
HAL Id: hal-00531167
https://hal.science/hal-00531167v1

Submitted on 2 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Comparative Study Of Data Mining Query
Languages

Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana
Prado, Céline Robardet

To cite this version:
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana Prado, et al.. A Practical
Comparative Study Of Data Mining Query Languages. Džeroski, Sašo; Goethals, Bart; Panov, Panče
(Eds.). Inductive Databases and Constraint-Based Data Mining, Springer, pp.59-78, 2010. �hal-
00531167�

https://hal.science/hal-00531167v1
https://hal.archives-ouvertes.fr

A Practical Comparative Study Of Data

Mining Query Languages

Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet

Abstract An important motivation for the development of inductive databases
and query languages for data mining is that such an approach will increase
the flexibility with which data mining can be performed. By integrating data
mining more closely into a database querying framework, separate steps such
as data preprocessing, data mining, and postprocessing of the results, can all
be handled using one query language. In this chapter, we compare 6 existing
data mining query languages, all extensions of the standard relational query
language SQL, from this point of view: how flexible are they with respect
to the tasks they can be used for, and how easily can those tasks be per-
formed? We verify whether and how these languages can be used to perform
four prototypical data mining tasks in the domain of itemset and associa-
tion rule mining, and summarize their stronger and weaker points. Besides
offering a comparative evaluation of different data mining query languages,
this chapter also provides a motivation for the next chapter, where a deeper
integration of data mining into databases is proposed, one that does not rely

Hendrik Blockeel
Katholieke Universiteit Leuven, Belgium and Leiden Institute of Advanced Com-
puter Science, Universiteit Leiden, The Netherlands e-mail: hendrik.blockeel@
cs.kuleuven.be

Toon Calders
Technische Universiteit Eindhoven, The Netherlands e-mail: t.calders@tue.nl

Élisa Fromont · Adriana Prado
Université de Lyon (Université Jean Monnet), CNRS, Laboratoire Hubert Curien,
UMR5516, F-42023 Saint-Etienne, France e-mail: {elisa.fromont,adriana.
bechara.prado}@univ-st-etienne.fr

Bart Goethals
Universiteit Antwerpen, Belgium e-mail: bart.goethals@ua.ac.be

Céline Robardet
Université de Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205, F-69621, France e-mail:
celine.robardet@insa-lyon.fr

1

2 Authors Suppressed Due to Excessive Length

on the development of a new query language, but where the structure of the
database itself is extended.

1 Introduction

An important motivation for the development of inductive databases and
query languages for data mining is that such an approach will increase the
flexibility with which data mining can be performed. By integrating data
mining more closely into a database querying framework, separate steps such
as data preprocessing, data mining, and postprocessing of the results, can all
be handled using one query language. It is usually assumed that standard
query languages such as SQL will not suffice for this; and indeed, SQL offers
no functionality for, for instance, the discovery of frequent itemsets. There-
fore, multiple researchers have proposed to develop new query languages,
or extend existing languages, so that they offer true data mining facilities.
Several concrete proposals have been implemented and evaluated.

In this chapter, we consider four prototypical data mining tasks, and six
existing data mining query languages, and we evaluate how easily the tasks
can be performed using these languages. The six languages we evaluate are
the following: MSQL [8], MINE RULE operator [11], SIQL [17], SPQL [2], and
DMX [16]. All six are based on extending SQL and have special constructs
to deal with itemsets and/or association rules.

The four tasks with which the expressivity of the languages will be tested
can all be situated in the association rule mining domain. The tasks are
“typical” data mining tasks, in the sense that they are natural tasks in cer-
tain contexts, and that they have not been chosen with a particular data
mining query language in mind. The four tasks are: discretizing a numerical
attribute, mining itemsets with a specific area constraint, and two associa-
tion rule mining tasks in which different constraints are imposed on the rules
to be discovered. It turns out that the existing languages have significant
limitations with respect to the tasks considered.

Many of the shortcomings of the six languages are not of a fundamental
nature and can easily be overcome by adding additional elements to the query
languages. Yet, when extending a query language, however, there is always
the question of how much it should be extended. One can identify particular
data mining problems and then extend the language so that these problems
can be handled; but whenever a new type of data mining task is identified, a
further extension may be necessary, unless one can somehow guarantee that
a language is expressive enough to handle any kind of data mining problem.

While this chapter offers a comparative evaluation of different data mining
query languages, this comparison is not the main goal; it is meant mostly
as an illustration of the limitations that current languages have, and as a
motivation for the next chapter, where the idea of creating a special-purpose

A Practical Comparative Study Of Data Mining Query Languages 3

query language for data mining is abandoned, and the inductive database
principle is implemented by changing the structure of the database itself,
adding “virtual data mining views” to it (which can be queried using standard
SQL), rather than by extending the query language.

We dedicate the next section to the description of the chosen data mining
tasks. In Section 3, we introduce the data mining query languages and de-
scribe how they can be used for performing these tasks. Next, in Section 4,
we summarize the positive and negative points of the languages, with respect
to the accomplishment of the given tasks.

2 Data Mining Tasks

Inspired by [3], we verify whether and how 4 prototypical data mining tasks
can be accomplished using a number of existing data mining query languages.
To enable a fair comparison between them, we study here data mining tasks
which mainly involve itemsets and association rules, as these patterns can be
computed by almost all of the surveyed proposals. We also focus on intra-
tuple patterns (i.e., patterns that relate values of different attributes of the
same tuple), even though some of the languages considered can also handle
inter-tuple patterns (which relate values of attributes of different tuples that
are somehow connected) [3]. As the precise structure of the patterns that
can be found typically also differs between query languages, we will for each
task describe precisely what kind of pattern we are interested in (i.e., impose
specific constraints that the patterns should satisfy).

For ease of presentation, we will assume that the data table Playtennis2
in Figure 1 forms the source data to be mined. The data mining tasks that
we will discuss are the following:

• Discretization task: Discretize attribute Temperature into 3 intervals.
The discretized attribute should be used in the subsequent tasks.

• Area task: Find all intra-tuple itemsets with relative support of at least
20%, size of at least 2, and area, that is, absolute support × size, of at
least 10. The area of an itemset corresponds to the size of the tile that is
formed by the items in the itemset in the transactions that support it. The
mining of large tiles; i.e., itemsets with a high area is useful in constructing
small summaries of the database [4].

• Right hand side task: Find all intra-tuple association rules with relative
support of at least 20%, confidence of at most 80%, size of at most 3, and
a singleton right hand side.

• Lift task: Find, from the result of the right hand side task, rules with
attribute Play as the right hand side that have a lift greater than 1.

While these tasks are only a very small sample from all imaginable tasks,
they form a reasonably representative and informative sample. Discretization

4 Authors Suppressed Due to Excessive Length

Playtennis2
Day Outlook Temperature Humidity Wind Play

D1 Sunny 85 High Weak No
D2 Sunny 80 High Strong No
D3 Overcast 83 High Weak Yes
D4 Rain 70 High Weak Yes
D5 Rain 68 Normal Weak Yes
D6 Rain 65 Normal Strong No
D7 Overcast 64 Normal Strong Yes
D8 Sunny 72 High Weak No
D9 Sunny 69 Normal Weak Yes
D10 Rain 75 Normal Weak Yes
D11 Sunny 75 Normal Strong Yes
D12 Overcast 72 High Strong Yes
D13 Overcast 81 Normal Weak Yes
D14 Rain 71 High Strong No

Fig. 1 The data table Playtennis2.

is a very commonly used preprocessing step. The discovery of itemsets and
association rules are common data mining tasks, and the constraints consid-
ered here (upper/lower bounds on support, confidence, size, area, lift) are
commonly used in many application domains. The fourth task is interesting
in particular because it involves what we could call incremental mining: after
obtaining results using a data mining process, one may want to refine those
results, or mine the results themselves. This is one of the main motivating
characteristics of inductive databases: the closure property implies that the
results of a mining operation can be stored in the inductive database, and
can be queried further with the same language used to perform the original
mining operation.

3 Comparison of Data Mining Query Languages

We include six data mining query languages in our comparison : DMQL [6, 7],
MSQL [8], SQL extended with the MINE RULE operator [11], SIQL [17],
SPQL [2], and DMX, the extended version of SQL that is included in Mi-
crosoft SQL server 2005 [16]. As all these languages are quite different, we
postpone a detailed discussion of each language until right before the discus-
sion of how it can be used to perform the four tasks.

A Practical Comparative Study Of Data Mining Query Languages 5

3.1 DMQL

The language DMQL (Data Mining Query Language) [6, 7] is an SQL-like
data mining query language designed for mining several kinds of rules in
relational databases, such as classification and association rules. It has been
integrated into DBMiner [5], which is a system for data mining in relational
databases and data warehouses.

As for association rules, a rule in this language is a relation between the
values of two sets of predicates evaluated on the database. The predicates
are of the form P(X, y), where P is a predicate that takes the name of an
attribute of the source relation, X is a variable, and y is a value in the domain
of this attribute. As an example, the association rule “if outlook is sunny and
humidity is high, you should not play tennis” is represented in this language
by

Outlook(X, ‘Sunny’) ∧ Humidity(X, ‘High’) ⇒ Play(X, ‘No’),

where X is a variable representing the tuples in the source relation that satisfy
the rule.

DMQL also gives the user the ability to define a meta-pattern (template),
which restricts the structure of the rules to be extracted. For example, the
meta-pattern

P(X: Playtennis2, y) ∧ Q(X, w) ⇒ Play(X, z)

restricts the structure of the association rules to rules having only the at-
tribute Play in the right hand side, and any 2 attributes in the left hand
side. In addition to the meta-pattern resource, DMQL has also primitives to
specify concept hierarchies on attributes. These can be used so as to extract
generalized association rules [15] as well as for discretization of numerical
attributes.

Next, we present how the tasks described above are executed in DMQL.

3.1.1 Discretization task

In DMQL, a discretization of a numerical attribute can be defined by a con-
cept hierarchy as follows [7]:

1. define hierarchy temp_h for Temperature
on Playtennis2 as

2. level1: {60..69} < level0:all
3. level1: {70..79} < level0:all
4. level1: {80..89} < level0:all

By convention, the most general concept, all, is placed at the root of the
hierarchy, that is, at level 0. The notation “..” implicitly specifies all values

6 Authors Suppressed Due to Excessive Length

within the given range. After constructing such hierarchy, it can be used in
subsequent mining queries as we show later on.

3.1.2 Area task

As DMQL was specially designed for extracting rules from databases, the
area task cannot be executed in this language.

3.1.3 Right hand side task

The following DMQL query is how intra-tuple association rules with a certain
minimum support and minimum confidence are extracted in this language
(note that we are not considering the constraint on the maximum size of the
rules nor on their right hand sides yet):

1. use database DB
2. use hierarchy temp_h for attribute Temperature
3. in relevance to Outlook, Temperature,

Humidity, Wind, Play
4. mine associations as MyRules
5. from Playtennis2
6. group by Day
7. with support threshold = 0.20
8. with confidence threshold = 0.80

The language constructs allow to specify the relevant set of data (lines 3
and 5), the hierarchies to be assigned to a specific attribute (line 2, for the
attribute Temperature), the desired output, that is, the kind of knowledge to
be discovered (line 4), and the constraints minimum support and minimum
confidence (lines 7 and 8, respectively), as required by the current task.

DMQL is able to extract both intra- and inter-tuple association rules.
For the extraction of intra-tuple rules (as requested by the current task),
the group-by clause in line 6 guarantees that each group in the source data
coincides with a unique tuple.

Concerning the remaining constraints, although it is possible to constrain
the size of the right hand side of the rules using meta-patterns (as shown
earlier), we are not aware of how meta-patterns can be used to constrain the
maximum size of the rules, as also needed by the current task. An alternative
solution to obtain the requested rules is to write two DMQL queries as the
one above, the first using the meta-pattern:

P(X: Playtennis2, y) ∧ Q(X, w) ⇒ V(X, z)(rules with size 3)

and the second, using the meta-pattern:

A Practical Comparative Study Of Data Mining Query Languages 7

P(X: Playtennis2, y) ⇒ V(X, z)(rules with size 2).

A meta-pattern can be used in the query above by simply adding the clause
“matching <meta-pattern>” between lines 4 and 5. We therefore conclude
that the right hand side task can be performed in DMQL.

3.1.4 Lift task

In the system DBMiner [5], the mining results are presented to the user and an
iterative refinement of these results is possible only through graphical tools.
In fact, it is not clear in the literature whether nor how (with respect to the
attributes) the rules are stored into the database. For this reason, we assume
here that the mining results cannot be further queried and, consequently, the
lift task cannot be accomplished in this language.

3.2 MSQL

The language MSQL [8] is an SQL-like data mining query language that
focuses only on mining intra-tuple association rules in relational databases.
According to the authors, the main intuition behind the language design
has been to allow the representation and manipulation of rule components
(left and right hand sides), which, being sets, are not easily representable in
standard SQL [8].

In MSQL, an association rule is a propositional rule defined over descrip-

tors. A descriptor is an expression of the form (Ai = aij), where Ai is an
attribute in the database and aij belongs to the domain of Ai. A conjunctset

is defined as a set containing an arbitrary number of descriptors, such that
no two descriptors are formed using the same attribute. Given this, an asso-
ciation rule in this language is of the form A ⇒ B, where A is a conjunctset
and B a single descriptor. The rule “if outlook is sunny and humidity is high,
you should not play tennis” is therefore represented in MSQL as

(Outlook = ‘Sunny’) ∧ (Humidity = ‘High’) ⇒ (Play = ‘No’).

MSQL offers operators for extracting and querying association rules: these
are called GetRules and SelectRules, respectively. Besides, it also provides an
encode operator for discretization of numerical values.

In the following, we show how the given tasks are executed in MSQL.

8 Authors Suppressed Due to Excessive Length

3.2.1 Discretization task

MSQL offers an encode operator that effectively creates ranges of values, and
assigns integers (an encoded value) to those ranges. The following MSQL
statement creates a discretization for the attribute Temperature, as required.

1. create encoding temp_encoding
on Playtennis2.Temperature as

2. begin
3. (60,69,1), (70,79,2), (80,89,3), 0
4. end

For every set (x,y,z) given in line 3, MSQL assigns the integer z to the
range of values from x to y. In this example, the integer 0 is assigned to
occasional values not included in any of the specified ranges (see end of line
3). The created encoding, called “temp encoding”, can be used in subsequent
mining queries as we show below.

3.2.2 Area task

Similarly to DMQL, MSQL cannot perform the area task, as it was specially
proposed for association rule mining.

3.2.3 Right hand side task

As described earlier, MSQL is able to extract only intra-tuple association
rules, which, in turn, are defined as having a singleton right hand side. The
current task can be completely performed by the operator GetRules, as fol-
lows.

1. GetRules(Playtennis2)
2. into MyRules
3. where length <= 2
4. and support >= 0.20
5. and confidence >= 0.80
6. using temp_encoding for Temperature

In line 1, the source data is defined between parentheses. Constraints on
the rules to be extracted are posed in the where-clause: here, we constrain the
size (length) of the left hand side of the rules, referred to in MSQL as body
(line 3), their minimum support (line 4), and their minimum confidence (line
5). Finally, the using-clause allows the user to discretize numerical attributes
on the fly. In line 6, we specify that the encoding called “temp encoding”
should be applied to the attribute Temperature.

MSQL also allows the user to store the resultant rules in a persistent rule
base, although the format in which the rules are stored is opaque to the user.

A Practical Comparative Study Of Data Mining Query Languages 9

This storage is possible by adding the into-clause to the MSQL query, as in
line 2. In this example, the name of the rule base is called “MyRules”.

3.2.4 Lift task

As previously mentioned, MSQL offers an operator for querying mining re-
sults, which is called SelectRules. For example, the following MSQL query
retrieves all rules with attribute Play as the right hand side, referred to in
MSQL as consequent, from the rule base MyRules:

1. SelectRules(MyRules)
2. where Consequent is {(Play=*)}

The operator SelectRules retrieves the rules previously stored in the rule
base MyRules (given in parentheses in line 1) that fulfill the constraints
specified in the where-clause (line 2). These can only be constraints posed on
the length of the rules, the format of the consequent (as in the query above),
the format of the body, support or confidence of the rules. The constraint
on lift, required by the current task, cannot be expressed in this language,
which means that the lift task cannot be completely performed in MSQL.

3.3 MINE RULE

Another example is the operator MINE RULE [11] designed as an extension
of SQL, which was also proposed for association rule mining discovery in
relational databases. An interesting aspect of this work is that the operational
semantics of the proposed operator is also presented in [11], by means of an
extended relational algebra. Additionally, in [12], the same authors specified
how the operator MINE RULE can be implemented on top of an SQL server.

As an example, consider the MINE RULE query given below:

1. Mine Rule MyRules as
2. select distinct 1..1 Outlook, Humidity as body,

1..1 Play as head,
support, confidence

3. from Playtennis2
4. group by Day
5. extracting rules with support: 0.20,

confidence: 0.80

This query extracts rules from the source table Playtennis2, as defined in
line 3. The execution of this query creates a relational table called “MyRules”,
specified in line 1, where each tuple is an association rule. The select clause in
line 2 defines the structure of the rules to be extracted: the body has schema
{Outlook , Humidity}, while the head has schema {Play}. The notation “1..1”

10 Authors Suppressed Due to Excessive Length

specifies the minimum and maximum number of schema instantiations in the
body and head of the extracted rules, which is referred to as their cardinali-
ties.

The select-clause also defines the schema of the relational table being cre-
ated, which is limited to the body, head, support and confidence of the rules,
the last 2 being optional. In the example query above, the schema of table
MyRules consists of all these attributes.

Similar to DMQL, the operator MINE RULE is able to extract both inter-
and intra-tuple association rules. For the extraction of intra-tuple rules, the
group-by clause in line 4 assures that each group in the source data coincides
with a unique tuple. Finally, in line 5, the minimum support and minimum
confidence are specified.

Next, we show how the given tasks are performed with MINE RULE.

3.3.1 Discretization task

We assume here that the MINE RULE operator has been integrated into a
database system based on SQL (as discussed in [12]). Given this, although
MINE RULE does not provide any specific operator for discretization of
numerical values, the discretization required by this task can be performed
by, e.g., the SQL CASE expression below. Such an expression is available
in a variety of database systems, e.g., PostgreSQL1, Oracle2, Microsoft SQL
Server3 and MySQL4.

1. create table MyPlaytennis as
2. select Day, Outlook,
3. case

when Temperature between 60 and 69 then ‘[60,69]’
when Temperature between 70 and 79 then ‘[70,79]’
when Temperature between 80 and 89 then ‘[80,89]’
end as Temperature,

4. Humidity, Wind, Play
5. from Playtennis2

The query above creates a table called “MyPlaytennis”. It is in fact a copy
of table Playtennis2 (see line 5), except that the attribute Temperature is now
discretized into 3 intervals: [60,69],[70,79], and [80,89] (see line 3).

1 http://www.postgresl.org/
2 http://www.oracle.com/index.html/
3 http://www.microsoft.com/sqlserver/2008/en/us/default.aspx/
4 http://www.mysql.com/

A Practical Comparative Study Of Data Mining Query Languages 11

3.3.2 Area task

Similarly to MSQL, MINE RULE was specially developed for association rule
discovery. Therefore, the area task cannot be performed with MINE RULE.

3.3.3 Right hand side task

Rules extracted with a MINE RULE query have only the body and head
schemas specified in the query. For example, all rules extracted with the exam-
ple MINE RULE query above have the body with schema {Outlook ,Humidity}
and head with schema {Play}. To perform this task, which asks for all rules
of size of at most 3 and a singleton right hand side, we would need to write
as many MINE RULE queries as are the possible combinations of disjoint
body and head schemas. On the other hand, since MINE RULE is also ca-
pable of mining inter-tuple association rules, in particular single-dimensional
association rules5 [3], an alternative solution to obtain these rules is to firstly
pre-process table MyPlaytennis into a new table, by breaking down each
tuple t in MyPlaytennis into 5 tuples, each tuple representing one attribute-
value pair in t (except the primary key). A sample of the new table, called
“MyPlaytennisTrans”, is depicted in Figure 2.

MyPlaytennisTrans
Day Condition

D1 “Outlook=Sunny”
D1 “Temperature=[80,89]”
D1 “Humidity=High”
D1 “Wind=Weak”
D1 “Play=No”
D2 “Outlook=Sunny”
.

Fig. 2 Table MyPlaytennisTrans: the pre-processed MyPlaytennis data table created
before using the MINE RULE operator.

After the pre-processing step, the right hand side task can now be accom-
plished with the following query:

5 Single-dimensional association rules are rules that contain multiple occurrences of
the same attribute, although over different values.

12 Authors Suppressed Due to Excessive Length

1. Mine Rule MyRules as
2. select distinct 1..2 Condition as body,

1..1 Condition as head,
support, confidence

3. from MyPlaytennisTrans
4. group by Day
5. extracting rules with support: 0.20,

confidence: 0.80

Here, the body and head of the extracted rules are built from the domain
of the attribute Condition (attribute of table MyPlaytennisTrans). The body
has cardinality of at most 2, while head has cardinality 1, as requested by
this task.

Figure 3 shows the resulting table MyRules and illustrates how an asso-
ciation rule, e.g., “if outlook is sunny and humidity is high, you should not
play tennis” is represented in this table. 6

MyRules
body head support confidence

{“Outlook=Sunny”,“Humidity=High”} {“Play=No”} 0.21 1
.

Fig. 3 The table MyRules created by a MINE RULE query.

3.3.4 Lift task

For the execution of the previous task, the table MyRules, containing the
extracted rules, was created. Note, however, that the table MyRules contains
only the body, head, support and confidence of the rules. Indeed, to the best
of our knowledge (see [3, 9, 11, 12]), the supports of the body and head of
the rules are not stored in the database for being further queried. As a result,
measures of interest, such as lift, cannot be computed from the mining results
without looking again at the source data.

Although there is no conceptual restriction in MINE RULE that im-
pedes the execution of this task, we assume here that the lift task cannot
be performed using the operator MINE RULE, based on its description given
in [3, 9, 11, 12].

6 For ease of presentation, we adopted here the same representation as in [11]. In [12]
the authors suggest that the body and the head itemsets of the generated rules are
stored in dedicated tables and referred to within the rule base table, in this case the
table MyRules, by using foreign keys.

A Practical Comparative Study Of Data Mining Query Languages 13

3.4 SIQL

The system prototype SINDBAD (Structured Inductive Database Develop-
ment), developed by Wicker et al. [17], provides an extension of SQL called
SIQL (Structured Inductive Query Language). SIQL offers new operators for
several data mining tasks, such as itemset mining, classification and cluster-
ing, and also for pre-processing, such as discretization and feature selection.

In the following, we present how the given tasks are performed in SIQL.

3.4.1 Discretization task

In SIQL, this task can be executed with the following query:

1. configure discretization numofintervals = 3
2. create table MyTable as
3. discretize Temperature in Playtennis2

In this language, all available operators should actually be seen as functions
that transform tables into new tables. The query above, for example, produces
a table called “MyTable”(see line 2), which is a copy of table Playtennis2,
except that the attribute Temperature is now discretized according to the
parameter previously configured in line 1. In this example, we discretize the
attribute Temperature into 3 intervals, as requested by the discretization task.

3.4.2 Area task

For the frequent itemset mining task, SIQL allows the user to specify only
the minimum support constraint, as follows:

1. configure apriori minSupport = 0.20
2. create table MySets as
3. frequent itemsets in MyTable

This query produces the table MySets (line 2) that contains the Boolean
representation of the intra-tuple frequent itemsets found in table MyTable
(line 3), which was previously created for the discretization task.7

Observe that, in this language, the attention is not focused on the use of
constraints: the minimum support constraint is not posed within the query
itself; it needs to be configured beforehand with the use of the so-called
configure-clause (line 1). The minimum support constraint is therefore more
closely related to a function parameter than to a constraint itself. Addition-
ally, the number of such parameters is limited to the number foreseen at the

7 Before the mining can start, table MyTable needs to be encoded in a binary format
such that each row represents a tuple with as many Boolean attributes as are the
possible attribute-value pairs.

14 Authors Suppressed Due to Excessive Length

time of implementation. For example, the constraints on size and area are
not possible to be expressed in SIQL. We conclude, therefore, that the area
task cannot be executed in this language.

3.4.3 Right hand side task

Although SIQL offers operators for several different mining tasks, there is
no operator for association rule mining. This means that this task cannot be
executed in SIQL.

3.4.4 Lift task

Due to the reason given above, the lift task is not applicable here.

3.5 SPQL

Another extension of SQL has been proposed by Bonchi et al. [2]. The lan-
guage is called SPQL (Simple Pattern Query Language) and was specially
designed for frequent itemset mining. The system called ConQueSt has also
been developed, which is equipped with SPQL and a user-friendly interface.

The language SPQL supports a very large set of constraints of differ-
ent types, such as anti-monotone [10], monotone [10], succinct [13], convert-
ible [14], and soft constraints [1]. Additionally, it provides an operator for
discretization of numerical values. Another interesting functionality of SPQL
is that the result of the queries is stored into the database. The storage cre-
ates 3 different tables, as depicted in Figure 4. The figure also shows how the
itemset (Outlook = ‘Sunny’ ∧ Humidity = ‘High’) is stored in these tables.

Items
item id item

1 〈Outlook, Sunny〉
2 〈Humidity, High〉

.

Itemsets
itemset id item id

1 1
1 2

.

Supports
itemset id support

1 3
.

Fig. 4 Materialization of SPQL queries.

Below, we illustrate how the given tasks are executed in SPQL.

A Practical Comparative Study Of Data Mining Query Languages 15

3.5.1 Discretization task

In SPQL, this task can be performed as below:

1. discretize Temperature as MyTemperature
2. from Playtennis2
3. in 3 equal width bins
4. smoothing by bin boundaries

In this example, we discretize the attribute Temperature into 3 intervals
(bins), as requested by this task, with the same length (line 3), and we also
want the bin boundaries to be stored as text (line 4) in a new attribute called
“MyTemperature” (specified in line 1).

3.5.2 Area task

In SPQL, the user is allowed to constrain the support and the size of the
frequent itemsets to be mined, as follows:

1. mine patterns with supp >= 3
2. select *
3. from Playtennis2
4. transaction Day
5. item Outlook, MyTemperature, Humidity, Wind, Play
6. constrained by length >= 2

The language allows the user to select the source data (lines from 2 to
5), the minimum absolute support, which is compulsory to be defined at the
beginning of the query (line 1), and a conjunction of constraints, which is
always posed at the end of the query. In this example, only the constraint on
the size (length) of the itemsets is posed (line 6).

SPQL is able to extract both inter- and intra-tuple itemsets. For the ex-
traction of intra-tuple itemsets, line 4 guarantees that each group in the
source data corresponds to a unique tuple, while line 5 lists the attributes for
exploration.

The constraint on the minimum area (absolute support × size), however,
is apparently not possible to be expressed in this language, since the property
support of an itemset cannot be referred to anywhere else but at the beginning
of the query. Besides, it is not clear in [2] whether formulas such as support
× length can be part of the conjunctions of constraints that are specified at
the end of the queries. On the other hand, note that a post-processing query
on the tables presented above, would be an alternative to complete this task.
Contrary to SIQL, SPQL also stores the support of the extracted itemsets,
which are crucial to compute their area. We therefore conclude that the area
task can be accomplished by SQPL, provided that a post-processing query is
executed.

16 Authors Suppressed Due to Excessive Length

3.5.3 Right hand side task

SPQL was specially designed for itemset mining. Consequently, the right
hand side task cannot be performed in this language.

3.5.4 Lift task

Given the reason above, the lift task is not applicable.

3.6 DMX

Microsoft SQL server 2005 [16] provides an integrated environment for cre-
ating and working with data mining models. It consists of a large set of data
mining algorithms for, e.g., association rule discovery, decision tree learning,
and clustering. In order to create and manipulate the so-called data mining
models, it offers an extended version of SQL, called DMX (Microsoft’s Data
Mining extensions). DMX is composed of data definition language (DDL)
statements, data manipulation language (DML) statements, functions and
operators.

In the following, we show how the given tasks can be performed by this
language. DMX is able to extract both inter- and intra-tuple patterns. We
focus here on the kind of patterns asked by the given tasks.

3.6.1 Discretization task

In DMX, the discretization of numerical values and creation of a data mining
model itself can be done synchronously. This is shown below for the accom-
plishment of the right hand side task.

3.6.2 Area task

In DMX, frequent itemsets cannot be extracted independently from associa-
tion rules. Nevertheless, the itemsets computed beforehand to form associa-
tion rules can also be queried after mining such rules. Thus, to compute this
task, the following steps are necessary. Firstly, a so-called association model
has to be created as follows:

A Practical Comparative Study Of Data Mining Query Languages 17

1. create mining model MyRules
2. (Day text, Outlook text,

Temperature text discretized(Equal_Areas,3),
Humidity text, Wind text, Play text)

3. using microsoft_association_rules
(minimum_support = 0.20,
minimum_probability = 0.80,
minimum_itemset_size = 2)

The above DMX query creates a model called “MyRules” that uses the
values of the attributes defined in line 2 to generate association rules. The
rules are extracted by the algorithm “Microsoft Association Rules”, having
as parameters minimum support, minimum itemset size, as required by the
current task, and also minimum probability (the same as confidence, which is
set to speed up computation only, as we are just interested in the itemsets).
In addition, the user can specify which attributes he or she wants to have
discretized, as in line 2. In this example, we specify that the values of the
attribute Temperature should be discretized into 3 intervals, as demanded by
the discretization task.

Having created the model, it needs to be trained through the insertion of
tuples, as if it was an ordinary table:

1. insert into MyRules
2. (Day, Outlook, Temperature, Humidity, Wind, Play)
3. select Day, Outlook, Temperature,

Humidity, Wind, Play
4. from Playtennis2

When training the model, we explicitly say from where the values of its
associated attributes come (lines 3 and 4).

After training the model, it is necessary to query its content in order to
visualize the computed itemsets. The content of an association model is stored
in the database as shown in Figure 5 [16]. It consists of 3 levels. The first
level has a single node, which represents the model itself. The second level
represents the frequent itemsets computed to form the association rules. Each
node represents one frequent itemset along with its characteristics, such as
its corresponding support. The last level, in turn, represents the association
rules. The parent of a rule node is the itemset that represents the left hand
side of the rule. The right hand side, which is always a singleton, is kept in
the corresponding rule node.

Each node keeps an attribute called “node type”, which defines the type
of the node. For example, itemset nodes have node type equal to 7, while rule
nodes have node type equal to 8. In addition to the attribute node type, a text
description of the itemset is kept in an attribute called “node description”,
and its support in “node support”.8 The description is a list of the items,

8 The specification of those attributes was found at http://technet.microsoft.
com.

18 Authors Suppressed Due to Excessive Length

Fig. 5 The content of an association model in Microsoft SQL server 2005.

displayed as a comma-separated text string, as in ‘Outlook=Sunny, Humid-
ity=High’. In order to query all itemsets in the model MyRules, along with
their corresponding supports, the following DMX query is necessary:

1. select node_description, node_support
2. from MyRules.Content
3. where node_type = 7

In line 1, we select the text description and support of the rules. In line 2,
we specify the model from which the content is to be queried. Finally, as we
are only interested in the itemsets, we filter the nodes by their node types in
line 3.

Note, however, that the current task asks for itemsets with size of at least
2 and area of at least 10. Therefore, a more complex DMX query is needed.
As there is apparently no attribute in an itemset node keeping the size of the
corresponding itemset, one needs to compute their sizes by processing the
description of the itemset in the attribute node description. By doing this,
the area of the itemsets can also be computed. We assume therefore that this
task can only be performed in DMX after the execution of a post-processing
query.

3.6.3 Right hand side task

This task can be completely performed in DMX by following the same steps
of the last task. Firstly, one needs to create a mining model similar to the
one created above, except that here the parameter minimum itemset size is
replaced with maximum itemset size, which is 3 for this task.

After training the model, we query for association rules as below:

1. select node_description, node_support,
node_probability

2. from MyRules.Content
3. where node_type = 8

A Practical Comparative Study Of Data Mining Query Languages 19

For rules, the attribute node description contains the left hand side and the
right hand side of the rule, separated by an arrow, as in ‘Outlook=Sunny, Hu-
midity=High → Play = No’. In addition, its support is kept in the attribute
called “node support” and its confidence in “node probability”.9 Thus, the
above DMX query executes the right hand side task.

3.6.4 Lift task

Again, for performing this task, the user has to be aware of the names of
the attributes that are kept in every rule node. The lift of an association
rule (referred to as importance by [16]) is kept in a attribute called “mso-
lap node score”, while the characteristics of the right hand side of a rule can
be found at a nested table called “node distribution”. 9

The following DMX query performs the lift task:

1. select node_description, node_support,
node_probability,
(select attribute_name
from node_distribution) as a

2. from MyRules.Content
3. where node_type=8
4. and a.attribute_name = ‘Play’
5. and msolap_node_score >= 1

Here, we select from the content of the model MyRules only rules having
attribute Play as the right hand side (line 4) that have a lift greater than
1 (line 5), just as required by this task. Thus, we can conclude that the lift
task can be accomplished by DMX.

4 Summary of the Results

We now summarize the results achieved by the proposals presented in this
chapter with respect to the accomplishment of the 4 given tasks. Table 1
shows, for each of the proposals, the performed tasks.

4.1 Discretization Task

Observe that the discretization task could be executed by all the proposals,
although MINE RULE does not offer a specific operator for discretization.

9 The specification of those attributes was found at http://technet.microsoft.
com.

20 Authors Suppressed Due to Excessive Length

Proposals

DMQL MSQL MINE RULE SIQL SPQL DMX
Discretization task

√ √ √ √ √ √

Area task
√

⋆

√
⋆

Right hand side task
√ √ √

⋆

√

Lift task N/A N/A
√

Table 1 Results of each proposal for each task. The symbol
√

⋆ means that the task
was executed only after a pre- or post-processing query.

This shows that considerable attention is dedicated to pre-processing opera-
tions.

4.2 Area and Right Hand Side Tasks

From the results of the area and right hand side tasks, two main points can be
concluded: firstly, the languages are not flexible enough to specify the kinds of
patterns a user may be interested in. For example, MSQL and MINE RULE
are entirely dedicated to the extraction of association rules, while SPQL was
specially designed for frequent itemset mining. Concerning MINE RULE, the
right hand side task could only be executed with a relatively high number of
queries or after a pre-processing query (which was the approach we took). As
for DMX, although it is able to perform the area task, we observe that there
is not a clear separation between rules and itemsets.

The second point is that little attention is given to the flexibility of ad hoc
constraints. For example, the constraint on area, which was required by the
area task, could not be expressed in any of the proposals that can perform
itemset mining. In fact, SPQL and DMX could only accomplish this task
after the execution of a post-processing query. Note that the flexibility of
these proposals is actually limited to the type of constraints foreseen by their
developers; a new type of constraint in a mining operation which was not
foreseen at the time of implementation will not be available for the user. In
the particular cases of SIQL and DMX, a constraint is more closely related
to a function parameter than to a constraint itself.

4.3 Lift Task

As for the lift task, we observed that little support is given to post-processing
of mining results. Concerning DMQL, we are not aware of whether it considers
the closure principle, that is, whether the results can be further queried, as
opposed to the other data mining languages.

A Practical Comparative Study Of Data Mining Query Languages 21

As for MSQL, although it gives the user the ability to store the mining
rules in a rule base, the data space is totally opaque to the user. In other
words, the rules can only be queried with the use of the operator SelectRules,
and with a limit set of available constraints. In the case of MINE RULE, as
opposed to MSQL, results are in fact stored in ordinary relational tables, but
the format in which they are stored, with respect to the attributes, is not
flexible enough. This restricts the number of possible constraints the user can
express when querying those results.

Finally, observe that DMX is the only proposal that is able to perform the
lift task. On the other hand, the models (and their properties) are stored in
a very complex way with this language, making the access and browsing of
mining results less intuitive.

4.4 Conclusions

Even though most of the limitations of the languages can be solved by minor
extensions to the languages, the need to extend the languages itself is con-
sidered a drawback. In summary, we identify the following list of drawbacks
noticed in at least one of the proposals surveyed in this chapter:

• There is little attention to the closure principle; the output of a mining
operation cannot or only very difficultly be used as the input of another
operation. While the closure principle is very important for the expressive-
ness of SQL, its data mining extensions mostly lack this advantage.

• The flexibility to specify different kinds of patterns and ad-hoc constraints
is poor. If the user wants to express a constraint that was not explicitly
foreseen by the developer of the system, he or she will have to do so with
a post-processing query, if possible at all.

• The support for post-processing mining results is often poor due to a
counter-intuitive way of representing mining results. Data mining results
are often offered as static objects that can only be browsed or in a way
that does not allow for easy post-processing.

In the following chapter, we describe a new inductive database system
which is based on the so-called virtual mining views framework. In addition,
we show the advantages it has in comparison with the proposals described
here.

Acknowledgements This work has been partially supported by the projects IQ
(IST-FET FP6-516169) 2005/8, GOA 2003/8 “Inductive Knowledge bases”, FWO
“Foundations for inductive databases”, and BINGO2 (ANR-07-MDCO 014-02). When
this research was performed, Hendrik Blockeel was a post-doctoral fellow of the Re-
search Foundation - Flanders (FWO-Vlaanderen), Élisa Fromont was working at the
Katholieke Universiteit Leuven, and Adriana Prado was working at the University of
Antwerp.

22 Authors Suppressed Due to Excessive Length

References

1. Bistarelli, S., Bonchi, F.: Interestingness is not a dichotomy: Introducing softness
in constrained pattern mining. In: Proc. PKDD, pp. 22–33 (2005)

2. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: A
constraint-based querying system for exploratory pattern discovery information
systems. Information System (2008). Accepted for publication

3. Botta, M., Boulicaut, J.F., Masson, C., Meo, R.: Query languages supporting
descriptive rule mining: A comparative study. In: Database Support for Data
Mining Applications, pp. 24–51 (2004)

4. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Discovery Science,
pp. 77–122 (2004)

5. Han, J., Chiang, J.Y., Chee, S., Chen, J., Chen, Q., Cheng, S., Gong, W., Kam-
ber, M., Koperski, K., Liu, G., Lu, Y., Stefanovic, N., Winstone, L., Xia, B.B.,
Zaiane, O.R., Zhang, S., Zhu, H.: Dbminer: a system for data mining in relational
databases and data warehouses. In: Proc. CASCON, pp. 8–12 (1997)

6. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining
query language for relational databases. In: ACM SIGMOD Workshop DMKD
(1996)

7. Han, J., Kamber, M.: Data Mining - Concepts and Techniques, 1st ed. Morgan
Kaufmann (2000)

8. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data
Mining Knowledge Discovery 3(4), 373–408 (1999)

9. Jeudy, B., Boulicaut, J.F.: Constraint-based discovery and inductive queries:
Application to association rule mining. In: Proc. ESF Exploratory Workshop on
Pattern Detection and Discovery in Data Mining, pp. 110–124 (2002)

10. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

11. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules.
Data Mining and Knowledge Discovery 2(2), 195–224 (1998)

12. Meo, R., Psaila, G., Ceri, S.: A tightly-coupled architecture for data mining. In:
Proc. IEEE ICDE, pp. 316–323 (1998)

13. Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning
optimizations of constrained associations rules. In: Proc. ACM SIGMOD, pp.
13–24 (1998)

14. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent itemsets with convertible
constraints. In: Proc. IEEE ICDE, pp. 433–442 (2001)

15. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Generation
Computer Systems 13(2–3), 161–180 (1997)

16. Tang, Z.H., MacLennan, J.: Data Mining with SQL Server 2005. John Wiley &
Sons (2005)

17. Wicker, J., Richter, L., Kessler, K., Kramer, S.: Sinbad and siql: An inductive
databse and query language in the relational model. In: Proc. ECML-PKDD,
pp. 690–694 (2008)

