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ABSTRACT

Large scale finite element simulations of the elastoviscoplastic behaviour of polycrystalline
aggregates have become a standard technique to study the stress-strain heterogeneities that
develop in grains during deformation. For a long time, comparison between continuum crys-
tal plasticity and experimental field measurements was confined to the observation of surface
behaviour. As for example the study of the development of intense deformation bands at the
free surface of a polycrystal. Recent 3D experimental techniques open new perspectives in
computational crystal plasticity. After reviewing how to define a representative volume ele-
ment for polycrystal properties and showing that actual 3D computations, including grain
shapes and orientations, are really needed to accurately determine the stress and strains
distributions, two examples of applications of large scale simulations are described in this
paper.

First the simulation of 3D coherent X-ray diffraction in a polycrystalline gold sample is
detailed. Based on the real geometry of the grains and their columnar nature, a 3D avatar
is reconstructed. FE computations are then carried out to evaluate the effect of mechanical
and thermal strain of the diffraction pattern resolved in the reciprocal space by complex
FFT. Qualitative comparison with the experimental diffraction patterns shows that such
computations can help understand the true nature of strain heterogeneities within the ma-
terial.

The second example of application deals with short fatigue crack propagation in polycrys-
tals. One fundamental problem caused by short fatigue cracks is that despite decades of
research, so far no reliable prediction of the crack propagation rates, comparable to the
well-known Paris law in the long crack regime, could be established. This “anomalous”
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behaviour of short cracks is commonly attributed to factors like their complex three di-
mensional shapes and the influence of the local crystallographic environment affecting their
propagation behaviour via a combination of physical mechanisms. Crystal plasticity com-
putations based on the real grain shapes and orientations obtained thanks to diffraction
contrast tomography are carried out using an ideal crack shape. The stress concentration
at the crack tip is analysed with respect to possible crack growth directions.

1. INTRODUCTION

Continuum crystal plasticity has proved to be a powerful tool to interpret experimental
results obtained in the deformation of metal polycrystals (Teodosiu, 1997). Large scale
simulations on polycrystalline volume elements can now be performed with sufficient local
discretization to predict the transgranular plastic strain fields. They are necessary for com-
parison with results of sophisticated 2D and 3D full field measurements providing total strain
fields based on grid methods and/or image correlation techniques, lattice rotation fields by
means of EBSD and, more recently elastic strain fields using for instance micro–diffraction
techniques.

Even though continuum crystal plasticity constitutive equations do not account for the intri-
cate dislocation mechanisms at work during plastic deformation, the continuum mechanical
model gives relevant information about the strain heterogeneities induced in a polycrystal by
the strong incompatibilities that develop at grain boundaries. These predictions are based
on the precise kinematic description of the crystallographic nature of plastic slip in grains.
For that purpose, full 3D simulations are necessary even when only 2D measurement infor-
mation is available, due to the 3D nature of multislip mechanisms. The first illustrations of
the tremendous heterogeneities that develop in polycrystals were provided in (Barbe et al.,
2001a,b).

The drawback of standard continuum approaches is that they do not incorporate intrinsic
length scales and cannot address satisfactorily size effects in plasticity. Most convincing
validations of the approach were performed in the case of large grains. Advanced crystal
plasticity models, based in particular on the description of both statistically stored and
geometrically necessary dislocations, are now available to tackle grain size effects and strain
fields at submicron scales (Forest, 2008). However they have not been used yet for quantita-
tive comparisons due to the increased computational effort. They represent a link towards
discrete dislocation dynamics approaches (Šǐska et al., 2009).

However, precise confrontations between simulation and experiment are possible provid-
ing sufficient 3D information is available, especially 3D grain shape and orientation. This
contribution addresses various aspects of computational polycrystal plasticity and its con-
tribution towards the development and interpretation of new experimental 3D techniques
based on X–ray diffraction and imaging. These methodologies are developed in particular
for applications to fatigue behaviour of materials.

The first section tackles the problem of definition of representative volume element for poly-
crystal properties. This question is at the core of computational homogenization. The
different levels of heterogeneities that develop in a material volume element are recalled. In
the second section, we prove that the knowledge of the 3D shape and orientation of grains
is required to assess the quality of numerical predictions even compared to 2D experimental
field measurements. Cyclic plasticity is tackled in the case of the deformation of copper
free–standing films, considering the evolution of strain heterogeneities close to grain bound-
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aries during cycling. In the third section, computational crystal plasticity is applied to
polycrystalline films under thermal loading. The heterogeneous displacement field is then
used as input to predict coherent diffraction patterns which may be confronted to experi-
mental measurements. Effects such as the grain shape and the strain level on the diffraction
pattern are investigated. The last section deals with a promising field when crystal plastic-
ity is coupled to real 3D microstructures obtained by diffraction contrast tomography. The
prospect of simulating the presence of sharp interface such as cracks within the real grain
network is demonstrated.

In the following, vectors are underlined and second and fourth rank tensors are boldface.

2. LARGE SCALE COMPUTATIONS OF POLYCRYSTALLINE AGGREGATES

2.1 RVE size for polycrystals. Computational homogenization methods are nowadays effi-
cient tools to estimate effective properties of heterogeneous materials. They can take realis-
tic distributions of phases and sophisticated constitutive equations of the constituents into
account (Cailletaud et al., 2003). A key–point in such models is the determination of the
appropriate size of volume elements of heterogeneous materials to be computed in order to
get a precise enough estimation of effective properties. This is related to the long–standing
problem of the determination of the size of the Representative Volume Element (RVE) in
homogenization theory. It is known that RVE size is property and morphology dependent
but a well–suited parameter is necessary for quantitative comparisons. Such a parameter
was proposed in (Kanit et al., 2003).

In the present work, we illustrate this methodology to estimate the size of such a RVE in
isotropic linear elastic copper polycrystals. The method has three main steps: the choice
of a random model for polycrystalline microstructures containing a finite number of grains,
the resolution of boundary value problems on such polycrystalline aggregates of increasing
sizes and the analysis of the convergence of the calculated apparent properties towards an
asymptotic value as a function of the number of grains and of the boundary conditions. The
asymptotic value is regarded as the effective property. In other words, the objective is to find
the minimum number of grains required in a volume element to estimate the effective elastic
property with a given accuracy. The size of the RVE for several cubic elastic polycrystals
was investigated in (Nyg̊ards, 2003) using three–dimensional FE simulations and periodic
boundary conditions.

Voronoi mosaics are used here as a random model to represent the polycrystalline morphol-
ogy, as explained in (Kanit et al., 2003). For each realization, one given cubic volume V that
contains a given number Ng of Voronoi cells is simulated. In the following, n realizations
of volume V are considered. The number of cells for each realization of the microstructure
obeys a Poisson distribution with given mean value N̄g = N . The mean volume of one
Voronoi cell is equal to 1. No unit length is introduced because the models involved in this
work cannot account for absolute size effects. As a result, one has N = V . This convention
is used throughout the work. A crystal orientation is attributed to each Voronoi cell which
is then regarded as an individual grain of the polycrystal. The crystallographic texture is
assumed to be random. It is possible to impose a geometrical periodicity constraint at the
boundary of the polycrystalline cube, as shown in figure 1.

The so–called multi–phase element technique is used in order to superimpose a regular 3D
FE mesh on the Voronoi tessellation. The crystal orientation of the closest voxel is attributed
to every integration point of each element of the mesh. The elements are 20–node quadratic
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(a) Multiphase element technique (b) Conformal meshing of grain
boundaries

Fig. 1: Meshing polycrystalline aggregates.

bricks with 27 Gauss points. A resolution of 16 elements per grain was satisfactory for the
following calculations. Better suited mesh techniques are necessary to study the mechanical
fields close to grain boundaries (figure 1b).

The largest volume computed in this section is a cube with 423 = 74088 elements, i.e.
937443 degrees of freedom. Such computations are made possible in a reasonable time by
using parallel computing. The FE program used in this work implements the subdomain
decomposition method FETI∗ (Feyel, 1999). The mesh is split into 32 subdomains and the
tasks are distributed on a platform of 32 processors (768 MB RAM, 800 MHz). Compatibility
and equilibrium at interfaces between subdomains are restored by an iterative procedure.
The whole resolution requires 21 GB of memory.

Three types of boundary conditions to be prescribed on an individual volume element V
are considered (Sanchez-Palencia and Zaoui, 1987) :

• Kinematic uniform boundary conditions (KUBC) : The displacement vector u is im-
posed at all points x belonging to the boundary ∂V according to :

u = E.x ∀x ∈ ∂V =⇒ < ε > :=
1

V

∫
V

ε dV = E (1)

where E is a given constant symmetrical second–rank tensor. The macroscopic stress
tensor Σ is then defined as the spatial average of the local stress tensor σ.

• Static uniform boundary conditions (SUBC) : The traction vector is prescribed at the
boundary ∂V according to :

σ.n = Σ.n ∀x ∈ ∂V =⇒ < σ > :=
1

V

∫
V

σ dV = Σ (2)

where Σ is a given constant symmetrical second–rank tensor. The outer normal to
∂V at x is denoted by n . The macroscopic strain tensor E is then defined as the
spatial average of the local strain ε.

∗Mines ParisTech, ONERA, and NorthWest Numerics: Z-SeT/ZeBuLoN Finite Element Code,
www.nwnumerics.com
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• Periodicity conditions (PERIODIC) : The displacement field over the entire volume
V takes the form

u = E.x + v ∀x ∈ V (3)

where the fluctuation v is periodic. v (resp. σ.n ) takes the same value (resp.
opposite values) at two homologous points on opposite sides of V .

The local behaviour at every integration point inside each grain in the simulation is described
by the fourth–rank linear elasticity tensor c :

σ(x ) = c(x ) : εe(x ) (4)

The partial differential equations to be solved using the FE method are the classical stress
balance equations without body forces. For a given volume V, and owing to the linearity of
the considered boundary value problems, fourth–rank tensors of apparent moduli Capp

E and
apparent compliances Sapp

Σ can be defined by the following macroscopic relations :

Σ =< σ >=
1

V

∫
V

σ dV = Capp
E : E, E =< ε >=

1

V

∫
V

ε dV = Sapp
Σ : Σ (5)

The first relation is used for KUBC and PERIODIC problems, the second one for SUBC
problems. Note that in general, the tensor Sapp

Σ cannot be expected to coincide with the in-
verse of Capp

E . However, for sufficiently large volumes V , the apparent moduli do not depend
on the type of boundary conditions any longer and coincide with the effective properties of
the medium:

Sapp−1
Σ = Seff−1 = Ceff = Capp

E (6)

For intermediate volumes V , the following inequalities, written in the sense of quadratic
forms, hold (Huet, 1990) :

Sapp−1
Σ ≤ Ceff ≤ Capp

E (7)

Shear loading conditions Eµ and Σµ are used in this work. The cubic elasticity constants
of pure copper are taken from (Gairola and Kröner, 1981) :

C11 = 168400 MPa, C12 = 121400 MPa, C44 = 75390 MPa

The corresponding value of the anisotropy coefficient a = 2C44/(C11 − C12) is 3.2.

Due to the uniform distribution of crystal orientations, the effective medium exhibits an
isotropic linear elastic behaviour, described by effective bulk and shear moduli keff and
µeff . For cubic symmetry, the apparent bulk modulus is not a random variable (Gairola
and Kröner, 1981). It is uniquely determined from the single crystal elasticity constants
according to the formula kapp = keff = (C11 + 2C12)/3 = 137067 MPa. As a result, the
homogenization problem reduces to the estimation of apparent shear properties µapp and in
fine of the effective shear modulus µeff .
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It is shown in (Kanit et al., 2003) that the fourth–rank tensor of apparent moduli Capp
E (V )

obtained for a finite domain V containing Ng grains is generally not isotropic. However, its
ensemble average C̄

app
E (V ), i.e. its mean value over a sufficiently large number of realizations

turns out to be isotropic. This has been checked here for polycrystalline copper aggregates.
The shear modulus associated with the isotropic elasticity tensor C̄

app
E (V ) coincides with

µ̄app
E (V ), the ensemble average of the apparent shear moduli µapp

E (V ) computed for a domain
V of given size (or equivalently containing N = V grains in average). Accordingly, the
estimation of µ̄app

E (V ) only requires the determination of µapp
E (V ) for each realization. This

is the computation strategy adopted in this work. Similarly, using SUBC conditions, it is
sufficient to compute µapp

Σ for each realization.

The apparent shear moduli and compliances µapp(V ) were computed using volume elements
V of increasing size, ranging from V = 25 to V = 5000 grains, with n(V ) realizations for
every volume. Number n is chosen such that the estimation of the mean µ̄app(V ) is obtained
with a precision better than 1%. This precision is estimated according a simple sampling
rule involving the standard deviation Dµ(V ). Mean values and confidence intervals for the
apparent shear modulus [µ̄app(V )− 2Dµ(V ), µ̄app(V )+2Dµ(V )], are plotted in figure 2, as a
function of volume size V . The mean apparent shear moduli strongly depend on the domain
size and on the boundary conditions. However, the values converge towards an asymptotic
constant as the volume size increases, as expected. A striking feature of these results is the
very fast convergence of the periodic solution and, in contrast, the very slow convergence
associated with homogeneous boundary conditions.

self-
onsistentReuss boundVoigt boundPERIODICSUBCKUBC
V

�app (MPa)

1000100

560005400052000500004800046000440004200040000
Fig. 2: Mean values and confidence intervals for the shear modulus µapp as a function
of domain size, for three different boundary conditions.

The computational homogenization methodology proposed in (Kanit et al., 2003) was ap-
plied to the determination of RVE sizes for the isotropic linear elastic behaviour of copper
polycrystals. For a given precision of 1% in the estimation of the effective property, and a
number of affordable computations ranging from 10 to 100, RVE sizes remain of the order
of 40 to 400 grains, provided that periodicity boundary conditions are applied to the poly-
crystalline aggregates. The convergence of apparent properties obtained using homogeneous
boundary conditions towards the effective modulus is significantly slower than for period-
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icity conditions. The asymptotic shear modulus can be accurately estimated by a small
number of huge computations or by a large number of small–scale computations, looking at
the ensemble average of the apparent properties.

Finally, the calculated effective shear modulus can be compared with the self–consistent
estimate according to (Gairola and Kröner, 1981). The self-consistent method predicts a
shear modulus of 48167 MPa, which is 1.2% lower than the periodic solution found with
500 grains. This difference lies within the numerical precision associated with the mesh
density chosen. Note that this result strongly depends on the anisotropy coefficient of the
considered cubic material. The approach has also been applied to polycrystalline thin films
in (El Houdaigui et al., 2007).

2.2 Prediction of strain heterogeneities in polycrystals. The previous methodology, includ-
ing the specific boundary conditions, can be used to analyse the tremendous stress–strain
heterogeneities that develop inside grains during deformation. In the case of anisotropic
elasticity, grains boundaries are responsible for strong incompatibilities that are resolved
by the development of high multiaxial stresses as show in (Zeghadi et al., 2007b). The
case of crystal plasticity can still be accounted for by means of continuum mechanics and
constitutive equations that take the crystallography of slip into account:

ε = εe + εp, ε̇p =
N∑

s=1

γ̇

2
(m s ⊗ n s + n s ⊗m s) (8)

where the plastic strain εp is the sum of the slip γs on the N slip systems described by the
slip direction m s and the normal to the slip plane n s. Typical plastic flow rule is

γ̇s =

〈
|τ s − xs| − τc

K

〉n

sign (τ s − xs) (9)

where τ s = σ : (m s ⊗ n s) is the resolved shear stress. The critical resolved shear stress
τc accounts for the hardening associated with statistically stored dislocations. We refer
to reviews of specific constitutive equations for the evolution of dislocation densities like
(Teodosiu, 1997). Note that kinematic hardening variable xs must be included to account
for cyclic plasticity.

The different levels of strain heterogeneities that develop in a polycrystal during straining
are depicted in (Barbe et al., 2001b). The mean stress–strain curves for the whole volume
can be compared to existing estimations based on homogenization models and especially
variants of the self–consistent models. The mean stress–strain curves per grain or per grain
orientation already show the heterogeneous nature of plastic deformation in polycrystals.
The most striking result is the heterogeneity of plastic strain inside individual grains. Intense
deformation bands tend to form crossing grain boundaries so that the grain unit is perhaps
no longer the relevant entity to characterize the deformation processes (Barbe et al., 2009).
The question of RVE size in plasticity for both the global and local material responses is
still open due to the dependence of the results on the strain path to be applied to a volume
element.

2.3 Grain boundary conditions and size–dependent properties of polycrystals. In such con-
tinuum crystal plasticity simulations, grain boundaries are treated as perfect or imperfect
interfaces. At perfect interfaces, the displacement components are continuous and the trac-
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tion forces are transmitted (Diard et al., 2005). Imperfect interfaces exist in the presence
of intergranular damage or grain boundary sliding (Musienko and Cailletaud, 2009).

Continuum theories can still be applied to enrich the grain boundary behaviour and account,
in a continuous way, for dislocation phenomena like pile–up formation at grain boundaries.
This is the realm of strain gradient plasticity (Forest, 2008). Higher order continuity require-
ments, like continuity of plastic strain and transmission of higher order tractions mimic the
development of internal stresses associated with geometrically necessary dislocations. For
instance, the higher order couple stress tensor M conjugate to the dislocation density ten-
sor, defined as the rotational of the plastic deformation tensor, leads to a an additional
kinematic hardening component:

x = curl M = Acurl curl (γm ⊗ n ) = −A∆γ (10)

in the case of single slip, where ∆ is the Laplace operator and A a material parameter with
unit MPa.mm2. Such a formulation is akin to Aifantis original strain gradient plasticity
model (Aifantis, 1987). This is how an intrinsic length scale arises in the generalized con-
tinuum model. Such enhanced crystal plasticity theories can be used to account for grain
size effects in the response of polycrystalline aggregates, in the form of scaling laws close to
Hall–Petch relationship.

3. SURFACE EFFECT AND THIN FILMS

3.1 Impact of 3D grain morphology on surface deformation. Validation of the continuum
crystal plasticity model goes through the comparison of strain and lattice orientation fields
with experimental field measurements. Those are most frequently available at the free
surface of polycrystalline samples. That is why most convincing validations have been
performed on multicrystalline samples containing a few grains or exhibiting a columnar mi-
crostructure (Teodosiu et al., 1993). Comparisons are much more difficult when the real
shape of the grains below the free surface is unknown as it is the case for most EBSD and
strain field measurements. In many contributions, a 2D finite element mesh is built from
the 2D EBSD analysis. Then, an assumption of plane strain, or plane stress, or generalized
plane strain, or 3D columnar grains is made (Héripré et al., 2007). Then, agreement between
predicted and experimental fields usually remains only partial in the sense that strains and
lattice rotation are correctly predicted for some grains but not for others.

To illustrate the impact of the 3D grain morphology on the surface strain, we have simulated
virtual polycrystals with different grain morphologies but sharing the same surface shape as
in figure 3a. The algorithm is explained in (Zeghadi et al., 2007b). The figure shows the free
surface, normal to axis z, that is identical for two polycrystals and the underlying two layers
of grains below the surface. A cut through the aggregate also shows the strongly different
shapes and size of the grains in both cases. Simulations are such that the mean grain size is
the same and the same crystal orientations are attributed to the corresponding grains cutting
the free surface in both realizations. Then a tensile test has been simulated in direction y
up to 1% overall tensile strain for an isotropic copper material. The equivalent plastic strain
maps at the free surface are given in figure 3b. It appears that they strongly differ even
though at some places, close to some grain boundaries, similar strain levels are reached. It is
therefore impossible to validate a crystal plasticity model from the comparison of individual
strain maps if the underlying morphology is unknown. However, statistical exploitation of
the 2D information is still possible (Zeghadi et al., 2007a).
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(a) Two realisations of polycrystalline aggregates with the same free surface grain
morphology

(b) Corresponding equivalent plastic strain field at the free surface after 1% overall tension

Fig. 3: Computed surface plastic strain after 1% tension, using two different polycrys-
talline microstructures exhibiting the same free surface grain morphology.

3.2 Cyclic plasticity of thin films. The cyclic behaviour of polycrystals can also be tackled
by means of large scale simulations of polycrystalline aggregates. To reach sufficiently high
number of cycles, the study can be limited to thin films with columnar microstructures,
like the case of copper grains in figure 4 (top left). The orientations of grains in such thin
films, typically of micron size, is mainly {111} with some {001} and random orientations
(Šǐska et al., 2007a). The analysis of plastic accommodation represents the first stage for
the prediction of LCF crack initiation. We have analyzed both free–standing films and
coatings on a rigid substrate (Šǐska et al., 2007b). It was evidenced that, even though a
limit cycle is reached after about 100 cycles in strain controlled cyclic tension (see figure 4 top
right), the plastic strain fields at the free surface continues to evolve especially close to grain
boundaries even after 1000 cycles. This is due to local ratchetting phenomena induced by the
locally non symmetric stress cycles. Plastic strain fields turn out to be highly heterogeneous
and form intense plastic bands crossing several grains (figure 4 bottom). However the
presented simulations do not predict the formation of persistent slip bands and continuum
modeling of such localization phenomena under cyclic loading conditions remains challenging
(Flouriot et al., 2003). Probably stress–based loading conditions should be considered in
the simulation. On the other hand, more specific dislocation mechanisms may well be



Proudhon, Forest and Ludwig

responsible for the formation of PSB finally leading to crack initiation (Déprés et al., 2004).

(a) Free–standing thin film made of
columnar grains

(b) mean stresses vs cycle number for a
cyclic tension test

(c) plastic strain field at the first and 100th cycle

Fig. 4: Predictions of plastic strain development in a polycrystalline free–standing thin
film under cyclic stress.

4. SIMULATION OF CXD PATTERNS

X–ray coherent diffraction has recently been recognized as a promising tool to experimentally
characterize complex elastic strain fields in single crystals or grains in a polycrystal, up to
very small length scales (Pfeifer et al., 2006; Vaxelaire et al., 2010). Such measurements can
be performed on thin films, especially in polycrystalline films with columnar grains but the
interpretation of experimental data has for now remained difficult and very limited.

While most attempts to analyse 3D coherent diffraction patterns turn to the inversion
problem to retrieve the missing phase from the diffracted intensity, finite element simulations
of the behaviour of polycrystalline aggregates have not been used to interpret diffraction
patterns yet. The objective of the present section is to show that the detailed intragranular
displacement field predicted by 3–dimensional FE computations can be exploited to delineate
the respective effects of grain shape, orientation and strain on the evolution of complex
diffraction patterns.

4.1 Theoretical aspects. Within the framework of the kinematic theory of diffraction†, the

†this assumption is valid because of the small reflected intensity compared to incident beam (large rocking
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3D intensity produced by a coherent beam diffracted by a small crystal is expressed as the
sum of the complex amplitude scattered by each atom:

I(q ) ∝
∣∣∣∣ ∑

n

fn(q ) exp ıq Xn

∣∣∣∣2 (11)

with Xn being the atomic position at n and fn its scattering factor.

For a deformed crystal, we define u (X ) as the displacement vector field which is the
difference between the current and initial atom positions. The displacement field can be
easily introduced and Eq. 11 which can be rewritten using a Fourier transform, within Takagi
approximation (Takagi, 1969) and with q ' G :

I(q ) ∝
∣∣∣∣TF {ρ(X ). exp (ıG .u (X ))}

∣∣∣∣2 (12)

The diffracted intensity I(q ) can therefore be evaluated using the displacement field com-
puted by large scale finite element analysis of a polycrystal sample.

4.2 Numerical simulation of a 3D coherent diffraction pattern. To compute the strain het-
erogeneities within a polycrystalline sample, a suitable mesh of the grains must be obtained.
A standard way to mesh a polycrystal is to use Voronoi tessellations in two or three dimen-
sions as shown in sections 2.1 and 3.1, but real grain geometry can also be used favourably
if available (Parisot et al., 2001). In this work, thanks to their columnar nature, the pre-
cise shape of the grains can be extracted from a SEM image in back scattered electron
mode (which provides some crystalline contrast), as shown on Fig. 5. The resulting 2D
microstructure is then extended in the Z direction to obtain the 3D mesh with 133 grains.
The mesh closely matches the gold sample size of 10×10×0.2 µm. As the exact orientations
of the grains were not available at the time of the computations, a fiber texture with 〈111〉
parallel to the surface and random in-plane orientation, is applied. To match as closely as
possible the experimental orientation set, small deviations of the 〈111〉 direction are taken
into account. These deviations are applied randomly within the experimental scatter, as
measured on the laboratory X-ray diffractometer.

FEM calculations were performed using Z-SeT software suite‡ using linear elasticity be-
haviour with cubic anisotropy to represent the gold crystal network. The following elas-
tic constants Cij have been used (Neighbours and Alers, 1958): C11 = 192 340 MPa,
C12 = 163 140 MPa and C44 = 41 950 MPa. For FCC crystals, the Bragg vector is
Ghkl = 2π

a
[h, k, l] with a = 0.4078 nm the atomic spacing. The effect of temperature

on these parameters is neglected.

The different steps chained to obtain the 3D diffraction pattern on a selected grain are
shown on Fig. 6. Starting with the 3D mesh and the grain orientation set (Fig. 6a), boundary
conditions are applied (sample fixed on the lower face to simulate a rigid glass substrate and
a temperature change of ∆T = 100K applied linearly over time, Fig. 6b). FEM calculation is
carried out to retrieve the heterogeneous stress and strain fields (Fig. 6c). The displacement
field u (X ) is then transferred onto a regular mesh (typically 200 × 200 × 5 elements,

curve (' 0.3◦))
‡available from www.nwnumerics.com
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(a) SEM image of isolated polycrystal (b) Grain topology extracted from the SEM
image

Fig. 5: Extraction of the surface grain topology.

Fig. 6d). Finally Eq. 12 is computed with a complex FFT§ on a 2003 array filled with zero
outside the grain and with {cos(2π/a(hux + kuy + luz)), sin(2π/a(hux + kuy + luz))} inside
the selected grain. The amplitude of the complex output is stored into a 3D data set which
can then be visualised in the reciprocal space (qx, qy, qz) and further analysed (Fig. 6e).

4.3 Application to a selected grain. The numerical diffraction procedure has been used with
a particular grain named grain#52 in the following and results are presented on Fig. 7.
First column, no deformation has been applied yet so that the diffraction pattern shows
the effect of the shape only. One can see a symmetric pattern (DFT with a real input).
Subsequent thermal straining clearly introduces some strain heterogeneities (see von Mises
stress contours) and the diffraction pattern deforms and progressively loses its symmetry.

It should be noted that those computations were carried out using the full displacement
field to represent the elastic stretch and rotation of the local crystal lattice. When the
sample deforms elastically, the full displacement field can indeed be used to simulate CXD
patterns but this becomes less and less valid anymore as soon as plasticity develops within
the considered grains. The idea behind this is that the glide of dislocations through the
element do not distort nor rotate the lattice. To predict diffraction patterns in the plastic
regime, it is then possible to use an approximate elastic field, based on a first order Taylor
expansion of the deformation field near the center of the grain. Using such a field may lead
to more realistic CXD patterns when considering plastic deformation of those samples.

By simulating the heterogeneous displacement field in a polycrystal, one can easily change
a variety of parameters like grain shape and/or orientation, level of strain, boundary condi-
tions. . . Tying those computations with FFT can provide a very useful tool to understand
the complexity of the real 3D coherent diffraction pattern observed experimentally.

§Computations based on FFTW version 3.2.1(Frigo and Johnson, 2005)
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(a) 3d polycrystal mesh subjected to thermal
loading
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Fig. 6: Illustration of the methodology used to compute the 3d diffraction pattern on a
selected grain within a polycrystalline microstructure.
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Fig. 7: Simulation of coherent diffraction in grain#52 at different strain levels; top line
depicts the heterogeneous von Mises stress field in grain#52 and some of its neighbours,
bottom line shows slices extracted from the diffraction pattern at qz = 0.

5. FEM BASED ON DCT EXPERIMENTS

DCT is a monochromatic beam rotation technique, combining the principles of 3D X-ray
diffraction microscopy (Poulsen, 2004) and X-ray micro tomography. During a 360 degree
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continuous rotation of the sample, each grain runs through a series of diffraction alignments,
giving rise to diffracted beams. Part of these diffraction spots are captured on the high
resolution imaging detector system, positioned closely behind the sample (see Fig. 8). Like
in conventional micro tomography, one can determine the three-dimensional distribution of
the X-ray attenuation coefficient from the attenuation in the transmitted beam.

Fig. 8: DCT shares a common setup with X-ray microtomography. The transmitted
as well as (part of the) diffracted beams are captured on the high resolution detector
positioned closely behind the sample.

The analysis of the diffracted beams provides access to the crystalline microstructure. The
processing route is summarized in Fig. 9. After segmentation, Friedel pairs of diffraction
spots (hkl and -h-k-l reflection from the same grain) are automatically identified (“pair
matching”). A polycrystal indexing algorithm based on the analysis of such pairs of diffrac-
tion spots (Ludwig et al., 2009b) classifies the diffraction spots according to their grain of
origin and determines the average orientation and elastic strain state of the grains.

The 3D shape and the position of the grains in the sample volume are determined with
the help of algebraic reconstruction techniques, using the 2D diffraction spots as parallel
projections of the unknown 3D grain volume (see Fig. 9, bottom right).

Thanks to those recent advances with X-ray microtomography, the complete set of grain
shapes and orientations in a polycrystalline microstructure can no be obtained (Ludwig
et al., 2009a). From there, it becomes possible to recreate a numerical avatar of the specimen
for computational purposes. This can be done by first meshing all the grain boundaries
with shell elements. This interface mesh can then be used as input for a generalised 3D
mesher (eg. tetgen/GHS3D software package) to obtain a full 3D mesh suitable for FEM
computations. This process is demonstrated in Fig. 10 using a dataset reconstructed from
a cylindrical sample of 600 µm diameter made of large grain β titanium alloy.

The study of short fatigue cracks is a domain where 3D in situ microtomography can bring
a lot of new insight, especially if experiments and simulations can be carried out in synergy.
Here experiments are still far ahead computations since based on previous work using at-
tenuation and phase contrast (Ferrié et al., 2006) and new possibilities offered by diffraction
contrast, it may now be possible to follow a small crack within a set of grains during its
growth. One problem with computation accounting at the same time for a grain network
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Fig. 9: Principal steps of the DCT analysis procedure.

(a) Grains from DCT experiment
(grains have been made half trans-
parent)

(b) Grain boundaries meshed
with shell elements (only half
of the sample is shown)

x y

z

(c) Full 3D mesh ready
for FEM computation

Fig. 10: Generation of a 3d mesh from a reconstructed sample imaged with DCT.
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and a sharp discontinuity can be stated as producing an appropriate spatial discretization
of such a problem with a reasonable number of elements. Fortunately, solutions to this
problem are becoming more and more available: one may benefit at the same time of (i)
the general increase in computational power, (ii) using of parallel computing and (iii) us-
ing more powerful remeshing and topological simplification algorithms. It is important to
highlight that this particular cracking problem is made far more complex by segmentation
errors which may produce holes and/or unwanted features in the crack geometry.

Inserting a 3D mesh of a crack imaged by microtomography into a grain network is still a
challenge. A simple example with an ideal crack geometry is showed on Fig. 11 for illustra-
tion purpose. A flat penny shape crack has been inserted into the β titanium microstructure
studied previously. The grain topology has been perfectly preserved and the mesh is refined
around the crack to capture the expected stress concentration.

(a) Close up view of the crack inserted within the
grain microstructure

0 1.4e+02 2.7e+02 4.1e+02 5.5e+02 6.8e+02 8.2e+02 9.5e+02 1.1e+03 1.2e+03 1.4e+03 1.5e+03

sigmises map:1.00000    time:1            min:69.0529 max:2043.56

(b) von Mises stress after applying 150 N tension
load

Fig. 11: FE computation after inserting a crack into the polycrystalline sample.

3D crack computations based on the real grain geometry and orientations are very promising
to predict the stress/strain development ahead of the crack tip. This will allow to pin down
why linear fracture mechanics breaks down at this scale and what kind of models (cohesive
zones, damaging elements or even coupling with discrete dislocations) can account for the
short crack behaviour.

6. CONCLUSIONS AND PROSPECTS

This paper first showed how large scale finite element simulations of polycrystalline aggre-
gates have become a standard way to study the heterogeneous deformation of materials. It
was shown how to properly define a polycrystal representative volume element and how the
3D grain shape may influence the strain heterogeneities development.

Aside general computations used to assess the homogenised behaviour of a polycrystal, large
scale crystal plasticity computations are now ready to simulate complete specimens based
on the real grain geometries and shapes. A numerical avatar of the sample can be quite
easily obtained for thin films with a columnar grain geometry but can also be retrieved
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for the general 3D case thanks to recent advances using diffraction contrast tomography.
Closing the gap between 3D experimental techniques able to probe strains at the grain level
and below and computational mechanics is the key to extensively test the many micro-
mechanical models available in the literature. This may lead to significant advances in
closely related problems such as the propagation of microstructurally short cracks in a grain
network.
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