k ∈ {2, . . . , p− 1}, we have:

δk+1σk(u[ϕ]v) = δk+1[σûϕ]v

= [ûϕ]v− [σûs(ϕ) ?k−1 σ
−
ût(ϕ)]v

= u[ϕ]v− [σûs(ϕ)]v+ [σût(ϕ)]v

= u[ϕ]v− σk−1(u[sϕ]v) + σk−1(u[tϕ]v)

= u[ϕ]v− σk−1δk(u[ϕ]v).

Thus, we get δk+1σk + σk−1δk = 1FC[Σk], proving exactness at FC[Σk] and concluding the proof.

As a consequence, we get:

4.4.4. Theorem. If a small category admits a convergent presentation, then it is of type FP∞.

4.5. Description of homological syzygies and cohomological dimension

From Theorem 4.4.3, we get a characterisation of the homological properties FPp in terms of track-
polygraphic resolutions:

4.5.1. Proposition. If a small category C admits a track-polygraphic resolution Σ of length p ≥ 1,
then C is of homological type FPp. Moreover, if the natural system hp(Σ) of homological p-syzygies of Σ
is finitely generated, then C is of homological type FPp+1.

In particular, every small category is of homological type FP0. Finitely generated (resp. presented)
categories are of homological type FP1 (resp. FP2). More generally, we have the following result,
generalising the fact that a finite derivation type monoid is of homological type FP3, [11, 36]:

4.5.2. Theorem. For small categories and for every p ≥ 1, the property FDTp implies the property FPp.

Theorem 4.4.3 also gives a description of homological p-syzygies in terms of critical p-fold branchings
of a convergent presentation:

4.5.3. Proposition. Let C be a small category with a convergent presentation Σ. Then, for every p ≥ 2,
the natural system hp(Σ) of homological p-syzygies of Σ is generated by the elements

δp+1[ωb] = [(ωcv̂)
∗] − [ω̂cv

∗]

where b = (cv̂, ρuv̂) ranges over the critical p-fold branchings of Σ. As a consequence, a small category
with a finite, convergent presentation is of homological type FPp.
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Finally, Theorem 4.4.3 gives the following bounds for the cohomological dimension of a small category.
We recall that the cohomological dimension of a small category C, is defined, when it exists as the lowest
0 ≤ n ≤∞ such that the constant natural system Z on C admits a projective resolution

0 // Pn // . . . // P1 // P0 // Z // 0.

In that case, the cohomological dimension of C is denoted by cd(C). In particular, when C is free, then
cd(C) ≤ 1, see [5].

4.5.4. Theorem. Let C be a small category. Then:

i) cd(C) ≤ dpol(C).

ii) If C admits a track-polygraphic resolution of length p, then cd(C) ≤ p.

iii) If C admits a convergent presentation with no critical p-fold branching, then cd(C) ≤ p.

4.6. Homological syzygies and identities among relations

In [16], the authors have introduced the natural system on Σ of identities among relations of an n-
polygraph Σ. If Σ is a convergent 2-polygraph, this natural system is generated by the critical branchings
of Σ. In Proposition 4.5.3, we have seen that this is also the case of the natural system of homological
2-syzygies of Σ. In this section, we prove that, more generally, the natural systems of homological
2-syzygies and of identities among relations of any 2-polygraph are isomorphic.

4.6.1. Natural systems on n-categories. We recall from [15], that a context of an n-category C is an
(n + 1)-cell with size 1 in the (n + 1)-category C[x], where x is a n-sphere of C, seen as a cellular
extension of C with only one element. Such a context C admits a decomposition

C = fn ?n−1 (fn−1 ?n−2 (· · · ?1 f1 x g1 ?1 · · · ) ?n−2 gn−1) ?n−1 gn,

where, for every k in {1, . . . , n}, fk and gk are k-cells of C. If f is an n-cell of C which is parallel
to x, one denotes by C[f] the n-cell of C obtained by replacing x with f in C. The context C is a
whisker of C if fn and gn are degenerate. Every context C of Cn−1 yields a whisker of C such that
C[f ?n−1 g] = C[f] ?n−1 C[g] holds.

If Γ is a cellular extension of C, then every non-degenerate (n+1)-cell f of C[Γ ] has a decomposition

f = C1[ϕ1] ?n · · · ?n Ck[ϕk],

with k ≥ 1 and, for every i in {1, . . . , k}, ϕi in Γ and Ci a context of C, i.e., a whisker of C[Γ ].
The category of contexts of C is denoted by Ct(C), its objects are the n-cells of C and its morphisms

from f to g are the contexts C of C such that C[f] = g holds. When n = 1, the category Ct(C)
is isomorphic to the category FC of factorisations of a small category C. We denote by Wk(C) the
subcategory of Ct(C) with the same objects and with whiskers as morphisms. A natural system on C is
a Ct(C)-module. We denote by Du and DC the images of an n-cell u and of a context C of C by the
functor D.
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4. Abelianisation of track-polygraphic resolutions

4.6.2. Identities among relations. Let Σ be an n-polygraph. An n-cell f in Σ> is closed when s(f) =
t(f). The natural system Π(Σ) on Σ of identities among relations of Σ is defined as follows:

• If u is an (n − 1)-cell of Σ, the Abelian group Π(Σ)u is generated by one element bfc, for each
n-cell f : v⇒ v of Σ> such that v = u, submitted to the following relations:

– if f : v→ v and g : v→ v are n-cells of Σ>, with v = u, then

bf ?n−1 gc = bfc+ bgc ;

– if f : v→ w and g : w→ v are n-cells of Σ>, with v = w = u, then

bf ?n−1 gc = bg ?n−1 fc .

• If g = C[f] is a factorisation in Σ, then the morphism Π(Σ)C : Π(Σ)f → Π(Σ)g of groups is
defined by

Π(Σ)C(bfc) =
⌊
Ĉ[f]

⌋
,

where Ĉ is any representative context for C in Σ∗. We recall from [16] that the value of Π(Σ) does
not depend on the choice of Ĉ, proving that Π(Σ) is a natural system on Σ and allowing one to
denote this element of Π(Σ)g by C bfc.

The identities among relations satisfy the relations⌊
f−
⌋
= − bfc and

⌊
g ?n−1 f ?n−1 g

−
⌋
= bfc

for every n-cells f : u→ u and g : v→ u in Σ>.

4.6.3. Lemma. Let Σ be a 2-polygraph and let f be a closed 2-cell of Σ>. Then we have [f] = 0 in
FC[Σ2] if and only if bfc = 0 holds in Π(Σ).

Proof. To prove that bfc = 0 implies [f] = 0, we check that the relations defining Π(Σ) are satisfied in
FC[Σ2]. The first relation is given by the definition of the map [·]. The second relation is given by

[f ?1 g] = [f] + [g] = [g] + [f] = [g ?1 f].

Conversely, let us consider a 2-cell f : u⇒ u in Σ> such that [f] = 0 holds. We decompose f into:

f = u1ϕ
ε1
1 v1 ?1 · · · ?1 upϕ

εp
p vp

where ϕi is a 2-cell of Σ, ui and vi are 1-cells of Σ>, εi is an element of {−,+}. Then we get:

0 = [f] =

p∑
i=1

εiui[ϕi]vi

Since FC[Σ2] is free over Σ2, this implies that there exists a permutation τ of {1, . . . , p} such that:

ϕi = ϕτ(i) ui = uτ(i) vi = vτ(i) εi = −ετ(i).
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Now, let us choose a 2-cell hi : u ⇒ uis(ϕi)vi in Σ>, in such a way that, if uis(ϕi)vi = ujs(ϕj)vj,
then hi = hj. Then we have, with the convention hp+1 = h1:

bfc =
⌊
h1 ?1 f ?1 h

−
1

⌋
=

p∑
i=1

⌊
hi ?1 uiϕ

εi
i vi ?1 h

−
i+1

⌋
.

From the properties of the permutation τ, we get:⌊
hτ(i) ?1 uτ(i)ϕ

ετ(i)
τ(i) vτ(i) ?1 h

−
τ(i+1)

⌋
=
⌊
hτ(i) ?1 uiϕ

−εi
i vi ?1 h

−
τ(i+1)

⌋
=
⌊
hi+1 ?1 uiϕ

−εi
i vi ?1 h

−
i

⌋
= −

⌊
hi ?1 uiϕ

εi
i vi ?1 h

−
i+1

⌋
.

Hence we get, by induction on p, the relation bfc = 0.

4.6.4. Lemma. Let Σ be a 2-polygraph. For every element a in h2(Σ), there exists a closed 2-cell f
in Σ> such that a = [f] holds.

Proof. Letw be the 1-cell of Σ such that a belongs to FΣ[Σ2]w. We consider a homotopy basis Σ3 of Σ>.
Then, there exists an element b in FΣ[Σ3]w such that a = δ3(b) holds. By definition of FΣ[Σ3]w, we can
write

b =

k∑
i=1

εiui[αi]vi

with αi in Σ3, ui and vi in Σ, εi in {−,+}, such that, for every i, uiαivi = w. We choose 2-cells
gi : ŵ⇒ ûiαiv̂i in Σ>. Then we get b = [A] with

A =
(
g1 ?1 u1α

ε1
1 v1 ?1 g

−
1

)
?1 · · · ?1

(
gk ?1 ukα

εk
k vk ?1 g

−
k

)
.

Finally, we get:
a = δ3([A]) = [s(A)] − [t(A)] = [s(A) ?1 t(A)

−].

Hence f = s(A) ?1 t(A)− is a closed 2-cell of Σ> that satisfies a = [f]

4.6.5. Theorem. For every 2-polygraph Σ, the natural systems of homological 2-syzygies and of identi-
ties among relations of Σ are isomorphic.

Proof. We define an Abelianisation map as the morphism of natural systems Φ : Π(Σ) → h2(Σ) given
by

Φ
(
bfc
)
= [f] .

This definition is correct, since the defining relations of Π(Σ) also hold in FC[Σ2], hence in h2(Σ). Let
us check thatΦ is a morphism of natural systems. Indeed, we have

Φ(u bfc v) = [ûfv̂] = u[f]v = uΦ(bfc)v

for every 2-cell f : w⇒ w in Σ> and 1-cells u, v in Σ such that ûfv̂ is defined.
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Now, let us define a morphism of natural systems Ψ : h2(Σ)→ Π(Σ). Let a be an element of h2(Σ)w.
Then there exists a closed 2-cell f : u⇒ u such that a = [f] and w = u. We define

Ψ(a) = bfc .

This definition does not depend on the choice of f. Indeed, let us assume that g : v⇒ v is a closed 2-cell
such that a = [g] holds. It follows that v = w = u. Hence, we can choose a 2-cell h : u ⇒ v in Σ>.
Then we have:

a = [f] = [g] = [h ?1 g ?1 h
−].

As a consequence, we get:

0 = [f] − [h ?1 g ?1 h
−] = [f ?1 h

− ?1 g
− ?1 h].

Thus:
0 =

⌊
f ?1 h

− ?1 g
− ?1 h

⌋
= bfc−

⌊
h ?1 g ?1 h

−
⌋
= bfc− bgc .

The relations ΨΦ = 1Π(Σ) and ΦΨ = 1h2(Σ) are direct consequences of the definitions ofΦ and Ψ.

4.7. Abelian finite derivation type

A track n-category T is Abelian if, for every (n − 1)-cell u in T, the group AutTu of closed n-cells of T
with source u is Abelian. The Abelianized track category of T is the track n-category, denoted by Tab
and defined as the quotient of T by the n-spheres (f ?n−1 g, g ?n−1 f), where f and g are closed n-cells
with same source.

One says that an n-polygraph Σ is of Abelian finite derivation type, FDTab for short, is the Abelian-
ized track n-category Σ>ab is FDT3. In this section, we prove that an n-polygraph is FDTab if and only if
the natural system Π(Σ) of identities among relations of Σ is finitely generated.

In [16], it is proved that Π(Σ) is the only natural system on Σ, up to isomorphism, such that there
exists an isomorphism of natural systems on the free n-category Σ∗

Π̂(Σ) ' AutΣ
>
ab

with Π̂(Σ) defined, on every n-cell u of Σ∗, by

Π̂(Σ)u = Π(Σ)u.

4.7.1. Lemma ([16]). Let T be a track n-category and let B be a family of closed n-cells of T. The
following assertions are equivalent:

1. The cellular extension B̃ =
{
β̃ : β→ 1sβ, β ∈ B

}
is a homotopy basis of T.

2. Every closed n-cell f in T can be written

f =
(
g1 ?n−1 C1

[
βε11
]
?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gk ?n−1 Ck

[
βεkk
]
?n−1 g

−
k

)
(1)

where, for every i ∈ {1, . . . , k}, we have βi ∈ B, εi ∈ {−,+}, Ci ∈Wk(T) and gi ∈ Tn.
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4.7.2. Proposition. An n-polygraph Σ is FDTab if and only if the natural system Π(Σ) on Σ is finitely
generated.

Proof. Let us assume that the n-polygraph Σ is FDTab. Then the Abelian track n-category Σ>ab has a
finite homotopy basis B. Let ∂B be the set of closed n-cells of Σ>ab defined by:

∂B =
{
∂β = s(β) ?n−1 t(β)

−
∣∣ β ∈ B

}
.

By Lemma 4.7.1, any closed n-cell f in Σ>ab can be written

f =
(
g1 ?n−1 C1[∂β

ε1
1 ] ?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gk ?n−1 Ck[∂β

εk
k ] ?n−1 g

−
k

)
,

where, for every i in {1, . . . , k}, βi in B, εi in {−,+}, Ci a whisker of Σ∗ and gi an n-cell of Σ∗n. As a
consequence, for any identity among relations bfc in Π(Σ), we have:

bfc =

k∑
i=1

εi
⌊
gi ?n−1 Ci[∂βi] ?n−1 g

−
i

⌋
=

k∑
i=1

εiCi b∂βic .

Thus, the elements of b∂Bc form a generating set for the natural system Π(Σ). Hence Π(Σ) is finitely
generated.

Conversely, suppose that the natural system Π(Σ) is finitely generated. Then there exists a finite
set B of closed n-cells in Σ>ab such that, for every (n − 1)-cell u of Σ and every closed n-cell f with
source v of Σ>ab, such that v̂ = u, one can write

bfc =

p∑
i=1

εiCi bβic

with, for every i in {1, . . . , p}, βi in B, Ci a whisker of Σ and εi an integer, such that, for every repre-
sentative Ĉi of Ci in Σ>ab, Ĉi[βi] is a closed n-cell of Σ>ab whose source vi satisfies vi = v. We fix, for
every i, an n-cell gi : v⇒ vi in Σ>. Then, by properties of Π(Σ), we have:

bfc =

p∑
i=1

⌊
gi ?n−1 Ĉi[β

εi
i ] ?n−1 g

−
i

⌋
=
⌊(
g1 ?n−1 Ĉ1[β

ε1
1 ] ?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gp ?n−1 Ĉp[β

εp
p ] ?n−1 g

−
p

)⌋
.

We use the isomorphism between Π(Σ)u and AutΣ
>
ab
v and Lemma 4.7.1 to deduce that the cellular exten-

sion B̃ =
{
β̃ : β→ 1sβ, β ∈ B

}
of Σ>ab is a homotopy basis. Thus Σ is FDTab.

In [16], the authors have proved that the property to be finitely generated for Π(Σ) is Tietze-invariant for
finite polygraphs: if Σ and Υ are two Tietze-equivalent finite n-polygraphs, then the natural system Π(Σ)
is finitely generated if and only if the natural system Π(Υ) is finitely generated.

By Proposition 4.7.2, we deduce that the property FDTab is Tietze-invariant for finite polygraphs,
so that one can say that an n-category is FDTab when it admits a presentation by a finite (n + 1)-
polygraph which is FDTab. In this way, the following result relates the homological property FP3 and the
homotopical property FDTab.
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4.7.3. Theorem. Let C be a category with a finite presentation Σ. The following conditions are equiva-
lent:

i) C is of homological type FP3,

ii) h2(Σ) is finitely generated,

iii) Π(Σ) is finitely generated,

iv) C is FDTab.

Proof. The equivalence between i) and ii) comes from the definition of the property FP3. The equiv-
alence between ii) and iii) is a consequence of Proposition 4.6.5. The last equivalence is given by
Proposition 4.7.2.

In Theorem 4.5.2, we have seen that FDT3 implies FP3. We expect that the reverse implication is false in
general, which is equivalent to proving that FDTab does not imply FDT, since FP3 is equivalent to FDTab
for finitely presented categories.

5. EXAMPLES

5.1. The standard track-polygraphic resolution of a small category

We fix a small category C. The standard presentation of C is the 2-polygraph denoted by N C and whose
cells are the following ones:

• one 0-cell for each 0-cell of C,

• one 1-cell û for every non-degenerate 1-cell u of C,

• one 2-cell
·

v̂

��

·

û
66

ûv

44 ·
µu,v��

for every pair (u, v) of non-degenerate and composable 1-cells in C.

The 2-polygraph N C is reduced. Let us prove that it is convergent. For termination, one checks that
each 2-cell µu,v : ûv̂⇒ ûv of N C has source of size 2 and target of size 1. As a consequence, for every
non-degenerate 2-cell f : u⇒ v of the free 2-category N C∗, the size of u is strictly greater than the size
of v.

For confluence, we check that N C has one critical branching for every triple (u, v,w) of non-
degenerate composable 1-cells in C (

µu,vŵ , ûµv,w
)
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5.1. The standard track-polygraphic resolution of a small category

and that this critical branching is confluent:

ûvŵ µuv,w

�+
ûv̂ŵ

µu,vŵ )=

ûµv,w
!5

ûvw

ûv̂w µu,vw

3G

The rightmost normalisation strategy for N C is given, on 1-cells, by:

σ∗û1...ûn =
(
û1 . . . ûn−2µun−1,un

)
?1 σ

∗
û1...ûn−1un

.

Hence we get the acyclic track (1, 2)-polygraph c2(N C), by extending N C with one 3-cell

ûvŵ µuv,w

�+
µu,v,w���

ûv̂ŵ

µu,vŵ )=

ûµv,w
!5

ûvw

ûv̂w µu,vw

3G

for every triple (u, v,w) of non-degenerate composable 1-cells of C. The acyclic track (1, 2)-polygraph
c2(N C) is a track-polygraphic resolution of C of length 2. One iterates this process to build a resolution
of C by the acyclic track (1,∞)-polygraph c∞(N C), called the standard track-polygraphic resolution
of C.

For each natural number n ≥ 2, c∞(N C) has one n-cell µu1,...,un for every family (u1, . . . , un) of
non-degenerate composable 1-cells of C, with the shape of an n-simplex, representing all the possible
ways to transform û1 . . . ûn into ̂u1 . . . un and all the homotopies between those different ways. More
precisely, the n-cell µu1,...,un has the shape of an n-oriental [41], the higher-categorical equivalent of
an n-simplex. In particular, the source and the target of the n-cell µu1,...,un are ?n−2-composites of the
following (n− 1)-cells

di(u1, . . . , un) =


û1µu2,...,un if i = 0
µu1,...,uiui+1,...,un if 1 ≤ i ≤ n− 1

µu1,...,un−1ûn if i = n

For example, the 4-cell µu,v,w,x is given thereafter:

ûvŵx̂
µuv,wx̂ %9

µu,v,wx̂

ûvwx̂
µuvw,x

�*AAAAAAAA

AAAAAAAA ûvŵx̂
µuv,wx̂ %9

ûvµw,x

AAA
AAA

�*AAAAAA

ûvwx̂
µuvw,x

�*AAAAAAAA

AAAAAAAA

ûv̂ŵx̂

µu,vŵx̂
4H}}}}}}}}

}}}}}}}}
ûµv,wx̂ %9

ûv̂µw,x �*AAAAAAAA

AAAAAAAA ûv̂wx̂

µu,vwx̂}}} }}}

4H}}} }}}

ûµvw,x

AAA
AAA

�*AAAAAA

µu,vw,x ûvwx
µu,v,w,x�? ûv̂ŵx̂

µu,vŵx̂
4H}}}}}}}}

}}}}}}}}

ûv̂µw,x �*AAAAAAAA

AAAAAAAA
c© ûvŵx µuv,wx %9

µuv,w,x

µu,v,wx

ûvwx

ûv̂ŵx
ûµv,wx

%9

ûµv,w,x

ûv̂wx

µu,vwx

4H}}}}}}}}

}}}}}}}}
ûv̂ŵx

µu,vŵx}}} }}}

4H}}} }}}

ûµv,wx
%9 ûv̂wx

µu,vwx

4H}}}}}}}}

}}}}}}}}
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5. Examples

From this track-polygraphic resolution of C, we get the following Abelian resolution of the constant
natural system Z:

· · · δ5 // FC[c3(N C)]
δ4
// FC[c2(N C)]

δ3
// FC[N C2]

δ2
// FC[C1]

δ1
// FC[C0]

ε
// Z // 0

with differential maps given by

δn[µu1,...,un ] =

n∑
i=0

(−1)n−i[di(u1, . . . , un)]

= (−1)nu1[µu2,...,un ] +

n−1∑
i=1

(−1)n−i[µu1,...,uiui+1,...,un ] + [µu1,...,un−1 ]un .

Moreover, those elements δn[µu1,...,un ] form a generating set for the natural system hn−1(N C) of homo-
logical (n− 1)-syzygies of N C.

5.2. A simple example of standard track-polygraphic resolution

Let us denote by A the monoid with one non-unit element, a, and with product given by aa = a. The
standard presentation ofA, seen as a category, is the reduced and convergent 2-polygraph, denoted by As,
with one 0-cell (for 1), one 1-cell (for a) and one 2-cell aa ⇒ a. Here we use diagrammatic notations,
where a is denoted by a vertical string and the 2-cell aa ⇒ a is pictured as . The 2-polygraph As
has one critical branching: (

,
)
.

The corresponding generating confluence is the 3-cell:

_ %9

By extending As with that 3-cell, one gets a finite, acyclic track (1, 2)-polygraph, still denoted by As and
which is a track-polygraphic resolution of A of length 3. We conclude that the monoid A has FDT3 and,
thus, type FP3. In particular, the natural system h2(As) of homological 2-syzygies of As is generated by
the following element:

δ3[ ] =
[ ]

−
[ ]

=
[ ]

+
[ ]

−
[ ]

−
[ ]

=
[ ]

a− a
[ ]

.

The 2-polygraph As has exactly one critical triple branching:

b =
(

, ,
)
.

This triple critical branching b has shape (fâ, gâ, ρuâ) with

f = and g =
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5.2. A simple example of standard track-polygraphic resolution

We compute the 3-cells ωf,g, σ∗fâ and σ∗gâ, using their definitions and the properties of the rightmost
normalisation strategy σ, to get:

ωf,gâ = σ∗fâ = ?2 σ∗gâ = ?2

We fill the diagram definingωb = , obtaining:

%9

�%
88888888

88888888
%9

888
888

�%
8888

�%
88888888

888888889M�������

�������
%9

�%
8888888

8888888

��� ���

9M�� ��

888
888

�%
8888

�?

9M�������

�������

�%
8888888

8888888
c© %9

%9

9M��������

��������
��� ���

9M�� ��

%9

9M��������

��������

Contracting one dimension, we see that the 4-cell is, in fact, Mac Lane’s pentagon, or Stasheff’s
polytope K4:

_%9

��

=�(
=====

=====
=====�6J�����

�����

�����

O�1OOOOOOOOOOOOO

OOOOOOOOOOOOO

OOOOOOOOOOOOO o-Aooooooooooooo

ooooooooooooo

ooooooooooooo

We get a finite, acyclic track (1, 3)-polygraph c3(As) which is a track-polygraphic resolution of A of
length 4, proving that A has FDT4 and, as a consequence, that it is of type FP4. In particular, the natural
system h3(As) of homological 3-syzygies of As is generated by the following element:

δ4[ ] =
[ ]

+
[ ]

+
[ ]

−
[ ]

−
[ ]

= [ ] + [ ] + [ ] − [ ] − [ ]

= a [ ] − [ ] + [ ]a.

Iterating the process, we get a resolution of A by an acyclic track (1,∞)-polygraph c∞(As). For every
natural number, c∞(As) has exactly one n-cell, whose shape is Stasheff’s polytope Kn. For example, in
dimension 5, the generating 5-cellωb is associated to the following critical quadruple branching:

b =
(

, , ,
)
.

To compute the source and target of the corresponding 4-cellωb, we use the inductive construction of the
rightmost strategy σ. Alternatively, one can also start from the 2-dimensional source and target of ωb,
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5. Examples

which are obtained as the 2-cells associated to the source aaaaa of the critical quadruple branching b
by the leftmost and the rightmost strategies, respectively:

s2(ωb) = and t2(ωb) =

Then one computes all the possible 3-cells from s2(ωb) to t2(ωb) and one fills all the 3-dimensional
spheres with 4-cells built from the generating 4-cell . Either way, we obtain the following com-
posite 4-cell as the source ofωb:

N�0

_%9 _%9

c©

���

r/Crrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrr

rrrrrrrr

rrrrrrrr

r/Crrrrrrrr
rrrrrrrr

rrrrrrrr

_%9 _%9

���

c©

���

�EY

rrrrrrrr

rrrrrrrr

rrrrrrrr

r/Crrrrrrrr
rrrrrrrr

rrrrrrrr

_%9 _%9 _%9

And the following composite 4-cell is the target ofωb:

N�0

_%9 _%9

LLLLLLLL

LLLLLLLL

LLLLLLLL

L�/
LLLLLLLL

LLLLLLLL

LLLLLLLL

c©

L�/
LLLLLLLLLLLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLLLLLLLLLLL
�EY

_%9 _%9

LLLLLLLL

LLLLLLLL

LLLLLLLL

L�/
LLLLLLLL

LLLLLLLL

LLLLLLLL
���

�EY

c©

_%9 _%9

�EY

_%9
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5.3. The category Epi

The corresponding generator of the natural system h4(As) of homological 4-syzygies of As is:

δ5[ωb] =
[ ]

+
[ ]

+
[ ]

−
[ ]

−
[ ]

−
[ ]

= [ ]a− a [ ] .

5.3. The category Epi

We denote by Epi the subcategory of the simplicial category whose 0-cells are the natural numbers and
whose morphisms from n to p are the ordered-preserving surjections from {0, . . . , n} to {0, . . . , p}. This
category is studied in [24], where it is denoted by ∆epi.

The category Epi admits a presentation by the (infinite) 2-polygraph Σ with the natural numbers as
0-cells, with 1-cells

n+ 1
si

// n 0 ≤ i ≤ n,
where si represents the map

si(j) =

{
j if 0 ≤ j ≤ i,
j− 1 if i+ 1 ≤ j ≤ n+ 1,

and with 2-cells

n+ 1 sj

  
si,j
��

n+ 2

si 33

sj+1 ++

n 0 ≤ i ≤ j ≤ n+ 1.

n+ 1 si

>>

Let us prove that this 2-polygraph is convergent. For termination, given a 1-cell u = si1 . . . sik of Σ∗, we
define the natural number ν(u) as the number of pairs (ip, iq) such that ip ≤ iq, with 1 ≤ p < q ≤ k.
In particular, we have ν(sisj) = 1 and ν(sj+1si) = 0 when i ≤ j, i.e., when sisj is the source and sj+1si
is the target of a 2-cell of Σ. Moreover, we have ν(wuw ′) > ν(wvw ′) when ν(u) > ν(v) holds. Thus,
for every non-degenerate 2-cell f : u ⇒ v in Σ∗, the strict inequality ν(u) > ν(v) is satisfied, yielding
termination of Σ.

The 2-polygraph Σ has one critical branching (si,jsk, sisj,k) for every possible 0 ≤ i ≤ j ≤ k ≤ n+2
and it is confluent, so that we get a resolution of Epi by the acyclic track (1, 2)-polygraph c2(Σ) obtained
by extending Σ with all the 3-cells filling the confluence diagrams associated to the critical branchings:

sj+1sisk
sj+1si,k %9 sj+1sk+1si

sj+1,k+1si

�/
sisjsk

si,jsk
+?

sisj,k �3

sk+2sj+1si

sisk+1sj
si,k+1sj

%9 sk+2sisj

sk+2si,j

/C
si,j,k

���
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5. Examples

To simplify notations, we draw each 1-cell si as a vertical string i , each 2-cell si,j as i,j, so that each
3-cell si,j,k has the same shape as the Yang-Baxter relation, or permutohedron of order 3:

i,j,k

i,j,k _ %9
i,j,k

Using those notations, the natural system h2(Σ) of homological 2-syzygies of Σ is generated by the
elements

δ3
[

i,j,k

]
=

[
i,j,k

]
−

[
i,j,k

]
=


(
[ i,j]sk − sk+2[ i,j]

)
+
(
sj+1[ i,k] − [ i,k+1]sj

)
+
(
[ j+1,k+1]si − si[ j,k]

)
.

The 2-polygraph Σ has one critical triple branching(
si,jsksl, sisj,ksl, sisjsk,l

)
for every possible 0 ≤ i ≤ j ≤ k ≤ l ≤ n + 3. This yields a resolution of Epi by the acyclic track
(1, 3)-polygraph c3(Σ) with one 4-cell si,j,k,l for every possible 0 ≤ i ≤ j ≤ k ≤ l ≤ n + 3. In string
diagrams, omitting the subscripts, each critical triple branching is written(

, ,
)

With the same conventions, the corresponding 4-cell has the shape of the permutohedron of order 4:

_%9 _%9

��

<�(

t0D

J�.
_%9 _%9

�6J

As usual, the elements δ4
[

i,j,k,l

]
, for 0 ≤ i ≤ j ≤ k ≤ k ≤ n + 3, form a generating set for the

natural system h3(Σ) of homological 3-syzygies of Σ.
More generally, this construction extends to a track-polygraphic resolution of Epi of infinite length

where, for every natural number n, the generating n-cell has the shape of a permutohedron of order n.
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