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Abstract – the main objective of this article is to present the authors’ view of- and results on non-linear lateral 

stability of rail vehicles in a curved track. Three elements are exploited in order to secure this objective. Firstly, 

physical genesis of the problem is discussed, and its similarity to straight track analysis is emphasized. Results of 

the theories of self-exciting vibrations and bifurcation are the key elements here. Secondly, the method suitable 

for analysis in a curved track is presented. New necessary elements, extending the better established methods for 

straight track are clearly mentioned and described. The methodology of building original stability maps, being 

the basis for the analysis and valid for whole range of curve radii and straight track is represented. Thirdly, a 

sample of the analysis is shown in order to give the idea how the method can be utilised. The case study refers to 

the influence of wheel/rail profiles on the stability in circularly curved track and straight track as well. Two 

different pairs of wheel/rail profiles are used and the corresponding results compared. The main contributions of 

the article are: a discussion of the physical nature of phenomena related to the stability in a curved tracks, and the 

method (procedure) established for the reasons of the analysis. Another and more general contribution is our say 

in the hot polemics on the advisability of stability analysis in curves and the advantages of the non-linear critical 

speed over the linear one. 
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1. Introduction 

This article results from and continues many years’ interest of the authors in dynamics 

of rail vehicles in a curved track. In particular, this interest is focused on studies of the limit 

cycles and the stability of motion of rail vehicles, which is the basic substance of the paper. 

The considerations and results presented are to some extent the continuation of those started 

earlier by Zboinski (1998). An important contribution of that publication was putting the 

problem of rail vehicles stability in a curved track, explicitly. Many detailed questions were 

put there, too. Quite a few of them remained open at that time. Now, after nine years passed, 

some of the questions have been answered thanks to the works of many researchers, including 

authors of this paper. However, there are still open issues that are continually a matter of 

intensive studies or require persistent suppressing the stereotypes, despite the fact that many 

qualitatively new results were published. 

A question of that sort is the analysis of rail vehicles stability in a curved track. In 

spite of putting the problem explicitly (Zboinski, 1998) and later explicit studies, both by the 

authors of this article (Zboinski and Dusza, 2002, 2004-a, 2004-b, 2006; Dusza, 2005) and 

others (True and Birkedal Nielsen, 1998; Lee and Cheng, 2003, 2005, 2006-a, 2006-b; True at 

al., 2005; Lee at al., 2005; Hoffmann, 2006; Hoffmann and True, 2008; and Zeng and Wu, 

2004, 2005), a group of researchers and railway practitioners exists considering the hunting 

motion either to be absent in a curved track or to be unworthy of interest (consequently the 

stability). They advocate traditional opinion that periodic vibrations of constant amplitude 

(limit cycles) above critical velocity appear for straight track only, whereas in circular curves 

the motion is purely of quasi-static character. 

Similar situation takes place in case of stability analysis in a straight track. There is a 

traditional opinion that in order to determine the value of critical velocity it is enough to 

employ linear model of vehicle. In particular linear geometry of wheel/rail contact is applied, 
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where so-called equivalent conicity (Elkins, 1992) has got key significance. Critical velocity 

obtained in such conditions is often called linear one and denoted vc. On the other hand a great 

number of the works indicates existence of Hopf bifurcation and attractor, determining so-

called non-linear critical velocity vn (Xu at al., 1992; Jensen and True, 1997; True and Jensen, 

1994-b; Zboinski, 1998; Knothe and Böhm, 1999; Lee and Cheng, 2003, 2005; Shupp, 2004; 

Zeng and Wu, 2004, 2005; Zboinski and Dusza, 2004-a, 2006; Dusza, 2005; Hoffmann, 2006; 

and Polach, 2006). Its value is different in general from linear velocity vc and physical nature 

of vn and vc is different, too. Despite these the traditional approach ignoring influence of non-

linearity holds itself well, and new views reveal themselves with difficulty in some societies. 

It is like that, although this problem is publicly and explicitly discussed (for instance by True, 

1994; Knothe and Böhm, 1999; and Goodall and Iwnicki, 2004). It seems that such state of 

affairs arises from insufficient understanding of self-exciting vibrations theory, bifurcation 

theory and questions of chaos, especially by railway practitioners. Therefore, the easier and 

more engineering methods (e.g. Wickens, 1965-a, 1965-b; Shen, 1992; and Dukkipati, 1994) 

based on linear models and linear methods of stability studies (eigen values analysis) still find 

many followers. The works of True and his co-authors (e.g. True and Birkedal Nielsen, 1998; 

True, 1992, 1999, 2006; True and Jensen, 1994-a, 1994-b; True at al., 1996, 2005; Jensen and 

True, 1997; Hoffmann and True, 2008) occupy remarkable place in the propagation and 

development of non-linear mechanics (and in particular of stability) methods in the railway 

vehicle dynamics. Most of these works deal with straight track analysis, some however refer 

to curved track case. 

In our opinion, most works concerning stability in curves (also those already 

mentioned in this article) has got one disadvantageous feature in terms of braking down the 

traditional view on stability. They focus, namely on selected dynamical feature(s) of 

particular railway vehicle. However, they insufficiently explain the origin and physics of the 
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phenomena, and just indirectly refer to non-linear methods of stability studies in straight 

track, which are wider spread in the society. From that point of view, the reference by 

(Zboinski, 1998) is still important because it relates to these problems in direct way. The 

described state of affairs is in our view one of the reasons for slow spreading the opinion 

about usefulness of the stability studies in a curved track. Improving that state is the main 

motivation for elaboration of this paper and the main objective, at the same time. 

In consideration of the identical physical nature of self-exciting vibrations in a curve, 

as in a straight track (ST), including the same sense of non-linear critical velocity vn (Zboinski 

and Dusza, 2004-a, 2004-b, 2006; Dusza, 2005), the current article realises also a 

supplementary objective. It is our support to those who point at higher accuracy, and this way 

at the superiority of determining critical velocity with use of the non-linear mechanics’ 

methods over the linear methods related to the equivalent conicity concept. 

 

1.1. Self-exiting vibrations in railway vehicle dynamics 

The problem of hunting motion of wheelset and rail vehicle body has been absorbing 

attention of theoreticians and practitioners since a long time. Opinions and definitions of rail 

vehicle stable motion connected with hunting phenomenon have been varying significantly in 

the period of railway existence. Review of their progress is done by Knothe and Böhm 

(1999). Further on, we shall refer to the selected elements of that publication. We mean those 

important in connection with the present article. 

Explanation of hunting motion was of purely kinematical character at the beginning. 

Force interactions were disregarded completely. The phenomenon was explained with 

geometry of two conical wheels united with a common axle. Next, an important change came 

thanks to appearance of the rolling contact theory and its application to wheel/rail system. 

Henceforth the friction forces in wheel/rail contact became known. This enabled to take 

account of influence of all forces and torques acting on a wheelset and it became possible to 
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explain the phenomena with the dynamics’ methods. 

In the domain of dynamics, a clear analogy was noticed between the lateral vibrations 

of a wheelset and the vibrations of elementary systems analysed in theory of self-exciting 

vibrations (e.g. Osinski, 1981). In both cases, one deals with periodic vibrations of constant 

amplitude which theory calls the limit cycles. 

According to the definition – self-exciting vibrations are the ones originating in the 

system under the influence of external energy source of intensity constant in time. Three 

subsystems can be distinguished within the system, making self-exciting vibrations possible: 

source of energy, energy control valve, and vibrating system. The following pairs correspond 

to these elements in a moving rail vehicle: source of energy – traction (the engine changing 

fuel energy or electricity into energy of motion, while in the simulation it can be the 

assumption of constant velocity of motion); energy control valve – contact forces between 

wheel and rail; vibrating system – vehicle on track. There is a feedback between vibrating 

system and energy control valve, which enables to stabilise the energy flow. 

Characteristic feature of the self-exciting vibrations is that after enough duration, they 

become the periodic vibrations (limit cycles). The single limit cycle does not depend on the 

perturbation (initial conditions) that caused it, providing this particular cycle, but not the 

other, appears. In the main, vibrating system subject to the self-exciting vibrations of a given 

amplitude dissipates energy (it is a damped system). If the amount of energy supplied to such 

a system is big enough, however smaller than the maximum amount that may be potentially 

dissipated, then a vibration amplitude exists at which the total energy of the system is constant 

during a single period. The next feature of the self-exciting systems is an existence of at least 

one element with its characteristic being non-linear function of the system state. Presence of 

such non-linear element causes that the supplied and dissipated energies within the system are 

equal to each other only for one value of the amplitude (in the simplest case). Both the 
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amplitude and the other vibration parameters can be handy as the indicators characterizing 

state of the system. 

Let us mention next that self-exciting vibrations theory introduces the concepts of 

stable and unstable limit cycles (e.g. Osinski, 1981). Such cycles occur alternately one after 

another and this can happen again and again. In this case one talks about multiple periodic 

solutions. Generally solutions tend to the stable cycles and move away from the unstable 

ones. It depends on range of the initial amplitude (range of the initial conditions) which 

particular stable cycle is taken by system as the solution. Besides, the cycles of soft and hard 

excitations are referred to. In the first case, just minimum amount of the supplied energy is 

necessary to initiate the self-exciting vibrations. In the second case, except that condition, the 

additional one exists, namely some minimum values of initial conditions are necessary to 

initiate the vibrations.  

Almost all features described above, typical for self-exciting vibrations can be 

confirmed through simulation methods in case of wheelset vibrations. In fact, these results are 

not formal mathematical proof of limit cycles existence. However, without bigger doubts they 

confirm possibility to apply the self-exciting vibrations theory to explanation of wheelsets 

oscillations. The example of investigations focused on the demonstration of limit cycle 

existence are those described by Zboinski and Dusza (2002) and Dusza (2005). They 

confirmed the typical limit cycle’s properties in case of wheelset hunting motion: requirement 

for some minimum amount of the energy necessary to initiate the self-exciting vibrations, as 

well as the cycle amplitude’s independence of initial conditions. First of the mentioned 

properties means in practice a minimum velocity (critical velocity) above which the limit 

cycle appears. It was also demonstrated that limit cycle of the investigated wheelset was that 

one of hard excitation. It means that despite the critical velocity was reached, the initial 

conditions exceeding certain minimum value were also necessary to initiate the cycle. The 
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property that was not confirmed in the discussed studies was the multiple and alternating 

occurrence of stable and unstable limit cycles. For big oscillation amplitudes it could be 

explained by interaction between wheel flange and rail, which causes dramatic change of the 

system properties. 

On the other hand there are works that show or report that multiple solutions are 

possible in case of wheelset oscillations (e.g. Gasch at al., 1984; Goodal and Iwnicki; 2004; 

Hoffmann, 2006). It might be stated with the small risk that worn rails caused multiple 

periodic solutions in the work by Gasch at al. (1984). Concluding, despite particular limit 

cycle does not depend on the initial conditions, general solution of the system depends on 

them in case of the co-existing multiple solutions. 

 

1.2. Analysis of non-linear lateral stability of rail vehicles based on bifurcation plots 

Interpretation of wheelset’s hunting motion obtained on the grounds of self-exciting 

vibrations theory was completed and extended by including in the considerations the 

achievements of bifurcation theory. Thanks to this, it became possible to distinguish and 

explain different values of linear vc and non-linear vn critical velocities. The explanation is 

Hopf’s bifurcation, typical as it appeared in the wheelset-track system. As shown, e.g. in 

reference by Xu at al. (1992), in the case of subcritical bifurcation of that kind vn < vc, 

whereas in the case of supercritical situation both velocities coincide, thus vn = vc. Utilisation 

of the bifurcation theory resulted in the transfer of stability analysis of wheelset motion to so-

called bifurcation plots.  

Analysis of bifurcation plots is a fundamental issue in contemporary stability analysis 

of rail vehicles (Huilgol, 1978; Kass-Petersen and True 1983, 1984; and eventually survey by 

Knothe and Böhm, 1999). Such analysis makes it possible to determine position of regions of 

stable and unstable stationary, as well as stable and unstable periodic solutions in relation to 

each other. It is also well suited to representation of the multiple periodic solutions. 
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The shape of bifurcation plot that is representative for some non-linear properties of 

railway vehicles is shown in Fig. 1 (Moelle and Gash, 1982; Xu at al., 1992; Knothe and 

Böhm, 1999; Schupp, 2004; Polach, 2006). Note existence of just one line representing stable 

periodic solutions for the situation shown in Fig. 1. Despite relatively wide range of validity 

of Fig. 1, it does not represent the general case. Examples of other forms of bifurcation plots 

for railway vehicle, including multiple periodic solutions, can be found e.g. in the works by 

Moelle and Gasch (1982), Gasch at al. (1984), True (1992), True and Jensen (1994-a) and 

Hoffmann (2006). Terminal point of the line representing stable periodic solutions in Fig. 1 

determines velocity vs. It is velocity at which the calculations are stopped for any reason. It 

could be an arbitrary stop or stop due to unbounded growth of oscillations. Velocity 

corresponding to the terminal point in view, was called in earlier works as the derailment 

velocity (e.g. Moelle and Gasch, 1982), and sometimes denoted with vd. The use of this term 

is questionable in the simulation studies, considering limited possibility of derailment 

projection by simulation programmes. There is also another difference between Fig. 1 and 

bifurcation plots from the earlier works. It is the line, placed above the line for stable periodic 

solutions (as e.g. that in Fig. 1), representing unstable periodic solutions (e.g. Moelle and 

Gasch, 1982). This line is absent in Fig. 1. Although non-linear dynamics tells that such line 

must be there, demonstration of its existence for big lateral displacements of wheelset is 

difficult (if not impossible). Note that the theory rather does not take account of dramatic 

change in the system properties, as those occurring for big lateral displacements of wheelset. 

They are caused by wheel flange contacting with rail head in such conditions. On the other 

hand, additional lines for the unstable periodic solutions can be seen on the bifurcation plots 

representing rail vehicle systems with multiple (periodic) solutions. Then however wheelset’s 

oscillations are of smaller amplitudes and flange contact does not occur. 

The analysis based on bifurcation plots became possible thanks to wide spread of 
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simulation techniques and achievement of high effectiveness by them. It enabled to create 

more and more advanced mathematical models and this way more precise description of the 

phenomena taking place in a real object. In most present-day studies of stability of rail vehicle 

motion bifurcation plots (stability plots) are first built and then analysed. When building these 

plots, the results of simulations of motion are utilised, with vehicles represented by their 

mathematical models of different complexity. In most such studies motion along a straight 

track is considered. Their authors focus on analysis of the lateral dynamics of vehicle, and 

base on analysis of the parameters that characterize vibrations (self-exciting ones) of vehicle 

model. Example of such works might be those by Gash at al. (1984), True (1992), True and 

Jensen (1994-a, 1994-b), True at al. (1996), Knothe and Böhm (1999), Stichel (2002), Schupp 

(2004), Goodall and Iwnicki (2004), as well as Polach (2006). 

Important problem in studying stability of motion is looking for critical values of 

bifurcation parameters (also called active parameters of the system). These are values for 

which a significant increase or change in type of solution of mathematical model occurs. In 

case of rail vehicle model the velocity of motion v is such a parameter. Influence of this 

parameter on the system properties is actually illustrated on bifurcation plot (Fig. 1). For 

velocities smaller than critical value, denoted with vn, one always obtains stable stationary 

solutions (ylw = 0). In the moment of occurrence of velocity vn (and above vn), a sudden 

change of solution character can happen from stable stationary to stable periodic one (solid 

line for both types of stable solutions is used in Fig. 1). Such change corresponds to 

appearance of self-exciting vibrations in the system. For the systems of hard excitation, the 

necessary condition for such appearance is presence of sufficiently big initial conditions. Just 

described phenomenon is related to occurrence of subcritical Hopf’s bifurcation indicated in 

Fig. 1. In case of the system with subcritical properties (as shown in Fig. 1), bifurcation of the 

stable stationary solution into unstable stationary and unstable periodic solutions happens. 
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Since solutions move away from the unstable (periodic) solution and tend to the stable 

solutions, so under sufficiently large perturbation (initial conditions), they are attracted by the 

stable periodic solution. For smaller perturbations, they are attracted by the stable stationary 

solution, as long as vn<v<vc. For the systems of soft excitation, the bifurcation is of 

supercritical character (e.g. Xu at al., 1992). Then vn = vc and no line representing unstable 

periodic solutions exists. 

Reaching the critical value of active parameter by system does not mean a loss of the 

stability. It happens so, as the newly created periodic solution lasts for freely long time (here 

on the freely long distance of simulation). Besides, one can note in Fig. 1 that periodic 

character of solutions is preserved with a rise of bifurcation parameter value in the 

supercritical zone (i.e. for v>vc). The situation changes when active parameter reaches value vs 

(Fig. 1). Then, unbounded growth of the oscillations occurs resulting in stoppage of the 

calculations. Such growth is sometimes quite sudden. Sometimes however, the periodic 

character of the solution is lost first. The amplitude and frequency change slowly and also it is 

not the stationary solution. Concluding, some symptoms of unstable motion can be observed 

prior to the unbounded growth. The point in Fig. 1, denoted with symbol vc indicates the value 

of critical velocity for a linear system (e.g. Moelle and Gasch, 1982, and Schupp, 2004). 

The search of critical value for bifurcation parameter, and the character and value of 

the solutions for entire scope of bifurcation parameter changes, makes a subject for stability 

studies of non-linear systems. In particular, for rail vehicles, it most frequently corresponds to 

values of critical velocity vn, as well as to the character and fluctuations in lateral 

displacements of wheelsets below and above vn, up to vs.  

Finally, it is should be stressed that chaotic solutions (e.g. Verhulst, 1990) can appear 

in the rail vehicle-track system, as shown mainly in works by True (e.g. True, 1992; True and 

Jensen, 1994-a, 1994-b; Jensen and True, 1997; Hoffmann, 2006; Hoffmann and True, 2008;), 
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but also in works by others (e.g. Stichel, 2002; Zboinski and Dusza, 2006). The non-

linearities in vehicle suspension system (dry friction, bump stops, clearances and so on) seem 

to intensify their appearance. The works cited above show that the method of studying the 

dynamical properties on the basis of bifurcation plots suits excellently to the analysis of such 

systems. 

 

2. The model being investigated 

Simulation studies within this article were performed utilising the modelling method, 

mathematical model, and simulation software applied in the earlier works. Therefore we 

confine the information on this topic. Mathematical model of the system was built in 

accordance with the generalised methodology of modelling for railway vehicle dynamics 

(Zboinski, 1999, 2001, 2004). Dynamics of vehicle in this method is the dynamics of relative 

motion. It means the description in relation to the reference systems that are moving along 

track centre line. In the description, Lagrange formalism of type II was applied but adapted to 

the description in moving reference frames, (Zboinski, 1999; Kisilowski and Knothe (Eds.), 

1991). Consequently, 2nd-order ordinary differential equations describe motion of the 

mechanical system. 

The most comprehensive specification of the mathematical model, and of the 

corresponding simulation software can be found in the work by Zboinski (1998). 

Nevertheless, also other references (Zboinski, 1999, 2004; Zboinski and Dusza, 2002, 2004-a, 

2006) can be helpful. Here, let us remind you that it is a model of the two-axle non-traction 

rail vehicle, with primary suspension only, of structure given in Fig. 2(c). It has got its real 

counterpart within British railways rolling stock. It is HSFV1 freight car. The car model is 

supplemented with laterally and vertically flexible track model, of the structures shown in 

Fig. 2(a) and Fig. 2(b). Track model represents a standard European track with 1435mm 

gauge, 1:40 rail inclination, and with no geometrical irregularities. Vehicle and track models 
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form the discrete vehicle-track system of 18 degrees of freedom. The values of vehicle and 

track models’ parameters can be found in Table 1 (one can see also Zboinski, 1998, 1999). 

Kinematical non-linearities (Zboinski, 1999), imaginary forces of inertia (Zboinski, 

1999, 2001) arising from description in moving reference systems, non-linear geometry in 

wheel/rail contact, as well as the non-linear tangential contact forces calculated with the use 

of FASTSIM programme (Kalker, 1982) constitute the non-linearities in the system. 

Wheel and rail profiles with the real nominal shape (one of reasons of the non-linear 

geometry of contact) were applied in the model. Information about the geometry is introduced 

into the model through contact parameter tables. They are created with the use of RSGEO 

programme by Kik (1992), which is distributed by ArgeCare. The input data in this 

programme are Cartesian co-ordinates of wheel and rail profiles (either theoretical or 

measured). After smoothing this data with RSPROF subroutine, the RSGEO procedure solves 

two-dimensional geometrical problem, consisting in searching for position of contact points 

between the profiles as a function of their lateral relative shift yrel=y-yt (see Fig. 2(a)). Next, 

the corresponding parameters are calculated and tabulated as a function of yrel. In addition, 

variation in contact parameters coming out from wheelset yaw rotation (variable angle of 

attack ψ) is taken into account. This is done by generating several tables for selected range of 

ψ. Contact parameters are linearly interpolated relative to both the yrel and the ψ. Account is 

taken of wheelset roll rotation φ through the geometrical constraint between y and φ. Most of 

the results presented in this paper were obtained for wheel/rail pair of S1002/UIC60 type 

being a standard in Europe. Only results shown in Section 6 refer to the Russian pair of 

SZDwheel/R65 type. 

 

3. Phenomenon studies of the appearance and duration of self-exciting vibrations 

Simulation studies relating to the self-exciting vibrations phenomenon started with the 
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straight track case that is better examined one. At the same time, the authors treated the 

straight track as a special case of the circular curve of infinite radius R = ∞. Next, our studies 

covered the whole range of curve radii, from the large ones R = 10000 m down to the small 

ones R = (300) 600 m. Investigations for particular radii R started from small velocities v. 

Each simulation of motion was realised with the constant velocity v. Taking into account that 

all system parameters remain constant during simulation, velocity v is the only parameter 

characterising the amount of energy being supplied into the system. The observed quantity is 

leading wheelset’s lateral displacement ylw. 

Before we shall proceed to presenting and discussing example simulation results some 

introductory considerations are necessary. Let us realise that the problem of looking for 

saddle-node bifurcation (see Fig. 1) that determines critical velocity vn (being the minimum v 

to start self-exciting vibrations) can be formulated in two different ways. First is the 

formulation as a stability problem for the periodic solution (limit cycle). Second is the 

formulation as a problem of existence of multiple solutions. Authors of present paper take 

advantage of both formulations. In fact the simplified procedure being the combination of 

both formulations was used. 

In case of the first formulation three approaches could be exploited. The first needs 

sweeping over a range of initial conditions and check if despite their different values the same 

solution is obtained for the velocity selected. This approach matches closely mathematical 

definition of the stability. Variation of over the velocity v around vn is obviously also 

necessary. The next options are two different methods for precise vn determination. These are 

the ramping method based on continuous decrease of velocity during the single simulation 

(e.g. Schupp,  2004 and Hoffmann and True, 2008) or the method based on series of 

simulations for decreasing velocities, where results of preceding simulation are used as initial 

conditions in the current one.  
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The authors used first of the approaches mentioned above. Some simplifications were 

applied, however. At first, this approach was used just in the initial stage of the investigations. 

Next, the procedure was limited to selected radii R. These were R=600, 2000, 6000 m and ∞ 

(i.e. ST). Also, variation over v was limited, namely realised with 3-4 m/s interval. Such 

procedure was used mainly in order to be sure that real limit cycle was obtained and no 

multiple periodic solutions existed. As a consequence slightly overestimated values of vn 

could sometimes be obtained. Nevertheless, possible inaccuracy in velocity vn, not bigger than 

4 m/s, was accepted. Example of formal stability study corresponding to the first formulation, 

for ST and selected velocity, is shown in Fig. 3. 

In the case shown in Fig. 3 initial conditions were imposed on lateral displacements 

(ylw, ytw) of both wheelsets. Here, the limit cycles are obtained only for the initial conditions 

bigger than 0.004 m. For the smaller ones stable stationary solutions are obtained (vibrations 

decay). Thus, it can be concluded that the limit cycle we deal with in Fig. 3 is that of hard 

excitation. This means also that subcritical Hopf’s bifurcation exists in case of the 

investigated system. Similar results for the selected curve radii (specified above) were 

obtained, too.  

Preview of all results of this type allowed to know common properties of the analysed 

vehicle-track system for the range of radii R. Based on such knowledge a decision was taken 

with care to choose one set of the initial conditions for the rest of radii, despite it could result 

in approximate values of vn for them. The expected inaccuracies should rather not exceed 4 

m/s. The above decision was taken with serious thought, but in the main in order to speed up 

the calculations. Note that thanks to it just variation over the velocity was possible in the next 

simulations. That is why simulation results in the next subsections refer just to this set. Note 

also that in fact switch to the second formulation while looking for vn value (saddle-node 

bifurcation) was realised in this way. The reason for such switch are primary objectives of our 
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studies, which needed faster calculations. The objectives themselves are presented further on. 

 

3.1. Motion along straight track 

In accordance with the foregoing considerations, the simulation results are in a form of 

plots representing the dependence of leading wheelset’s lateral displacement ylw upon 

distance. Results in Fig. 4 were achieved for velocities of motion equal 20, 25, and 30 m/s, 

respectively. In each case, the initial conditions were imposed on both wheelsets, i.e. ylw(0) = 

ytw(0) = 0,0045 m. Under these conditions, the wheelset displaced from the centre position 

(track centre line) returns to it (to the balance ylw = 0) after some time. With increase of 

velocity v, the vibration amplitudes increase for the same distance, and also there is an 

elongation of distance on which the vibrations disappear (the balance is reached). 

Disappearance of vibrations means that amount of energy being supplied to the system is 

smaller than the amount of energy dissipated there. Under such circumstances, there is no 

chance for the self-exciting vibrations not to decay. One can state than, that the motion of 

vehicle is the stable stationary one within here discussed range of velocity. 

Increasing still the velocity of motion (the amount of energy supplied to the system), 

the distance elongates again, necessary for the vibrations to disappear (Fig. 5(a)). At certain 

velocity (here 40 m/s), the lateral displacements ylw take form that makes it impossible to state 

univocally, at the standard distance of simulation, whether they increase or decrease 

(Fig. 5(b)). Theoretically, vibrations can either disappear or develop into limit cycle (constant 

amplitude). Range of velocities with the behaviour like in Fig. 5(b) was however very narrow. 

In such situations, simulations for a longer distance (order of magnitude of a few thousands 

m) can give the answer. Here, vibrations tended to decay. On the other hand, the simulations 

for so long distances can generate doubts about their accuracy (Zboinski and Dusza, 2004-b). 

Rise of velocity to 43 m/s caused the displacements reached constant value of the 

amplitude (and frequency) on the standard section of distance. One can state that solutions 
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have got character of the limit cycle being a result of self-exciting vibrations generated by the 

mechanical system. At this value of velocity of motion, the amount of energy being supplied 

to the system is equal to the amount of energy dissipated there. 

Such state of the system can last for freely long time (in this instance, on a freely long 

distance). If one presents the results on the phase plane (Fig. 6), then one can notice that after 

an initial stage of motion, the trajectory describes single stable limit cycle. Width of the 

obtained figure arises from the account taken of transient stage before vibrations became 

steady. 

 

3.2. Motion along circularly curved track 

In a way analogous to straight track, the simulations were performed for motion of 

vehicle model in the curved track. The case study below is a circular curve of radius R = 600 

m. Results in Fig. 7 represent wheelset’s lateral displacements for velocities of 20, 25, and 30 

m/s, respectively. As before, the initial conditions were imposed on both wheelsets, i.e. 

ylw(0) = ytw(0) = 0,0045 m. 

One may observe in Fig. 7 that with increase of velocity v, there is an elongation of 

distance on which wheelset displaced from its balance position returns to the steady state 

solution (the horizontal line). The amplitudes of displacements ylw increase for the same 

distance with increase of v, as well. Important difference comparing to the straight track is 

asymmetry of wheelset lateral displacement ylw with respect to the track centre line (i.e. to 

ylw=0 position). This asymmetry rises with the rise of velocity v. On the route discussed here, 

the superelevation of constant value h = 0,16 m was applied. This is the maximum admissible 

value used in practice. For the values of velocity chosen here, the superelevation deficiency 

occurs, being just one reason for the unsymmetrical position of wheelset in the curve. Another 

important reason is difference in tangential contact forces acting on the left and right wheels. 

It is related to the different paths to travel by the inner- and the outer wheel in the curve and 
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consequently to different creepages for both wheels. 

Next increments in the velocity of motion (Figs. 8(a) and (b)) elongate again the 

distance necessary for the vibrations to disappear. This increments also increase the 

amplitudes of vibrations for the same distance and the asymmetry of wheelset displacement 

ylw with respect to the track centre line. Final increment of velocity v (up to 43 m/s in 

Fig. 8(c)) causes that the vibrations are not of decaying character any more but take the form 

of steady amplitude and frequency (limit cycle). Value of v related with a jump from the 

stable stationary solutions to the stable periodic solutions, obtained for R=600 m, is the same 

as that obtained for the straight track. Similar are also such values of v obtained for rest of the 

radii. Thus, the conclusion can now be formulated for the investigated system. So, provided 

initial conditions are big enough, the radius R does not influence very much velocity v that is 

necessary to supply the amount of energy into the system, which is capable to initiate self-

exciting vibrations. Similarly to straight track, the result exposed on phase plane (Fig. 9) 

creates, after an initial stage of motion, the single stable limit cycle. 

Negative values of the lateral displacements ylw in Fig. 7 and Fig. 8 have got a 

conventional character. They arise from the fact of simulating motion in the curve turning to 

the left. For curves turning to the right, the results are antisymmetric in relation to the 

horizontal axis (Ox axis) and take positive values. 

 

3.3. Motion with velocities higher than the critical one 

Accepting the assumption that stable motion of the investigated object occurs when 

the model describing it gives stable stationary solutions or stable periodic solutions, being the 

limit cycles, it seems justified to study the parameters of these cycles in the entire range of 

velocities they occur. Consequently, the results are presented of the succeeding simulations 

for straight track with velocities of 50, 55 and 65 m/s, respectively (Fig. 10). 

One can see that following an increase in velocity v, the vibration amplitudes grow 
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slightly. At velocities 50 and 55 m/s (Figs. 10(a) and 10(b)) they still preserve the character of 

limit cycle. However, this situation changes at some velocity vs (in this instance 65 m/s – 

Fig. 10(c)). Here, at the terminal part of the studied distance, the vibrations yet loose character 

of limit cycle (the amplitude and frequency change). At this velocity, our calculations yield 

unbounded growth in amplitude and are stopped. Two types of such growth were observed in 

our studies. The first corresponds to Fig. 10(c). Here, unbounded growth in the wheelset yaw 

angle ψlw (angle of attack) happened, while no such growth in ylw was observed. For the 

second, direct unbounded growth in ylw occurs. Samples of that type of results can be found in 

Dusza (2005), Zboinski and Dusza (2004-b, 2008). The behaviours as described mean that 

with velocity vs, the amount of energy supplied to the system is bigger than amount of the 

energy dissipated there. Therefore such cases evidence the unstable motion of vehicle model. 

Analogous results, though shifted (i.e. asymmetrical) in relation to the horizontal axis, we 

obtained for the circular curves. 

Two additional comments should be made in view of the previous paragraph. Firstly, 

we have not investigated directly the reason of the unbounded growths of oscillations. 

Nevertheless, results in Zboinski and Dusza (2004-b, 2008) revealed that appearance of the 

unbounded growth in the range of realistic velocities v and also values of vs depend strongly 

on the method of wheelset’s mean rolling radius rt modelling. The differences between 

particular methods were so big that one can not be sure if discussed growths reflect any 

physical phenomena. They could also be a result of wrong rt modelling and of wrong 

modelling in general. 

Secondly, the difference that was discussed in subsection 1.2 between stoppage of 

calculations for velocity vs, which is represented e.g. by Fig. 10(c), and the real derailment 

should be reminded here. In addition, under vs we should mean any velocity at which the 

calculations are stopped, no matter we deal with the unbounded growth started from periodic 
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(or quasi-periodic), stationary (or quasi-stationary), and even chaotic solutions. 

 

4. Employing observations of self-exciting vibrations and stationary solutions in  

       evaluation of vehicle stability in curves 

One can get bifurcation plot basing on observations of change of the system’s selected 

variable, in particular domain, under the influence of changing value of a bifurcation 

parameter. Here, such observations refer to the change of wheelset lateral displacement ylw, in 

distance domain, under the influence of changing velocity v (e.g. Figs. 4, 5, and 10). The 

obtained theoretical bifurcation plot for the given conditions (given curve radius R and 

superelevation H) could look like Fig. 11(a).  

This plot is similar to that for straight track in Fig. 1. The major difference appears for 

stationary solutions (i.e. for v < vc), because then ylw ≠ 0 in a curved track. The reasons are 

explained further on. Another difference concerns terminal part of the plot. Note that points in 

Figs. 11(a) and (b) corresponding to velocity vs are not the terminal points for the lines of 

stable periodic solutions, as it happens in Fig. 1. This difference emphasises limited 

connection of vs with velocity at which vehicle eventually derails in reality. Different values 

of vs that could be obtained with use of different simulation programmes (different modelling) 

are emphasised this way, too. The reason for both are limited capabilities of the simulation 

programmes to simulate a derailment. That problem was already discussed in Subsections 1.2 

and 3.3. 

In terms of building Fig. 11(a) in practice some additional information is beneficial. 

The reader should realise certain possible differences in determining the lines for unstable and 

stable periodic solutions. In case of unstable periodic solutions (dashed line joining the 

attractors at velocities vc and vn), stability analysis in type shown in Fig. 3 must be used. 

Sweeping over values of the initial conditions is the absolute necessity. We mean to have the 

possibility of determining such results. For example, studies concluded with Fig. 3 made it 
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possible to determine the point on the corresponding dashed (unstable) line of the following 

co-ordinates: v=46 m/s, ylw=0.00418 m. In case of stable periodic solutions, possessing greater 

practical significance, the stability analysis with a thorough variation over values of the initial 

conditions can also be used. On the other hand, however, the simplified and faster approach 

based on check of the periodic solution’s existence could carefully be used, too (as explained 

at the beginning of Section 3). It is really an attractive alternative. Here, one or a few selected 

set(s) of initial conditions is(are) used, depending on the system properties. While using this 

approach, however, one should treat it all the time as a supplement to the stability approach. 

In case of any doubts or randomly (just for check) the switch to sweeping over a range of the 

initial conditions is recommended. Despite higher risk of omission of unexpected solutions 

(multiple or chaotic ones), such simplified approach can be a reasonable compromise in terms 

of the calculation efficiency. 

Now note, that during motion of the model along perfectly straight track, in conditions 

when vibrations decay (Fig. 4), values of displacements ylw become constant and ylw = 0 at the 

same time. If motion in the similar conditions takes place along circular track, then the value 

of ylw becomes also constant, but in the main ylw ≠ 0 (Fig. 7). It comes out from existing in 

curves no balance of the lateral forces acting on wheelset in its symmetrical (ylw = 0) lateral 

position. If in the straight track the self-exciting vibrations exist, i.e. the observed lateral 

displacements ylw are in type of limit cycle, then sign of displacements ylw changes (Fig. 10). 

Change of the ylw sign can also happen in circular curve (Fig. 8(c)) where limit cycle is 

asymmetrical. Moreover, for both the stationary and periodic solutions, the solutions (sr) for a 

curve turning to right and solutions (sl) for the curve turning to left are antisymmetric (sr = -sl) 

to each other, provided the same curve radius R. So, the sign of ylw depends on the direction of 

a curve turn. 

Consequently, the question comes into being what value of displacements ylw should 
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be taken on the bifurcation plot, since maximum value of ylw is not univocal. Therefore in 

Fig. 11(a), the maximum of absolute value of lateral displacement (|ylw| max) was adopted 

instead of maximum of the displacement (ylw max) used in Fig. 1. 

In order to represent the character of solutions (stationary or periodic) and give the 

information on asymmetry of limit cycle in a curve, additional characteristic parameter of the 

limit cycle needed to be introduced. Peak-to-peak value was taken, measured as a distance 

between succeeding peaks of vibrations, from the plots representing leading wheelset’s lateral 

displacement ylw versus distance (Fig. 11(d)). The denotation (p-t-p ylw) was adopted for that 

parameter. Obviously, in case of stable stationary solutions its value equals zero. The 

observation of changes in values of (p-t-p ylw) under the influence of velocity variation leads 

to the second, non-standard bifurcation plot (Fig. 11(b)) for given conditions of motion (given 

curve radius R and superelevation H). This plot is absolutely necessary to fully characterize 

the system in instance of the stability analysis in a curved track. 

The pair of bifurcation plots in Figs. 11(a) and (b), suitable to curved track analysis, 

represents variation of the (|ylw| max) and (p-t-p ylw) as a function of velocity v, for single 

radius R. Scheme of the method of building such a pair is shown in the whole Fig. 11. Let us 

explain this figure shortly. Under conditions of motion where no self-exciting vibrations (in 

form of limit cycle) occur, the stable stationary solutions are obtained (Fig. 11c). Steady value 

of the displacements read for the terminal section of the distance gives single point on the 

diagram of (|ylw| max) = f(v) - Fig. 11(a). Peak-to-peak value is equal zero, here. This gives a 

point that is situated on the horizontal axis of the diagram for (p-t-p ylw) = f(v) - Fig. 11(b). 

When the motion in form of steady self-exciting vibrations occurs (Fig. 11(d)), then the 

maximum of absolute value of lateral displacement ylw is read, what gives single point on the 

diagram of (|ylw| max) = f(v) - Fig. 11(a). The vertical distance between the succeeding peaks 

of ylw gives single point on the diagram of (p-t-p ylw) = f(v) - Fig. 11(b). 
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Building the pair of the complete graphs for functions (|ylw| max) = f(v) and 

(p-t-p ylw) = f(v) needs at least a dozen or so simulations performed of the model motion, each 

for different velocity v but all for the same curve radius R and superelevation H. 

 

4.1. The method of creating stability maps illustrating stability of model within the entire  

       range of curve radii 

Basically, the procedure of stability analysis in a curve is analogous to that applied for 

a straight track. Nevertheless, the differences should not be passed over in silence, especially 

in view of significant expenditure of additional work and of additional troubles that may 

appear. In order to visualize better the additional attention and measures caused by the 

stability analysis for circular curves a block diagram was elaborated (Fig. 12). This diagram 

does not arise from the theory. It is mainly the result of experience gathered by the authors 

while realising the following works: Zboinski (1998), Zboinski and Dusza (2002, 2004-a, 

2004-b, 2006), and Dusza (2005). It was assumed that all measures for determination of 

stability regions for straight track are standard ones, e.g. like in Moelle and Gasch (1982) and 

Gasch at al. (1994). That is why this part was put into one block. The part being the extension 

of standard measures, necessary to include motion in curves in the analysis, is more detailed. 

Blocks related to this part should be taken into account in succession going from the top to the 

bottom. 

Observations leading to creation of diagrams in Figs. 11(a) and 11(b) can be done for 

different curve radii R, obtaining this way a set of pairs of the bifurcation diagrams. 

Comparison of these pairs for different R from its full range makes it possible to determine 

the influence of radius R on stability of motion of the investigated model. Presenting all plots 

in type of that in Fig. 11(a) on the single diagram, and then all plots in type of that in 

Fig. 11(b) on the other single diagram, we get a representation of stability of motion for the 

model in the entire range of the radii R, including straight track. Such representations were 
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named stability maps by the authors (Zboinski and Dusza, 2004-a, 2006; and Dusza, 2005). 

Let us notice that the preparation of stability map for the entire range of curve radii needs 

execution of at least several dozen single simulations of motion. 

 

5. Representation of stability of motion in the form of stability maps. Assumptions of  

       the method 

According to the idea presented above, a number of simulations were done in order to 

get a representation of stability for the vehicle (its model described in Section 2). These 

simulations were done for straight sections ST and circular curves, from small to large radii R. 

In each group of simulations for particular R, each single simulation was done for a different 

velocity v, however so as to cover the range from 5 m/s to vs = vs(R). For each simulation with 

a given velocity, the plot was created of wheelset lateral displacements versus velocity (as e.g. 

Figs. 4, 5, 7, 8 and 10). From the plots of such type, the values of maximum wheelset lateral 

displacements and peak-to-peak values of the displacements were read off. These values 

exposed as the functions of velocity for entire scope of curve radii created stability map 

composed of Fig. 13 and Fig. 14. It gives the representation of the model stability in any 

conditions of motion (in terms of R values). 

Each line on the map illustrates the result for route with different curve radius. Its 

values are specified next to the lines. Studies were started from small velocity (v=5 m/s). 

Solutions of the model have got stable stationary character here. In Fig. 13 it matches usually 

non-zero values of maximum lateral displacements (ylw max) and in Fig. 14 zero peak-to-peak 

values (p-t-p ylw = 0). In case of curved track and the stationary solutions, different than zero 

values of (ylw max) are, among others, related to track superelevation. It was selected for each 

value of R individually, being the nominal one for critical velocity vn. This means an excess of 

superelevation in all simulations with velocities smaller than vn. For very small velocities and 

large radii R, it results in a change of the sign of maximum displacements ylw (see Fig. 13). 
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Thus, for cases like those, and only for them, use of (|ylw| max) would be misleading. 

Therefore, we departed from the recommendation formulated for Fig. 11(a) to present the 

maximum of absolute value of the displacements (|ylw| max) on the first of bifurcation plots. 

Instead, the bifurcation plot was created for curves turning to the right as well as the 

maximum of the displacements (ylw max) is represented in Fig. 13. 

Important in Figs. 13 and 14 are the vertical lines for velocity of 43 m/s. These lines 

separate the range of stable stationary solutions from the range of stable periodic ones. Also, a 

step change in maximum values of lateral displacements and peak-to-peak values of the 

displacements happens here. Just mentioned velocity is the non-linear critical velocity vn. In  

the range of present article, it is the smallest velocity of motion for which the self-exciting 

vibrations exist in the form of limit cycle. Using the way of velocity vn determination 

described at the beginning of chapter 3, value of vn appeared to be the same for all radii R 

(from R = 600 m to ST) in the investigated system. 

The biggest wheelset’s lateral displacements (ylw max) occurred for the route with 

R=600 m, for both the stationary and the periodic solutions (Fig. 13). Generally, for periodic 

solutions (i.e. when v > vn), the bigger the radius R, the smaller the maximum displacement 

(ylw max) for analogous velocities v. Here, minimum value of (ylw max) is reached for straight 

track ST. Next, peak-to-peak values (p-t-p ylw) have got opposite direction of the growth for 

the periodic solutions. They are smallest for the route with R=600 m, and the bigger the radius 

R, the bigger the peak-to-peak value (p-t-p ylw) for analogous velocities v. It reaches 

maximum for straight track ST. Terminal point of each line corresponds to the velocity vs, for 

which the calculations are stopped due to unbounded growth of the oscillations, as earlier 

defined in Subsection 3.3. As it can be seen, velocity vs increases with a rise of radius R. 

Compare for instance vs(600)=47 m/s, vs(1200)=57 m/s, vs(3000)=63 m/s, and vs(ST)=65 m/s with 

each other. On the routes with curve radii R < 600 m, the calculations were stopped (due to 
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unbounded growth of solution) for velocities smaller than the critical velocity vn, i.e. within 

stationary solutions range. That is why we decided not to present these results on the plots. 

Despite a significant similarity of the map composed of Fig. 13 and Fig. 14 to 

theoretical plots in Fig. 11(a) and Fig. 11(b), the differences exist that should be discussed 

now. Firstly, the maps shown here do not present lines for unstable solutions. Secondly, they 

do not contain the information on linear critical velocity vc. Thirdly, non-linear critical 

velocity vn is determined with numerically effective, however simplified method. Thus 

approximate values of vn were obtained. Nevertheless, one can always do it more precisely by 

thorough variation over values of the initial conditions for all curve radii and usage of smaller 

velocity interval. Another possibility would be to use already mentioned different methods of 

vn determination. So, the ramping method or the method based on series of simulations for 

decreasing velocities (where results of preceding simulation are used as initial conditions in 

the current one) could be utilised. Fourthly, velocities vs indicate univocally terminal points of 

the lines for stable solutions. Nevertheless, these points have got some conventional character. 

They do not define the physical derailment of the vehicle. One can use them only as some 

qualitative measure of the derailment risk. In this context, eventual comparing of vs values for 

different vehicles or the same vehicle with different parameters (e.g. in the suspension) seem 

to be sensible. 

Above mentioned differences result mainly from aims of our studies and choice of the 

corresponding simplifying assumptions. Our aim was to elaborate a method of stability 

analysis in curves for the entire range of radii R, as effective as possible. Next point was to 

enable to treat relatively quickly as much factors that might influence stability of railway 

vehicles in curves as possible. Besides, some of the simplifications in the presented maps 

seem to have got more theoretical than practical significance. For instance, in case of system 

with subcritical Hopf bifurcation (as in Fig. 1), one should rather not expect that for velocities 
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between vn and vc stable stationary solutions correspond to behaviour of a real system. It 

comes out from properties of a real track that possess both the geometrical irregularities and 

the asymmetry in vertical stiffness. This is a reason of excitation in the real system. 

Consequently while studying the stability for vn<v<vc, one should rather expect that bigger 

initial conditions leading to the periodic solutions, correspond to the real conditions of motion 

better than smaller (or zero) ones, leading to the stationary solutions. In supercritical case (Xu 

at al., 1992), the problem does not exist, since then vn=vc. The step change from stationary to 

periodic solutions, provided no multiple periodic and chaotic solutions occur, evidence almost 

for sure that we deal with subcritical Hopf’s bifurcation in case of the investigated model. 

At this stage of the article two matters should be stressed. First is the uniform 

character of the model properties for all radii R (including ST), as in Figs. 13 and 14. The 

most distinctive here is a division of the velocity range into two parts by common critical 

velocity value vn=43 m/s. These parts refer to the stable stationary and periodic solutions, 

correspondingly. Also dependence of (ylw max) and (p-t-p ylw) on radius R is uniform. It 

seems, at small risk of mistake, that these features result from the simple vehicle model we 

used. We mean simple model structure (Fig. 1), linear suspension elements and nominal 

(unworn) S1002/UIC60 wheel/rail profiles. 

The second matter to be stressed are the consequences of just described uniform 

properties, for the method we applied in the present article. It should be stated, here, that 

earlier described simplifications in the method were possible to apply thanks to those uniform 

properties. Consequently, in instance of more severe non-linearities and complicated structure 

of the model more caution must be applied and better justified formal methods are 

recommended. We mean in particular: looking for the saddle-node bifurcation utilising 

formulation of the problem as a stability problem for periodic solution rather than as a 

problem of existence of multiple solutions (Section 3); alternative use of different exact 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

methods of velocity vn determination; and determination of courses for unstable periodic 

solutions. Failure to do so may result in wrong determination of vn, and omissions of multiple 

and chaotic solutions that might actually be of importance for theory or practice. 

 

6. Sample of stability analysis – investigation into influence of the chosen factor on the  

       stability 

With use of the method presented, the studies were done for considerable number of 

factors on their influence on the stability. These factors were: shape of wheel and rail nominal 

profiles; wear of wheel and rail profiles with regard to its magnitude and place of the biggest 

intensity; track superelevation; parameters in vehicle suspension, including values of stiffness 

and damping for longitudinal, lateral and vertical directions; vehicle type (bogie, 2-axle 

vehicle); method of considering wheelset’s angle of attack; method of determination of 

wheelset mean rolling radius; and rail inclination. Results of these studies were presented in 

Zboinski and Dusza (2002, 2004-a, 2004-b, 2006, 2008) and Dusza (2005). 

From the factors mentioned above, we selected one to be presented in this article. It is 

the shape of wheel and rail profiles. We’ll show the very spectacular influence of this factor 

on the corresponding stability maps. The results differ from those in the above cited 

references, including solutions for velocities smaller than vn. The analysis is confined to just 

two pairs of profiles since first of all, we treat it as a sample of the method’s potentiality. 

Results for the pair of wheel/rail profiles of type S1002/UIC60 are shown in Fig. 13 and 

Fig. 14, while for the pair of type SZDwheel/R65 in Fig. 15 and Fig. 16. 

Stability analyses that exploit stability maps proposed by the authors are performed 

mainly from the point of view of four elements. First two are value of critical velocity vn and 

value of velocity vs. The next two are the courses versus velocity v of - the maximum of 

absolute value of lateral displacement ylw (|ylw| max) or alternatively the maximum of this 

displacement (ylw max), - and the peak-to-peak value of displacement ylw (p-t-p ylw). 
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Critical velocity vn for the first pair is significantly higher (43 m/s) than for the second 

pair (25 m/s). Velocities vs on all routes (read for all curve radii, including R = ∞) in case of 

the first pair are considerably lower than for the second pair. It can be seen while comparing 

values of vs(600), vs(1200), vs(3000), and vs(ST) in Figs. 13 and 14 with the corresponding values in 

Figs. 15 and 16. For both pairs, the biggest values of this velocity happen for straight track 

(vs(ST)) and equal 65 and 130 m/s, respectively. 

The course of (ylw max) below the critical velocity is qualitatively similar for both 

pairs. In terms of magnitude, the displacements are bigger for the second pair of profiles. 

Track superelevation for both pairs was chosen as a constant for each of the radii R and 

having nominal value for velocity v = 43 m/s, being the critical velocity for model equipped 

with the first pair. Values of (ylw max) for S1002/UIC60 pair are bigger in general, and also 

for the same velocities, than values of (|ylw| max) for SZDwheel/R65 pair. Important 

difference makes the boundary value of curve radius R below which the limit cycle does not 

appear above critical velocity vn. In case of the standard European pair, there is no such value. 

It means that exceeding vn results in appearance of the limit cycles for all values of R. The 

exception are those radii only  (R < 600 m) for which vs (calculations stop) is reached prior to 

vn. In case of the Russian pair this boundary value is approximately R = 2150 m. This means 

that for curves with radii R < 2150 m, there are no limit cycles at all, also after vn is exceeded. 

Peak-to-peak values (p-t-p ylw) for both pairs are the very biggest for straight track ST. 

Qualitative differences for this quantity in case of both pairs of profiles are visible. In the 

main they appear for R < ∞. However, they become spectacular for R < 2150 m, what is 

connected with absence of limit cycles for such R in case of the second pair (Fig. 16). Values 

of (p-t-p ylw) for the second pair are visibly smaller than for the fist one, in general. 

In consequence of just described differences between both pairs of profiles, we can 

formulate the following recommendations and conclusions for the railway practice. The 
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second pair of profiles gives stationary solutions below v = 25 m/s, i.e. about 90 km/h. So, it 

is more suitable for freight rather than for passenger cars that run with high and very high 

speeds. The first pair gives stationary solutions below v = 43 m/s, i.e. about 155 km/h, thus it 

is much better suited for passenger cars than the previous one. When in the range of self-

exciting vibrations (limit cycles), the second pair has better properties in terms of ride quality 

than the first pair (smaller maximum and peak-to-peak values of the displacements ylw). 

Despite very limited connection of vs with a real derailment, much higher values of vs for the 

second pair cannot be passed over in silence. Although, it is not proven, it seems that smaller 

risk of the derailment could be concluded for the SZDwheel/R65 pair comparing to the 

S1002/UIC60 pair. On the other hand, it should be emphasised that nominal profile of S1002 

wheel is derived from the profile shapes we obtain as a result of wear process. Wheel profile 

used by SZD railways is closer to the conical profile (than S1002 profile) and that is why it 

can take different shape(s), caused by its wear during operation. It will obviously result in a 

change of the vehicle dynamical properties, maybe towards properties for the S1002 profile. 

Independently of these considerations, another fact should be stressed. Namely, parameters of 

vehicle suspension affect the dynamical properties significantly, and in particular the value of 

vn. Thus, intentional change of these parameters, or of the suspension construction, may 

improve the dynamical properties of vehicle for both pairs of the profiles. 

 

7. Conclusion 

The basic idea of determining areas of stable and unstable solutions of railway vehicle 

models in a curved track was presented in the present article. Strong reference to physical 

aspects of the problem was made at the same time. Here, the fundamental importance of self-

exciting vibrations was indicated. Next, the importance and validity was shown of Hopf’s and 

saddle-node bifurcations in curved track analysis, just like it is in straight track case. 

Thanks to the simple model used in the simulations, it became possible to explain the 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

place and usefulness of the basic knowledge on the self-exciting vibrations and the 

bifurcations mentioned in the railway vehicle stability analysis in a curved track. The 

procedure (method) to determine the stable stationary and periodic solutions in a curved track 

was also presented. The simplicity of the model resulted in absence of phenomena of 

unexpected multiple and chaotic solutions in our results. Thanks to it, we could simplify the 

procedure vastly. The benefits are faster calculations and consequently more factors 

investigated that influence stability in a curved track. In general case, however, there is a risk 

of omitting some multiple and chaotic solutions and to determine critical velocity incorrectly. 

That is why authors of the present paper do not consider their procedures as absolutely 

recommended. They advise to utilise as much as possible from their approach, being very 

careful at the same time. In the general case or in the case of particular vehicle of more 

sophisticated structure (e.g. 4-axle, bogie vehicle) or strong non-linearities (e.g. dry friction in 

the suspension or worn wheel/rail profiles) more formal approach is unavoidable. For instance 

formal stability study rather than looking for multiple solutions in determining saddle-node 

bifurcation is more reliable. Comparing to what the authors did in this paper the following 

three elements should be supplemented. First, all radii R should be covered by the stability 

analysis (instead of just the selected ones). Second, such analysis should be performed for 

velocities at smaller interval (about 1 m/s instead of 3-4 m/s). Third, whole velocity range 

should be treated in that way (instead of mainly the range around vn). 

Study on stability of rail vehicle model utilising observation of the system quantities 

that change with appearance of self-exciting vibrations is recently the basic and effective 

research method for multi-dimensional systems of such kind (Knothe and Böhm, 1999). This 

method enables to determine precisely the critical value of active parameter as well as analyse 

the model properties in subcritical and supercritical zones of the parameter value. This is the 

essence of utilisation of the method in practice. Motion with velocities higher than critical one 
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is not desired during vehicle operation. It is obvious that appearance of the hunting in the real 

system is definitely worse that its absence. It results in: worse running quality, bigger wear in 

rail/wheel system, raised derailment risk, and faster degradation of the track. Despite that, the 

motion in such conditions does not mean an absolutely unacceptable situation (e.g. in terms of 

safety). Therefore, knowledge about solutions (behaviour) in this velocity range is not less 

interesting than for the smaller velocities. Besides, note that such situation can happen in 

reality in case of motion with the excessive velocity (above the admissible one). Let us take 

the entrance into curve of small radius as an example, where admissible velocity is distinctly 

smaller than in the straight section. In such instance, knowledge about the width of range of 

stable periodic solutions (i.e. interval between vn and vs) provides the information on the 

safety margin between achievement of critical value of velocity and stability loss, resulting in 

loss of faith in the results of numerical simulations. 

 The authors succeeded to demonstrate that their approach can be applied well to the 

circular sections of track. The method used by them appeared to be efficient and reliable, as 

shown in numerous studies on influence of different factors on the stability of motion. The 

results obtained show the sense of stability analysis in curved track and its practical aspects 

which are sometimes questioned. Original in the method is creation of stability maps being in 

fact a kind of the bifurcation plots. The maps do not restrict themselves to results of stability 

analysis for single curves of a certain radius R. They also expose representation of model’s 

stability for the entire range of curve radii, and straight track as well. The authors express 

their hope that this paper will contribute to widening the circle of people of opinions 

conformable to theirs on the stability of rail vehicles in general, and on the stability in curved 

track in particular. 
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Fig. 1. Shape of bifurcation plot, typical for rail vehicle in a straight track ST 
 
 
Fig. 2. Nominal model structures of: (a) – track laterally, (b) – track vertically, (c) – vehicle 
 
 
Fig. 3. Influence of the initial conditions on limit cycle amplitude and general solution of the  
            system. Motion along ST with velocity v=46 m/s (critical velocity vn=43 m/s at the  

same time) 
 
 
Fig. 4. Leading wheelset lateral displacements ylw versus distance for straight track and  
            velocities of 20, 25, and 30 m/s 
 
 
Fig. 5. Leading wheelset lateral displacements ylw versus distance for straight track and  
            velocities of 35, 40, and 43 m/s 
 
 
Fig. 6. Lateral displacement ylw and its time derivative for velocity of 43 m/s and straight  
            track on phase plane 
 
 
Fig. 7. Leading wheelset lateral displacements ylw versus distance for curved track of  
            R=600 m and for velocities of 20, 25, and 30 m/s 
 
 
Fig. 8. Leading wheelset lateral displacements ylw versus distance for curved track of  
            R=600 m and for velocities of 35, 40, and 43 m/s 
 
 
Fig. 9. Lateral displacement ylw and its time derivative for velocity of 43 m/s and circularly  

curved track of R=600 m on phase plane 
 
 
Fig. 10. Leading wheelset lateral displacements ylw versus distance for straight track and  

velocities of 50, 55 and 65 m/s 
 
 
Fig. 11. The scheme of creating a pair of the bifurcation plots for stability analysis in  

circularly curved track 
 
 
Fig. 12. Block diagram of the method’s extension to the curved track analysis 
 
 
Fig. 13. Part one of stability map – maximum of leading wheelset’s lateral displacement ywl  

for the S1002/UIC60 pair of wheel/rail profiles 
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Fig. 14. Part two of stability map – peak-to-peak value of leading wheelset’s lateral  
displacement ywl for the S1002/UIC60 pair of wheel/rail profiles 

 
 
Fig. 15. Part one of stability map – maximum of absolute value of leading wheelset’s lateral  

displacement ywl for the SZDwheel/R65 pair of wheel/rail profiles 
 
 
Fig. 16. Part two of stability map – peak-to-peak value of leading wheelset’s lateral  

displacement ywl for the SZDwheel/R65 pair of wheel/rail profiles 
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Table 1. Parameters of the analysed vehicle-track system 
 

 
Notation 

 
Description 

Measurement 
unit 

HSFV1 freight 
car parameters 

mb  vehicle body mass  kg 30000 
m  wheelset mass kg 2392 

I bξ  body moment of inertia; longitudinal axis kgm2 51000 

I bη  body moment of inertia; lateral axis kgm2 240000 

I bζ  body moment of inertia; vertical axis kgm2 222000 

Iξ  wheelset moment of inertia; longitudinal axis kgm2 1662 

Iη wheelset moment of inertia; lateral axis kgm2 50 

Iζ wheelset moment of inertia; vertical axis kgm2 1662 

kzz  vertical stiffness of the 1st level of suspension kN/m 4100 
kzy  lateral stiffness of the 1st level of suspension kN/m 431 

kzx  longitudinal stiffness of the 1st level of suspension kN/m 2067 
czz  vertical damping of the 1st level of suspension kNs/m 28 
czy  lateral damping of the 1st level of suspension kNs/m 56 

czx  longitudinal damping of the 1st level of suspension kNs/m 0 
a  semi-wheel base m 3,15 
hb  vertical distance between mass centres  

of wheelset and vehicle body 
m 1,175 

rt  wheelset rolling radius m 0,375 
mt  vertical mass of the rail kg 200 
kt  vertical stiffness of the rail kN/m 70000 
ct  vertical damping of the rail kNs/m 200 

mty  lateral mass of the track kg 500 

kty  lateral stiffness of the track kN/m 25000 

cty  lateral damping of the track kNs/m 500 
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