
HAL Id: hal-00531170
https://hal.science/hal-00531170v1

Submitted on 2 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inductive Querying with Virtual Mining Views
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana

Prado, Céline Robardet

To cite this version:
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana Prado, et al.. Inductive
Querying with Virtual Mining Views. Džeroski, Sašo; Goethals, Bart; Panov, Panče (Eds.). Inductive
Databases and Constraint-Based Data Mining, Springer, pp.265-288, 2010. �hal-00531170�

https://hal.science/hal-00531170v1
https://hal.archives-ouvertes.fr

Inductive Querying with Virtual Mining

Views

Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet

Abstract In an inductive database, one can not only query the data stored
in the database, but also the patterns that are implicitly present in these
data. In this chapter, we present an inductive database system in which the
query language is traditional SQL. More specifically, we present a system in
which the user can query the collection of all possible patterns as if they were
stored in traditional relational tables. We show how such tables, or mining
views, can be developed for three popular data mining tasks, namely itemset
mining, association rule discovery and decision tree learning. To illustrate the
interactive and iterative capabilities of our system, we describe a complete
data mining scenario that consists in extracting knowledge from real gene
expression data, after a pre-processing phase.

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science, Universiteit Leiden, The Nether-
lands e-mail: hendrik.blockeel@cs.kuleuven.be

Toon Calders
Technische Universiteit Eindhoven, The Netherlands e-mail: t.calders@tue.nl

Élisa Fromont · Adriana Prado
Université de Lyon (Université Jean Monnet), CNRS, Laboratoire Hubert Curien,
UMR5516, F-42023 Saint-Etienne, France e-mail: {elisa.fromont,adriana.
bechara.prado}@univ-st-etienne.fr

Bart Goethals
Universiteit Antwerpen, Belgium e-mail: bart.goethals@ua.ac.be

Céline Robardet
Université de Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205, F-69621, France e-mail:
celine.robardet@insa-lyon.fr

1

2 Authors Suppressed Due to Excessive Length

1 Introduction

Data mining is an interactive process in which different tasks may be per-
formed sequentially. In addition, the output of those tasks may be repeatedly
combined to be used as input for subsequent tasks. For example, one could
(a) first learn a decision tree model from a given dataset and, subsequently,
mine association rules which describe the misclassified tuples with respect to
this model or (b) first look for an interesting association rule that describes
a given dataset and then find all tuples that violate such rule.

In order to effectively support such a knowledge discovery process, the
integration of data mining into database systems has become necessary. The
concept of Inductive Database Systems has been proposed in [1] so as to
achieve such integration. The idea behind this type of system is to give to
the user the ability to query not only the data stored in the database, but
also patterns that can be extracted from these data. Such database should
be able to store and manage patterns as well as provide the user with the
ability to query them.

In this chapter, we show how such an inductive database system can be
implemented in practice, as studied in [2, 3, 4, 5, 6, 7]. To allow the users to
query patterns as well as standard data, several researchers proposed exten-
sions to the popular query language SQL as a natural way to express such
mining queries [8, 9, 10, 11, 12, 13]. As opposed to those proposals, we present
here an inductive database system in which the query language is traditional
SQL. We propose a relational database model based on what we call virtual

mining views. The mining views are relational tables that virtually contain
the complete output of data mining tasks. For example, for the itemset min-
ing task, there is a table called Sets virtually storing all itemsets. As far as the
user is concerned, all itemsets are stored in table Sets and can be queried as
any other relational table. In reality, however, table Sets is empty. Whenever
a query is formulated selecting itemsets from this table, the database system
triggers an itemset mining algorithm, such as Apriori [14], which computes
the itemsets in the same way as normal views in databases are only computed
at query time. The user does not notice the emptiness of the tables; he or
she can simply assume their existence and query accordingly. Therefore, we
prefer to name these special tables virtual mining views.

In this chapter, we show how such tables, or virtual mining views, can
be developed for three popular data mining tasks, namely itemset mining,
association rule discovery and decision tree learning. To make the model as
generic as possible, the output of these tasks are represented by a unifying
set of mining views. In Section 2, we present these mining views in detail.

Since the proposed mining views are empty, they need to be filled (mate-
rialized) by the system once a query is posed over them. The mining process
itself needs to be performed by the system in order to answer such queries.
Note that the user may impose certain constraints in his or her queries, ask-
ing for only a subset of all possible patterns. As an example, the user may

Inductive Querying with Virtual Mining Views 3

query from the mining view Sets all frequent itemsets with a certain support.
Therefore, the entire set of patterns does not always need to be stored in the
mining views, but only those that satisfy the constrains imposed by the user.
In [2], Calders et al. present an algorithm that extracts from a query a set
of constraints relevant for association rules to be pushed into the mining al-
gorithm. We have extended this constraint extraction algorithm to extract
constraints from queries over decision trees. The reader can refer to [7] for
the details on the algorithm.

All ideas presented here, from querying the mining views and extracting
constraints from the queries to the actual execution of the data mining process
itself and the materialization of the mining views, have been implemented
into the well-known open source database system PostgreSQL1. Details of
the implementation are given in Section 3.

We have therefore organized the rest of this chapter in the following way.
The next section is dedicated to the virtual mining views framework. We
also present how the 4 prototypical tasks described in the previous chapter
can be executed by SQL queries over the mining views. The implementation
of the system along with an extended illustrative data mining scenario is
presented in Section 3. Finally, the conclusions of this chapter are presented
in Section 4, stressing the main contributions and pointing to related future
work.

2 The Mining Views Framework

In this section, we present the mining views framework in detail. This frame-
work consists of a set of relational tables, called mining views, which virtually
represent the complete output of data mining tasks. In reality, the mining
views are empty and the database system finds the required tuples only when
they are queried by the user.

2.1 The Mining View Concepts

We assume to be working in a relational database which contains the table
T (A1, . . . , An), having only categorical attributes. We denote the domain of
Ai by dom(Ai), for all i = 1 . . . n. A tuple of T is therefore an element
of dom(Ai) × . . . × dom(An). The active domain of Ai of T , denoted by
adom(Ai, T), is defined as the set of values that are currently assigned to Ai,
that is, adom(Ai, T) := {t.Ai | t ∈ T }.

1 http://www.postgresl.org/

4 Authors Suppressed Due to Excessive Length

In the mining views framework, the patterns extracted from table T are
generically represented by what we call concepts. We denote a concept as
a conjunction of attribute-value pairs that is definable over table T . For
example,

(Outlook = ‘Sunny’ ∧ Humidity = ‘High’ ∧ Play = ‘No’)

is a concept defined over the classical relational data table Playtennis [24], a
sample of which is illustrated in Figure 1.

Playtennis
Day Outlook Temperature Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
.

Fig. 1 The data table Playtennis.

To represent each concept as a database tuple, we use the symbol ‘?’ as
the wildcard value and assume it does not exist in the active domain of any
attribute of T .

Definition 1. A concept over table T is a tuple (c1, . . . , cn) with ci ∈
adom(Ai) ∪ {‘?’}, for all i=1 . . . n.

Following Definition 1, the example concept above is represented by the
tuple

(‘?’, ‘Sunny’, ‘?’, ‘?’, ‘High’, ‘?’, ‘No’).

We are now ready to introduce the mining view T Concepts . In the pro-
posed framework, the mining view T Concepts(cid , A1, . . . , An) virtually con-
tains all concepts that are definable over table T . We assume that these
concepts can be sorted in lexicographic order and that an identifier can un-
ambiguously be given to each concept.

Definition 2. The mining view T Concepts(cid , A1, . . . , An) contains one
tuple (cid , c1, . . . , cn) for every concept defined over table T . The attribute
cid uniquely identifies the concepts.

In fact, the mining view T Concepts represents exactly a data cube [25]
built from table T , with the difference that the wildcard value “ALL” intro-
duced in [25] is replaced by the value ‘?’. By following the syntax introduced
in [25], the mining view T Concepts would be created with the SQL query
shown in Figure 2 (consider adding the identifier cid after its creation).

Inductive Querying with Virtual Mining Views 5

1. create table T_Concepts
2. select A1, A2,..., An
3. from T
4. group by cube A1, A2,..., An

Fig. 2 The data cube that represents the contents of the mining view T Concepts.

2.2 Representing Patterns and Models as Sets of

Concepts

We now explain how patterns extracted from the table Playtennis can be
represented by the concepts in the mining view Playtennis Concepts . In the
remainder of this section, we refer to table Playtennis as T and use the
concepts in Figure 3 for the illustrative examples.

Playtennis Concepts

cid Day Outlook Temperature Humidity Wind Play

. .

101 ? ? ? ? ? Yes
102 ? ? ? ? ? No
103 ? Sunny ? High ? ?
104 ? Sunny ? High ? No
105 ? Sunny ? Normal ? Yes
106 ? Overcast ? ? ? Yes
107 ? Rain ? ? Strong No
108 ? Rain ? ? Weak Yes
109 ? Rain ? High ? No
110 ? Rain ? Normal ? Yes
. .

Fig. 3 A sample of the mining view Playtennis Concepts, which is used for the
illustrative examples in Section 2.2.

2.2.1 Itemsets and Association Rules

As itemsets in a relational database are conjunctions of attribute-value pairs,
they can be represented as concepts. Itemsets are represented in the proposed
framework by the mining view:

T Sets(cid , supp, sz).

The view T Sets contains a tuple for each itemset, where cid is the iden-
tifier of the itemset (concept), supp is its support (the number of tuples

6 Authors Suppressed Due to Excessive Length

satisfied by the concept), and sz is its size (the number of attribute-value
pairs in which there are no wildcards).

Similarly, association rules are represented by the view:

T Rules(rid , cida, cidc, cid , conf).

T Rules contains a tuple for each association rule that can be extracted
from table T . We assume that a unique identifier, rid , can be given to each
rule. The attribute rid is the rule identifier, cida is the identifier of the concept
representing its left hand side (referred to here as antecedent), cidc is the
identifier of the concept representing its right hand side (referred to here as
consequent), cid is the identifier of the union of the last two, and conf is the
confidence of the rule.

Figure 4 shows the mining views T Sets and T Rules, and illustrates how
the rule “if outlook is sunny and humidity is high, you should not play tennis”
is represented in these views by using three of the concepts given in Figure 3.

T Sets

cid supp sz

102 5 1
103 3 2
104 3 3
.

T Rules

rid cida cidc cid conf

1 103 102 104 100%
.

Fig. 4 Mining views for representing itemsets and association rules. The attributes
cida, cidc, and cid refer to concepts given in Figure 3.

In Figure 5, queries (A) and (B) are example mining queries over itemsets
and association rules, respectively. Query (A) asks for itemsets having sup-
port of at least 3 and size of at most 5, while query (B) asks for association
rules having support of at least 3 and confidence of at least 80%. Note that
these two common data mining tasks and the well known constraints “mini-
mum support” and “minimum confidence” can be expressed quite naturally
with SQL queries over the mining views.

2.2.2 Decision Trees

A decision tree learner typically learns a single decision tree from a dataset.
This setting strongly contrasts with discovery of itemsets and association
rules, which is set-oriented: given certain constraints, the system finds all
itemsets or association rules that fit the constraints. In decision tree learning,
given a set of (sometimes implicit) constraints, one tries to find one tree that
fulfills the constraints and, besides that, optimizes some other criteria, which
are again not specified explicitly but are a consequence of the algorithm used.

Inductive Querying with Virtual Mining Views 7

(A) (B)

select C.*, S.supp, S.sz
from T_Concepts C, T_Sets S
where C.cid = S.cid

and S.supp >= 3
and S.sz <= 5
and C.Outlook = ’Sunny’

select Ante.*, Cons.*,
S.supp, R.conf

from T_Sets S, T_Rules R,
T_Concepts Ante,
T_Concepts Cons

where R.cid = S.cid
and Ante.cid = R.cida
and Cons.cid = R.cidc
and S.supp >= 3
and R.conf >= 80

Fig. 5 Example queries over itemsets and association rules.

In the inductive databases context, we treat decision tree learning in a
somewhat different way, which is more in line with the set-oriented approach.
Here, a user would typically write a query asking for all trees that fulfill a
certain set of constraints, or optimizes a particular condition. For example,
the user might ask for the tree with the highest training set accuracy among
all trees of size of at most 5. This leads to a much more declarative way
of mining for decision trees, which can easily be integrated into the mining
views framework. The set of all trees predicting a particular target attribute
Ai from other attributes is represented by the view:

T Trees Ai(treeid , cid).

The mining view T Trees Ai is such that, for every decision tree predicting
a particular target attribute Ai, it contains as many tuples as the number of
leaf nodes it has. We assume that a unique identifier, treeid , can be given to
each decision tree. Each decision tree is represented by a set of concepts cid ,
where each concept represents one path from the root to a leaf node.

Additionally, a view representing several characteristics of a tree learned
for one specific target attribute Ai is defined as:

T Treescharac Ai(treeid , acc, sz).

It contains a tuple for every decision tree in T Trees Ai, where treeid is
the decision tree identifier, acc is its corresponding accuracy, and sz is its
size in number of nodes.

Figure 6 shows how a decision tree that predict the attribute Play of table
T is represented in the mining views T Trees Play and T Treescharac Play

by using the concepts in Figure 3.
In Figure 7, we present some example mining queries over decision trees.

Query (C) creates a table called “BestTrees” with all decision trees that pre-
dict the attribute Play , having maximal accuracy among all possible decision
trees of size of at most 5. Query (D) asks for decision trees having a test on

8 Authors Suppressed Due to Excessive Length

Outlook

sunnyr
rrrr

rrr
rr

overcast rain
II

II
I

IIII

Humidity

high
��

�

��
��

normal
::

:

::
::

?>=<89:;Yes Windy

strong
		
	

		
	

weak
66

6

66
66

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

T Trees Play

treeid cid

1 104
1 105
1 106
1 107
1 108

.

T Treescharac Play

treeid acc sz

1 100% 8
.

Fig. 6 Mining views representing a decision tree which predicts the attribute Play .
Each attribute cid of view T Trees Play refers to a concept given in Figure 3.

“Outlook=Sunny” and on “Wind=Weak”, with a size of at most 5 and an
accuracy of at least 80%.

(C) (D)

create table BestTrees as
select T.treeid, C.*, D.*
from T_Concepts C,

T_Trees_Play T,
T_Treescharac_Play D

where T.cid = C.cid
and T.treeid = D.treeid
and D.sz <= 5
and D.acc =

(select max(acc)
from T_Treescharac_Play
where sz <= 5)

select T1.treeid,
C1.*, C2.*

from T_Trees_Play T1,
T_Trees_Play T2,
T_Concepts C1,
T_Concepts C2,
T_Treescharac_Play D

where C1.Outlook = ‘Sunny’
and C2.Wind = ‘Weak’
and T1.cid = C1.cid
and T2.cid = C2.cid
and T1.treeid = T2.treeid
and T1.treeid = D.treeid
and D.sz <= 5
and D.acc >= 80

Fig. 7 Example queries over decision trees.

Inductive Querying with Virtual Mining Views 9

Prediction

In order to classify a new tuple using a learned decision tree, one simply
searches for the concept in this tree (path) that is satisfied by the new tuple.
More generally, if we have a test set S, all predictions of the tuples in S are
obtained by equi-joining S with the semantic representation of the decision
tree given by its concepts. We join S to the concepts of the tree by using a
variant of the equi-join that requires that either the values are equal, or there
is a wildcard value.

Consider the table BestTrees created after the execution of query (C), in
Figure 7. Figure 8 shows a query that predicts the attribute Play for all
unclassified tuples in an example table Test Set(Day ,Outlook ,Temperature,
Humidity ,Wind) by using the tree in table BestTrees that has identification
number 1.

(E)

select S.*, T.Play
from Test_Set S,

BestTrees T
where (S.Day = T.Day or T.Day = ’?’)

and (S.Outlook = T.Outlook or T.Outlook = ’?’)
and (S.Temperature = T.Temperature or T.Temperature = ’?’)
and (S.Humidity = T.Humidity or T.Humidity = ’?’)
and (S.Wind = T.Wind or T.Wind = ’?’)
and T.treeid = 1

Fig. 8 An example prediction query.

2.3 Putting It All Together

For every data table T (A1, . . . , An) in the database, with T having only
categorical attributes, the virtual mining views framework consists of a set
of relational tables, called virtual mining views, which virtually contain the
complete output of data mining tasks executed over T . These mining views
are the following:

• T Concepts(cid ,A1,. . . ,An).
• T Sets(cid ,supp,sz).
• T Rules(rid ,cida,cidc,cid ,conf).
• T Trees Ai(treeid ,cid), for all i=1 . . . n.
• T Treescharac Ai(treeid , acc, sz), for all i=1 . . . n.

10 Authors Suppressed Due to Excessive Length

As shown in the examples given in this section, in order to retrieve patterns
over table T , the user simply needs to write SQL queries over the proposed
mining views. The semantics of these queries is the same as that of queries
over traditional relational tables. For more example queries over the mining
views, we refer the reader to [7].

Another important thing to note is that if the user wants to mine itemsets,
association rules, or learn a decision tree from only a portion of table T , he
or she should first create a new table T ′ from T , applying the appropriate
selections and (or) projections. Then, the mining views associated with T ′,
which are automatically created, will represent the patterns extracted from
that corresponding portion of the data.

2.4 Mining Views vs. Data Mining Tasks

We now present how the 4 prototypical tasks described in the previous chap-
ter can be executed by SQL queries over the mining views.

2.4.1 Discretization task: Discretize attribute Temperature into 3

intervals. The discretized attribute should be used in the

subsequent tasks

Since the data mining query language is SQL, our approach does not offer
any new operator for pre-processing tasks. The discretization task can thus
be performed by creating a new table called “MyPlaytennis” with the SQL
CASE query introduced in the previous chapter (when presenting the MINE
RULE operator).

2.4.2 Area task: Find all intra-tuple itemsets with relative

support of at least 20%, size of at least 2, and area, that is,

absolut support × size, of at least 10

The area task can be performed with an SQL query involving the mining
views MyPlaytennis Concepts and MyPlaytennis Sets , which are created au-
tomatically after the creation of table MyPlaytennis for the discretization
task. The query is shown below. Notice that the property area can be con-
strained quite naturally in our framework (see line 6), due to the flexibility
of ad hoc querying.

Inductive Querying with Virtual Mining Views 11

1. select C.*, S.supp, S.sz,
S.supp * S.sz as area

2. from MyPlaytennis_Sets S,
MyPlaytennis_Concepts C

3. where C.cid = S.cid
4. and S.supp >= 3
5. and S.sz >= 2
6. and S.supp * S.sz >= 10

2.4.3 Right hand side task: Find all intra-tuple association rules

with relative support of at least 20%, confidence of at most

80%, size of at most 3, and a singleton right hand size

Since the next task (lift task) requires a post-processing query over the results
output by this one, it is necessary to store these results so that they can be
further queried. The SQL query to perform the right hand side task is the
following:

1. create table MyRules as
2. select Ant.Day as DayA, ... ,Ant.Play as PlayA,

Con.Day as DayC, ..., Con.Play as PlayC,
R.conf, SCon.supp/14 as suppC

3. from MyPlaytennis_Sets S, MyPlaytennis_Rules R,
MyPlaytennis_Concepts Ant,
MyPlaytennis_Concepts Con,
MyPlaytennis_Sets SCon

4. where R.cid = S.cid
5. and Ant.cid = R.cida
6. and Con.cid = R.cidc
7. and S.supp >= 3
8. and R.conf >= 80
9. and S.sz <= 3
10. and SCon.cid = R.cidc
11. and SCon.sz = 1

The query above creates a new table called “MyRules”. We also store in
this table the confidence of the rules along with the relative supports of their
consequents, since they are necessary to perform the lift task (the number 14,
which is used to compute the relative supports of the consequents, refers to
the total number of tuples in table MyPlaytennis). Observe that the mining
views framework does not restrain the user from any format in which the
rules are to be stored, thanks again to the flexibility of ad hoc querying.

12 Authors Suppressed Due to Excessive Length

2.4.4 Lift task: Find, from the result of the right hand side task,

rules with attribute Play as consequent that have a lift

greater than 1

In order to perform the lift task, one needs to query table MyRules, created
for the previous task. The query in question is the one depicted below:

1. select M.*, (M.conf/100)/M.suppC as lift
2. from MyRules M
3. where M.PlayC <> ’?’
4. and (M.conf/100)/M.suppC >=1

Note that the two constraints required by the lift task can be expressed
quite naturally in our framework. In line 3, we assure that the rules in the
result have the attribute Play as consequent, i.e., it is not a wildcard value.
In line 4, we compute the property lift of the rules.

2.5 Conclusions

Observe that the mining views framework is able to perform all data mining
tasks described in the previous chapter without any type of pre- or post-
processing, as opposed to the other proposals. Also note that the choice of the
schema for representing itemsets and association rules implicitly determines
the complexity of the queries a user needs to write. For instance, by adding
the attributes sz and supp to the mining views T Sets, the area constraint
can be expressed quite naturally in our framework. Without these attributes,
one could still obtain their values. Nevertheless, it would imply that the user
would have to write more complicated queries.

The addition of the attribute cid in the mining view T Rules can be jus-
tified by the same argument. Indeed, one of the 3 concept identifiers for an
association rule, cid , cida or cidc is redundant, as it can be determined from
the other two. However, this redundancy eases query writing. Still with re-
gard to the mining view T Rules, while the query for association rule mining
seems to be more complex than the queries for the same purpose in other
data mining query languages (e.g., in MSQL), one could easily turn it into
a view definition so that association rules can be mined with simple queries
over that database view.

It is also important to notice that some types of tasks are not easily ex-
pressed with the mining views. For example, if the tuples over which the data
mining tasks are to be executed come from different tables in the database,
a new table containing these tuples should be created before the mining can
start. In DMQL, MINE RULE, SPQL the relevant set of tuples can be spec-
ified in the query itself. In the case of DMX, this can be done while training

Inductive Querying with Virtual Mining Views 13

the model. Another example is the extraction of inter-tuple patterns, which
are possible to be performed with DMQL, MINE RULE, SPQL, and DMX.
To mine inter-tuple patterns in the mining views framework, one would need
to first pre-process the dataset that is to be mined, by changing its repre-
sentation: the relevant attributes of a group of tuples should be added to
a single tuple of a new table. Constraints on the corresponding groups of
tuples being considered, which are allowed to be specified in the proposals
mentioned above, can be specified in a post-processing step over the results.
Our proposal is more related to MSQL and SIQL, as they also only allow the
extraction of intra-tuple patterns over a single relation.

Some data mining tasks that can be performed in SIQL and DMX, such as
clustering, cannot currently be executed with the proposed mining views. On
the other hand, note that one could always extend the framework by defining
new mining views that represent clusterings, as studied in [7]. In fact, one
difference between our approach and those presented in the previous chapter
is the fact that to extend the formalism, it is necessary to define new mining
views or simply add new attributes to the existing ones, whereas in other
formalisms one would need to extend the language itself.

To finalize, although the mining views do not give the user the ability to
express every type of query the user can think of (similarly to any relational
database), the set of mining tasks that can be executed by the system is
consistent and large enough to cover several steps in a knowledge discovery
process.

We now list how the mining views overcome the drawbacks found in at
least one of the proposals surveyed in the previous chapter:

2.5.1 Satisfaction of the closure principle

Since, in the proposed framework, the data mining query language is standard
SQL, the closure principle is clearly satisfied.

2.5.2 Flexibility to specify different kinds of patterns

The mining views framework provides a very clear separation between the
patterns it currently represents, which in turn can be queried in a very declar-
ative way (SQL queries). In addition to itemsets, association rules and deci-
sion trees, the flexibility of ad hoc querying allows the user to think of new
types of patterns which may be derived from those currently available. For
example, in [7] we show how frequent closed itemsets [26] can be extracted
from a given table T with an SQL query over the available mining views
T Concepts and T Sets .

14 Authors Suppressed Due to Excessive Length

2.5.3 Flexibility to specify ad hoc constraints

The mining views framework is meant to offer exactly this flexibility: by
virtue of a full-fledged query language that allows of ad hoc querying, the
user can think of new constraints that were not considered at the time of
implementation. An example is the constraint lift, which could be computed
by the framework for the execution of the lift task.

2.5.4 Intuitive way of representing mining results

In the mining views framework, patterns are all represented as sets of con-
cepts, which makes the framework as generic as possible, not to mention that
the patterns are easily interpretable.

2.5.5 Support for post-processing of mining results

Again, thanks to the flexibility of ad hoc querying, post-processing of mining
results is clearly feasible in the mining views framework.

3 An Illustrative Scenario

One of the main advantages of our system is the flexibility of ad hoc querying,
that is, the user can iteratively specify new types of constraints and query
the patterns in combination with the data themselves. In this section, we
illustrate this feature with a complete data mining scenario that consists in
extracting knowledge from real gene expression data, after an extensive pre-
processing phase. Differently to the scenario presented in [6], here we do not
learn a classifier, but mine for non-redundant correct association rules.

We begin by presenting how the implementation of our inductive database
system was realized. Next, the aforementioned scenario is presented.

3.1 Implementation

Our inductive database system was developed into the well-known open
source database system PostgreSQL2, which is written in C language. Every
time a data table is created into our system, its mining views are automati-

2 http://www.postgresl.org/

Inductive Querying with Virtual Mining Views 15

cally created. Accordingly, if this data table is removed from the system, its
mining views are deleted as well.

Fig. 9 The proposed inductive database system implemented into PostgreSQL.

The main steps of the system are illustrated in Figure 9. When the user
writes a query, PostgreSQL generates a data structure representing its corre-
sponding relational algebra expression. A call to our Mining Extension was
added to PostgreSQL’s source code after the generation of this data struc-
ture. In the Mining Extension, which was implemented in C language, we
process the relational algebra structure. If it refers to one or more mining
views, we then extract the constraints (as described in detail in [7]), trigger
the data mining algorithms and materialize the virtual mining views with
the obtained mining results. Just after the materialization (i.e., upon return
from the miningExtension() call), the work-flow of the database system con-
tinues and the query is executed as if the patterns or models were there all
the time. We refer the reader to [5, 7] for more details on the implementation
and efficiency evaluation of the system.

Additionally, we adapted the web-based administration tool PhpPgAd-
min3 so as to have a user-friendly interface to the system.

3.2 Scenario

The scenario presented in this section consists in extracting knowledge from
the gene expression data which resulted from a biological experimentation
concerning the transcription of Plasmodium Falciparum [27] during its repro-
duction cycle (IDC) within the human blood cells.

The Plasmodium Falciparum is a parasite that causes human malaria. The
data gather the expression profiles of 472 genes of this parasite in 46 different

3 http://phppgadmin.sourceforge.net/

16 Authors Suppressed Due to Excessive Length

biological samples.4 Each gene is known to belong to a specific biological
function. Each sample in turn corresponds to a time point (hour) of the IDC,
which lasts for 48 hours. During this period, the merozoite (initial stage of
the parasite) evolves to 3 different identified stages: Ring, Trophozoite, and
Schizont. In addition, due to reproduction, one merozoite leads to up to 32
new ones during each cycle, after which a new developmental cycle is started.
Figure 10 shows the percentage of parasites (y-axis) that are at the Ring
(black curve), Trophozoite (light gray curve), or Schizont (dark gray curve)
stage, at every time point of the IDC (x-axis).

Fig. 10 Major developmental stages of Plasmodium Falciparum parasite (Figure
from [27]). The three curves, in different levels of gray, represent the percentage of
parasites (y-axis) that are at the Ring (black), Trophozoite (light gray), or Schizont
stage (dark gray), at every time point of the IDC (x-axis).

These data were stored into 3 different tables in our system, as illustrated
in Figure 11. They are the following:

• GeneFunctions(function id, function): represents the biological functions.
There are in total 12 different functional groups.

• Samples(sample name, stage): represents the samples themselves. Two
data points are missing, namely the 23rd and 29th hours. We added to
this table the attribute called stage, the values of which are based on the
curves illustrated in Figure 10: this new attribute discriminates the sam-
ples having at least 75% of the parasites in the Ring (stage=1), Trophozoite
(stage=2) or Schizont (stage=3) stage. Samples that contain less than 75%
of any parasite stage were assigned to stage 4, a “non-identified” stage.
Thus, for our scenario, stage 1 corresponds to time points between 1 and
16 hours; stage 2 corresponds to time points between 18 and 28 hours; and
stage 3 gathers time points between 32 and 43 hours.

• Plasmodium(gene id, function id, tp 1, tp 2,. . . , tp 48): represents, for
each of the genes, its corresponding function and its expression profile.
As proposed in [27], we take the logarithm to the base 2 of the raw ex-
pression values.

4 The data is available at http://malaria.ucsf.edu/SupplementalData.php

Inductive Querying with Virtual Mining Views 17

Plasmodium
gene id function id tp 1 tp 2 . . . tp 48

1 12 -0.13 0.12 . . . 0.11
2 12 0.24 0.48 . . . -0.03

.

472 5 1.2 0.86 ... 1.15

GeneFunctions
function id function

1 Actin myosin mobility
2 Cytoplasmic translation machinery

.

12 Transcription machinery

Samples
sample name stage

tp 1 1
tp 2 1
.

tp 48 4

Fig. 11 The Plasmodium data.

Having presented the data, we are now ready to describe the goal of our
scenario. In gene expression analysis, a gene is said to be highly expressed,
according to a biological sample, if there are many RNA transcripts in the
considered sample. These RNA transcripts can be translated into proteins,
which can, in turn, influence the expression of other genes. In other words,
it can make other genes also highly expressed. This process is called gene

regulation [27].
In this context, analogously to what the biologists have studied in [27], we

want to characterize the parasite’s different stages by identifying the genes
that are active during each stage. More precisely, we want to identify, for each
different stage, the functional groups whose genes have an unusual high level
of expression or, as the biologists say, are overexpressed in the corresponding
set of samples. By considering the samples corresponding to a specific stage
and the genes that are overexpressed within those samples, we might have
insights into the regulation processes that occur during the development of
the parasite. As pointed out in [27], understanding these regulation processes
would provide the foundation for future drug and vaccine development efforts
toward eradication of the malaria.

Observe that decision trees are not appropriate for the analysis we want
to perform; they are most suited for predicting, which is not our intention
here. Therefore, in our scenario we mine for association rules. A couple of
pre-processing steps have to be performed initially, such as the discretization
of the expression values. These steps are described in detail in the first 3 sub-
sequent subsections. The remaining subsections show how the desired rules
can be extracted from the data.

3.2.1 Step 1: Pre-processing 1

Since our intention is to characterize the parasite’s stages by means of the
functional groups and not of the individual genes themselves, we first create

18 Authors Suppressed Due to Excessive Length

a view on the data that groups the genes by the function they belong to. The
corresponding pre-process query is shown below:5

1. create view PlasmodiumAvg as
2. select G.function,
3. avg(p.tp_1) as tp_1,
4. ...,
5. avg(p.tp_48) as tp_48
6. from Plasmodium P, GeneFunctions G
7. where P.function_id = G.function_id
8. group by G.function

The view called “PlasmodiumAvg” calculates, for every different func-
tional group, the average expression profile (arithmetic mean) over all time
points (see lines from 2 to 5).

3.2.2 Step 2: Pre-processing 2

Since we want the functional groups as components of the desired rules (an-
tecedents and/or consequents), it is therefore necessary to transpose the view
PlasmodiumAvg, which was created in the previous step. In other words, we
need a new view in which the gene functional groups are the columns and
the expression profiles are the rows. To this end, we use the PostgreSQL
function called crosstab6. As crosstab requires the data to be listed down the
page (not across the page), we first create a view on PlasmodiumAvg, called
“PlasmodiumAvgTemp”, which lists data in such format. The corresponding
queries are shown below.

1. create view PlasmodiumAvgTemp as
2. select function as tid, ‘tp_1’ as item,

tp_1 as val
3. from PlasmodiumAvg
4. union
5. ...
6. union
7. select function as tid, ‘tp_48’ as item,

tp_48 as val
8. from PlasmodiumAvg

5 For the sake of readability, ellipsis were added to some of the SQL queries presented
in this section and in the following ones, which represent sequences of attribute names,
attribute values, clauses etc.
6 We refer the reader to http://www.postgresql.org/docs/current/static/
tablefunc.html for more details on the crosstab function.

Inductive Querying with Virtual Mining Views 19

9. create view PlasmodiumTranspose as
10. select * from crosstab
11. (‘select item, tid, val from PlasmodiumAvgTemp

order by item’,
‘select distinct tid from PlasmodiumAvgTemp

order by item’)
12. as (sample_name text, Actin_myosin_mobility real,

...,
Transcription_machinery real)

3.2.3 Step 3: Pre-processing 3

Having created the transposed view PlasmodiumTranspose, the third and
last pre-processing step is to discretize the gene expression values so as to
encode the expression property of each functional group of genes.

In gene expression data analysis, a gene is considered to be overexpressed if
its expression value is high with respect to its expression profile. One approach
to identify the level of expression of a gene is the method called x% cut-off,
which was proven to be successful in [28]: a gene is considered overexpressed
if its expression value is among the x% highest values of its expression profile,
and underexpressed otherwise. With x=50, a gene is tagged as overexpressed
if its expression value is above the median value of its profile.

As in this scenario the data are log transformed (very high expression
values are deemphasized), the distribution of the data is symmetrical and,
therefore, median expression values are very similar to mean values. As com-
puting the mean value is straightforward in SQL and as we are not dealing
with genes independently, but with groups of genes, we use a slight adapta-
tion of the 50% cut-off method: we encode the overexpression property by
comparing it to the mean value observed for each group, rather than the
median. We first create a view, called “PlasmodiumTransposeAvg”, which
calculates, for every group of genes, its mean expression value. This compu-
tation is performed by the following query:

1. create view PlasmodiumTransposeAvg as
2. select avg(Actin_myosin_mobility) as avg_Actin_mm,
3. ...
4. avg(Transcription_machinery) as avg_Tran_m
5. from PlasmodiumTranspose

Afterwards, we create the new table named “PlasmodiumSamples” ap-
plying the aforementioned discretization rule. The query that performs this
discretization step is shown below. Notice that the attribute stage is also
added to the new table PlasmodiumSamples (see line 2).

20 Authors Suppressed Due to Excessive Length

1. create table PlasmodiumSamples as
2. select P.sample_name, S.stage,
3. case when P.Actin_myosin_mobility > avg_Actin_mm
4. then ‘overexpressed’
5. else
6. ‘underexpressed’
7. end as Actin_myosin_mobility,
8. ...
9. case when P.Transcription_machinery > avg_Tran_m
10. then ‘overexpressed’
11. else
12. ‘underexpressed’
13. end as Transcription_machinery
14. from PlasmodiumTranspose P,

PlasmodiumTransposeAvg,
Samples S

15. where P.sample_name = S.sample_name
16. order by S.stage

3.2.4 Step 2: Mining over Association Rules

After creating the table PlasmodiumSamples, in this new step, we search for
the desired rules. The corresponding query is shown below:

1. create table RulesStage as
2. select R.rid, S.sz, S.supp, R.conf,

CAnt.stage as stage_antecedent
CCon.*

3. from PlasmodiumSamples_Sets S,
PlasmodiumSamples_Sets SAnt,

PlasmodiumSamples_Concepts CAnt,
PlasmodiumSamples_Concepts CCon,
PlasmodiumSamples_Rules R

4. where R.cid = S.cid
5. and CAnt.cid = R.cida
6. and CCon.cid = R.cidc
7. and S.supp >= 10
8. and R.conf = 100
9. and R.cida = SAnt.cid

10. and SAnt.sz = 1
11. and CAnt.stage <> ‘?’
12. order by Ant.stage

Inductive Querying with Virtual Mining Views 21

As we want to characterize the parasite’s stages themselves by means of
the gene functions, we look for rules having only the attribute stage as the
antecedent (see lines 9, 10 and 11) and gene function(s) in the consequent. Ad-
ditionally, since we want to characterize the stages without any uncertainty,
we only look for correct association rules, that is, rules with a confidence
of 100% (see line 8). Finally, as the shortest stage is composed of 10 time
points in total (not considering the dummy stage), we set 10 as the minimum
support (line 7). The 381 resultant rules are eventually stored in the table
called “RulesStage” (see line 1).

3.2.5 Step 3: Post-processing

The previous query has generated many redundant rules [29]: for each differ-
ent antecedent, all rules have the same support and 100% confidence. Notice,
however, that as we are looking for all gene groups that are overexpressed
according to a given stage, it suffices to analyze, for each different stage (an-
tecedent of the rules), only the rule that has maximal consequent. Given this,
all one has to do is to select, for each different stage, the longest rule. The
corresponding query is presented below. The sub-query, in lines from 3 to 5,
computes, for every antecedent (stage), the maximal consequent size.

1. select R.*
2. from RulesStage R,
3. (select max(sz) as max_sz,

stage_antecedent
4. from RulesStage
5. group by stage_antecedent) R1
6. where R.sz = R1.max_sz
7. and R.stage_antecedent = R1.stage_antecedent

The 3 rules output by the last query are presented in Figure 12. As shown
in Figure 13, they are consistent with the conclusion drawn in the correspond-
ing biological article [27]. Each graph in Figure 13, from B to M, corresponds
to the average expression profile of the genes of a specific functional group
(the names of the functions are shown at the bottom of the figure). The func-
tions are ordered, from left to right, with respect to the time point when there
is a peak in their expression profiles (the peak value is shown in parentheses)
and they are assigned to the parasite’s stage during which this peak occurs
(the name of the stages are presented at the top of the figure). Observe that,
according to Figure 13, the functions Early ring transcripts and Transcrip-

tion machinery are related to the early Ring and Ring stages, which is in fact
indicated by the first extracted rule. The Glycolytic pathway, Ribonucleotide

synthesis, Deoxynucleotide synthesis, DNA replication, and Proteasome are
related to the early Trophozoite and the Trophozoite stages, which is also

22 Authors Suppressed Due to Excessive Length

antecedent (stage)
consequent

overexpressed underexpressed

Ring

Early ring transcripts Deoxynucleotide synthesis
Transcription machinery DNA replication machine

Plastid genome
TCA cycle

Trophozoite

Glycolytic pathway Actin myosin motors
Ribonucleotide synthesis Early ring transcripts
Deoxynucleotide synthesis Merozoite invasion
DNA replication
Proteasome

Schizont
Plastid genome Cytoplasmic translation machinery
Merozoite invasion Ribonucleotide synthesis
Actin myosin mobility Transcription machinery

Fig. 12 Correct association rules with maximum consequent.

consistent with the second extracted rule. Finally, Plastid genome, Merozoite
Invasion, and Actin myosin mobility have been associated to the Schizont
stage by the biologists, which is indeed consistent with the third extracted
rule.

Fig. 13 The temporal ordering of functional groups of genes (an adapted figure
from [27]). Each graph, from B to M, corresponds to the average expression profile
of the genes of a specific functional group. The biologists of [27] have assigned each
functional group to the parasite’s stage in which it achieves its highest expression
value.

4 Conclusions and Future Work

In this chapter, we described an inductive database system in which the query
language is SQL. More specifically, we presented a system in which the user
can query the collection of all possible patterns as if they were stored in
traditional relational tables. The development of the proposed system was

Inductive Querying with Virtual Mining Views 23

motivated by the need to (a) provide an intuitive framework that covers
different kinds of patterns in a generic way and, at the same time, allows of
(b) ad hoc querying, (c) definition of meaningful operations and (d) querying
of mining results.

As for future work, we identify the following three directions:

• Currently, the mining views are in fact empty and only materialized upon
request. Therefore, inspired by the work of Harinarayan et al. [30], the
first direction for further research is to investigate which mining views
(or which parts of them) could actually be materialized in advance. This
would speed up query evaluation.

• Our system deals with intra-tuple patterns only. To mine inter-tuple pat-
terns, one would need to first pre-process the dataset that is to be mined,
by changing its representation. Although this is not a fundamental prob-
lem, this pre-processing step may be laborious. For example, in the context
of market basket analysis, a table would need to be created in which each
transaction is represented as a tuple with as many boolean attributes as
are the possible items that can be bought by a customer. An interest-
ing direction for future work would then be to investigate how inter-tuple
patterns can be integrated into the system.

• Finally, the prototype developed so far covers only itemset mining, associ-
ation rules and decision trees. An obvious direction for further work is to
extend it with other models, taking into account the exhaustiveness nature
of the queries the users are allowed to write.

Acknowledgements This work has been partially supported by the projects IQ
(IST-FET FP6-516169) 2005/8, GOA 2003/8 “Inductive Knowledge bases”, FWO
“Foundations for inductive databases”, and BINGO2 (ANR-07-MDCO 014-02). When
this research was performed, Hendrik Blockeel was a post-doctoral fellow of the Re-
search Foundation - Flanders (FWO-Vlaanderen), Élisa Fromont was working at the
Katholieke Universteit Leuven, and Adriana Prado was working at the University of
Antwerp.

References

1. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery.
Communications of the ACM 39 (1996) 58–64

2. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational
databases. In: Proc. ECML-PKDD. (2006) 454–461

3. Fromont, E., Blockeel, H., Struyf, J.: Integrating decision tree learning into in-
ductive databases. In: ECML-PKDD Workshop KDID (Revised selected papers).
(2007) 81–96

4. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A.: Mining views:
Database views for data mining. In: ECML-PKDD Workshop CMILE. (2007)

5. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A.: Mining views:
Database views for data mining. In: Proc. IEEE ICDE. (2008)

24 Authors Suppressed Due to Excessive Length

6. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A.: An inductive
database prototype based on virtual mining views. In: Proc. ACM SIGKDD.
(2008)

7. Prado, A.: An Inductive Database System Based on Virtual Mining Views. PhD
thesis, University of Antwerp, Belgium (December 2009)

8. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining
query language for relational databases. In: ACM SIGMOD Workshop DMKD.
(1996)

9. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data
Mining Knowledge Discovery 3(4) (1999) 373–408

10. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules.
Data Mining and Knowledge Discovery 2(2) (1998) 195–224

11. Wicker, J., Richter, L., Kessler, K., Kramer, S.: Sinbad and siql: An inductive
databse and query language in the relational model. In: Proc. ECML-PKDD.
(2008) 690–694

12. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A
constraint-based querying system for exploratory pattern discovery information
systems. Information System (2008) Accepted for publication.

13. Tang, Z.H., MacLennan, J.: Data Mining with SQL Server 2005. John Wiley &
Sons (2005)

14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
VLDB. (1994) 487–499

15. Botta, M., Boulicaut, J.F., Masson, C., Meo, R.: Query languages supporting
descriptive rule mining: A comparative study. In: Database Support for Data
Mining Applications. (2004) 24–51

16. Han, J., Kamber, M.: Data Mining - Concepts and Techniques, 1st ed. Morgan
Kaufmann (2000)

17. Han, J., Chiang, J.Y., Chee, S., Chen, J., Chen, Q., Cheng, S., Gong, W., Kam-
ber, M., Koperski, K., Liu, G., Lu, Y., Stefanovic, N., Winstone, L., Xia, B.B.,
Zaiane, O.R., Zhang, S., Zhu, H.: Dbminer: a system for data mining in relational
databases and data warehouses. In: Proc. CASCON. (1997) 8–12

18. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Generation
Computer Systems 13(2–3) (1997) 161–180

19. Meo, R., Psaila, G., Ceri, S.: A tightly-coupled architecture for data mining. In:
Proc. IEEE ICDE. (1998) 316–323

20. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3) (1997) 241–258

21. Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning
optimizations of constrained associations rules. In: Proc. ACM SIGMOD. (1998)
13–24

22. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent itemsets with convertible
constraints. In: Proc. IEEE ICDE. (2001) 433–442

23. Bistarelli, S., Bonchi, F.: Interestingness is not a dichotomy: Introducing softness
in constrained pattern mining. In: Proc. PKDD. (2005) 22–33

24. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
25. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.:

Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-total. Data Mining and Knowledge Discovery (1996) 152–159

26. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed
itemsets for association rules. In: Proc. ICDT. (1999) 398–416

27. Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., DeRisi, J.L.: The
transcriptome of the intraerythrocytic developmental cycle of plasmodium falci-
parum. PLoS Biology 1(1) (2003) 1–16

Inductive Querying with Virtual Mining Views 25

28. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong
association rule mining for large-scale gene-expression data analysis: a case study
on human SAGE data. Genome Biology 12 (2002)

29. Zaki, M.J.: Generating non-redundant association rules. In: Proc. ACM
SIGKDD. (2000) 34–43

30. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: Proc. ACM SIGMOD. (1996) 205–216

