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the main objective of this article is to present the authors' view of-and results on non-linear lateral stability of rail vehicles in a curved track. Three elements are exploited in order to secure this objective. Firstly, physical genesis of the problem is discussed, and its similarity to straight track analysis is emphasized. Results of the theories of self-exciting vibrations and bifurcation are the key elements here. Secondly, the method suitable for analysis in a curved track is presented. New necessary elements, extending the better established methods for straight track are clearly mentioned and described. The methodology of building original stability maps, being the basis for the analysis and valid for whole range of curve radii and straight track is represented. Thirdly, a sample of the analysis is shown in order to give the idea how the method can be utilised. The case study refers to the influence of wheel/rail profiles on the stability in circularly curved track and straight track as well. Two different pairs of wheel/rail profiles are used and the corresponding results compared. The main contributions of the article are: a discussion of the physical nature of phenomena related to the stability in a curved tracks, and the method (procedure) established for the reasons of the analysis. Another and more general contribution is our say in the hot polemics on the advisability of stability analysis in curves and the advantages of the non-linear critical speed over the linear one.

Introduction

This article results from and continues many years' interest of the authors in dynamics of rail vehicles in a curved track. In particular, this interest is focused on studies of the limit cycles and the stability of motion of rail vehicles, which is the basic substance of the paper.

The considerations and results presented are to some extent the continuation of those started earlier by [START_REF] Zboinski | Dynamical investigation of railway vehicles on a curved track[END_REF]. An important contribution of that publication was putting the problem of rail vehicles stability in a curved track, explicitly. Many detailed questions were put there, too. Quite a few of them remained open at that time. Now, after nine years passed, some of the questions have been answered thanks to the works of many researchers, including authors of this paper. However, there are still open issues that are continually a matter of intensive studies or require persistent suppressing the stereotypes, despite the fact that many qualitatively new results were published.

A question of that sort is the analysis of rail vehicles stability in a curved track. In spite of putting the problem explicitly [START_REF] Zboinski | Dynamical investigation of railway vehicles on a curved track[END_REF] and later explicit studies, both by the authors of this article [START_REF] Zboinski | Simulation investigation of railway vehicle dynamics in curved track[END_REF], 2004-a, 2004-b, 2006;[START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF] and others [START_REF] True | On the Dynamics ofSteady Curving of Railway Vehicles[END_REF][START_REF] Lee | Nonlinear hunting stability analysis of high-speed railway vehicles on curved tracks[END_REF][START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF], 2006-a, 2006-b;[START_REF] True | On the Quasi-Stationary Curving Dynamics of a Railroad Truck[END_REF]Lee at al., 2005;[START_REF] Hoffmann | Dynamics of European two-axle freight wagons[END_REF][START_REF] Hoffmann | The dynamics of European two-axle railway freight wagons with UIC standard suspension[END_REF]andZeng andWu, 2004, 2005), a group of researchers and railway practitioners exists considering the hunting motion either to be absent in a curved track or to be unworthy of interest (consequently the stability). They advocate traditional opinion that periodic vibrations of constant amplitude (limit cycles) above critical velocity appear for straight track only, whereas in circular curves the motion is purely of quasi-static character.

Similar situation takes place in case of stability analysis in a straight track. There is a traditional opinion that in order to determine the value of critical velocity it is enough to employ linear model of vehicle. In particular linear geometry of wheel/rail contact is applied,
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where so-called equivalent conicity [START_REF] Elkins | Prediction of wheel/rail interaction: the state-of-the-art[END_REF] has got key significance. Critical velocity obtained in such conditions is often called linear one and denoted v c . On the other hand a great number of the works indicates existence of Hopf bifurcation and attractor, determining socalled non-linear critical velocity v n [START_REF] Xu | Nonlinear stability analysis of a bogie of a low-platform wagon[END_REF][START_REF] Jensen | On the new route to chaos in railway dynamics[END_REF]True and Jensen, 1994-b;[START_REF] Zboinski | Dynamical investigation of railway vehicles on a curved track[END_REF][START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF]Lee andCheng, 2003, 2005;Shupp, 2004;Zeng andWu, 2004, 2005;Zboinski andDusza, 2004-a, 2006;[START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF][START_REF] Hoffmann | Dynamics of European two-axle freight wagons[END_REF][START_REF] Polach | On non-linear methods of bogie stability assessment using computer simulations[END_REF]. Its value is different in general from linear velocity v c and physical nature of v n and v c is different, too. Despite these the traditional approach ignoring influence of nonlinearity holds itself well, and new views reveal themselves with difficulty in some societies.

It is like that, although this problem is publicly and explicitly discussed (for instance by [START_REF] True | Does a critical speed for railroad vehicles exists?[END_REF][START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF][START_REF] Goodall | Non-linear dynamic techniques v. equivalent conicity methods for rail vehicle stability assessment[END_REF]. It seems that such state of affairs arises from insufficient understanding of self-exciting vibrations theory, bifurcation theory and questions of chaos, especially by railway practitioners. Therefore, the easier and more engineering methods (e.g. Wickens, 1965Wickens, -a, 1965-b;-b;[START_REF] Shen | On principles and methods to reduce the wheel/rail forces for rail freight vehicles[END_REF]and Dukkipati, 1994) based on linear models and linear methods of stability studies (eigen values analysis) still find many followers. The works of True and his co-authors (e.g. [START_REF] True | On the Dynamics ofSteady Curving of Railway Vehicles[END_REF][START_REF] True | Railway vehicle chaos and asymmetric hunting[END_REF][START_REF] True | On the theory of nonlinear dynamics and its applications in vehicle systems M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS dynamics[END_REF][START_REF] True | Recent advances in the fundamental understanding of railway vehicle dynamics[END_REF]True andJensen, 1994-a, 1994-b;[START_REF] True | Non-linear Railway Dynamics and Chaos[END_REF][START_REF] True | On the Quasi-Stationary Curving Dynamics of a Railroad Truck[END_REF][START_REF] Jensen | On the new route to chaos in railway dynamics[END_REF][START_REF] Hoffmann | The dynamics of European two-axle railway freight wagons with UIC standard suspension[END_REF] occupy remarkable place in the propagation and development of non-linear mechanics (and in particular of stability) methods in the railway vehicle dynamics. Most of these works deal with straight track analysis, some however refer to curved track case.

In our opinion, most works concerning stability in curves (also those already mentioned in this article) has got one disadvantageous feature in terms of braking down the traditional view on stability. They focus, namely on selected dynamical feature(s) of particular railway vehicle. However, they insufficiently explain the origin and physics of the
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phenomena, and just indirectly refer to non-linear methods of stability studies in straight track, which are wider spread in the society. From that point of view, the reference by [START_REF] Zboinski | Dynamical investigation of railway vehicles on a curved track[END_REF] is still important because it relates to these problems in direct way. The described state of affairs is in our view one of the reasons for slow spreading the opinion about usefulness of the stability studies in a curved track. Improving that state is the main motivation for elaboration of this paper and the main objective, at the same time.

In consideration of the identical physical nature of self-exciting vibrations in a curve, as in a straight track (ST), including the same sense of non-linear critical velocity v n (Zboinski and Dusza, 2004-a, 2004-b, 2006;[START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF], the current article realises also a supplementary objective. It is our support to those who point at higher accuracy, and this way at the superiority of determining critical velocity with use of the non-linear mechanics' methods over the linear methods related to the equivalent conicity concept.

Self-exiting vibrations in railway vehicle dynamics

The problem of hunting motion of wheelset and rail vehicle body has been absorbing attention of theoreticians and practitioners since a long time. Opinions and definitions of rail vehicle stable motion connected with hunting phenomenon have been varying significantly in the period of railway existence. Review of their progress is done by [START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF]. Further on, we shall refer to the selected elements of that publication. We mean those important in connection with the present article.

Explanation of hunting motion was of purely kinematical character at the beginning.

Force interactions were disregarded completely. The phenomenon was explained with geometry of two conical wheels united with a common axle. Next, an important change came thanks to appearance of the rolling contact theory and its application to wheel/rail system.

Henceforth the friction forces in wheel/rail contact became known. This enabled to take account of influence of all forces and torques acting on a wheelset and it became possible to
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explain the phenomena with the dynamics' methods.

In the domain of dynamics, a clear analogy was noticed between the lateral vibrations of a wheelset and the vibrations of elementary systems analysed in theory of self-exciting vibrations (e.g. [START_REF] Osinski | Theory of oscillations[END_REF]. In both cases, one deals with periodic vibrations of constant amplitude which theory calls the limit cycles.

According to the definition -self-exciting vibrations are the ones originating in the system under the influence of external energy source of intensity constant in time. Three subsystems can be distinguished within the system, making self-exciting vibrations possible: source of energy, energy control valve, and vibrating system. The following pairs correspond to these elements in a moving rail vehicle: source of energy -traction (the engine changing fuel energy or electricity into energy of motion, while in the simulation it can be the assumption of constant velocity of motion); energy control valve -contact forces between wheel and rail; vibrating system -vehicle on track. There is a feedback between vibrating system and energy control valve, which enables to stabilise the energy flow.

Characteristic feature of the self-exciting vibrations is that after enough duration, they become the periodic vibrations (limit cycles). The single limit cycle does not depend on the perturbation (initial conditions) that caused it, providing this particular cycle, but not the other, appears. In the main, vibrating system subject to the self-exciting vibrations of a given amplitude dissipates energy (it is a damped system). If the amount of energy supplied to such a system is big enough, however smaller than the maximum amount that may be potentially dissipated, then a vibration amplitude exists at which the total energy of the system is constant during a single period. The next feature of the self-exciting systems is an existence of at least one element with its characteristic being non-linear function of the system state. Presence of such non-linear element causes that the supplied and dissipated energies within the system are equal to each other only for one value of the amplitude (in the simplest case). Both the Let us mention next that self-exciting vibrations theory introduces the concepts of stable and unstable limit cycles (e.g. [START_REF] Osinski | Theory of oscillations[END_REF]. Such cycles occur alternately one after another and this can happen again and again. In this case one talks about multiple periodic solutions. Generally solutions tend to the stable cycles and move away from the unstable ones. It depends on range of the initial amplitude (range of the initial conditions) which particular stable cycle is taken by system as the solution. Besides, the cycles of soft and hard excitations are referred to. In the first case, just minimum amount of the supplied energy is necessary to initiate the self-exciting vibrations. In the second case, except that condition, the additional one exists, namely some minimum values of initial conditions are necessary to initiate the vibrations.

Almost all features described above, typical for self-exciting vibrations can be confirmed through simulation methods in case of wheelset vibrations. In fact, these results are not formal mathematical proof of limit cycles existence. However, without bigger doubts they confirm possibility to apply the self-exciting vibrations theory to explanation of wheelsets oscillations. The example of investigations focused on the demonstration of limit cycle existence are those described by [START_REF] Zboinski | Simulation investigation of railway vehicle dynamics in curved track[END_REF] and [START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF]. They confirmed the typical limit cycle's properties in case of wheelset hunting motion: requirement for some minimum amount of the energy necessary to initiate the self-exciting vibrations, as well as the cycle amplitude's independence of initial conditions. First of the mentioned properties means in practice a minimum velocity (critical velocity) above which the limit cycle appears. It was also demonstrated that limit cycle of the investigated wheelset was that one of hard excitation. It means that despite the critical velocity was reached, the initial conditions exceeding certain minimum value were also necessary to initiate the cycle. The
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property that was not confirmed in the discussed studies was the multiple and alternating occurrence of stable and unstable limit cycles. For big oscillation amplitudes it could be explained by interaction between wheel flange and rail, which causes dramatic change of the system properties.

On the other hand there are works that show or report that multiple solutions are possible in case of wheelset oscillations (e.g. [START_REF] Gasch | The effect of non-linearities on the limit-cycles of railway vehicles[END_REF]Goodal and Iwnicki;2004;[START_REF] Hoffmann | Dynamics of European two-axle freight wagons[END_REF]. It might be stated with the small risk that worn rails caused multiple periodic solutions in the work by [START_REF] Gasch | The effect of non-linearities on the limit-cycles of railway vehicles[END_REF]. Concluding, despite particular limit cycle does not depend on the initial conditions, general solution of the system depends on them in case of the co-existing multiple solutions.

Analysis of non-linear lateral stability of rail vehicles based on bifurcation plots

Interpretation of wheelset's hunting motion obtained on the grounds of self-exciting vibrations theory was completed and extended by including in the considerations the achievements of bifurcation theory. Thanks to this, it became possible to distinguish and explain different values of linear v c and non-linear v n critical velocities. The explanation is Hopf's bifurcation, typical as it appeared in the wheelset-track system. As shown, e.g. in reference by [START_REF] Xu | Nonlinear stability analysis of a bogie of a low-platform wagon[END_REF], in the case of subcritical bifurcation of that kind v n < v c , whereas in the case of supercritical situation both velocities coincide, thus v n = v c . Utilisation of the bifurcation theory resulted in the transfer of stability analysis of wheelset motion to socalled bifurcation plots.

Analysis of bifurcation plots is a fundamental issue in contemporary stability analysis of rail vehicles [START_REF] Huilgol | Hopf-Friedrichs bifurcation and the hunting of a railway axle[END_REF]Kass-Petersen andTrue 1983, 1984; and eventually survey by [START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF]. Such analysis makes it possible to determine position of regions of stable and unstable stationary, as well as stable and unstable periodic solutions in relation to each other. It is also well suited to representation of the multiple periodic solutions.
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The shape of bifurcation plot that is representative for some non-linear properties of railway vehicles is shown in Fig. 1 (Moelle and Gash, 1982;[START_REF] Xu | Nonlinear stability analysis of a bogie of a low-platform wagon[END_REF][START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF][START_REF] Schupp | Computational bifurcation analysis of mechanical systems with applications to Railway vehicles[END_REF][START_REF] Polach | On non-linear methods of bogie stability assessment using computer simulations[END_REF]. Note existence of just one line representing stable periodic solutions for the situation shown in Fig. 1. Despite relatively wide range of validity of Fig. 1, it does not represent the general case. Examples of other forms of bifurcation plots for railway vehicle, including multiple periodic solutions, can be found e.g. in the works by [START_REF] Moelle | Nonlinear bogie hunting[END_REF], [START_REF] Gasch | The effect of non-linearities on the limit-cycles of railway vehicles[END_REF], [START_REF] True | Railway vehicle chaos and asymmetric hunting[END_REF], True and Jensen (1994-a) and [START_REF] Hoffmann | Dynamics of European two-axle freight wagons[END_REF]. Terminal point of the line representing stable periodic solutions in Fig. 1 determines velocity v s . It is velocity at which the calculations are stopped for any reason. It could be an arbitrary stop or stop due to unbounded growth of oscillations. Velocity corresponding to the terminal point in view, was called in earlier works as the derailment velocity (e.g. [START_REF] Moelle | Nonlinear bogie hunting[END_REF], and sometimes denoted with v d . The use of this term is questionable in the simulation studies, considering limited possibility of derailment projection by simulation programmes. There is also another difference between Fig. 1 and bifurcation plots from the earlier works. It is the line, placed above the line for stable periodic solutions (as e.g. that in Fig. 1), representing unstable periodic solutions (e.g. [START_REF] Moelle | Nonlinear bogie hunting[END_REF]. This line is absent in Fig. 1. Although non-linear dynamics tells that such line must be there, demonstration of its existence for big lateral displacements of wheelset is difficult (if not impossible). Note that the theory rather does not take account of dramatic change in the system properties, as those occurring for big lateral displacements of wheelset.

They are caused by wheel flange contacting with rail head in such conditions. On the other hand, additional lines for the unstable periodic solutions can be seen on the bifurcation plots representing rail vehicle systems with multiple (periodic) solutions. Then however wheelset's oscillations are of smaller amplitudes and flange contact does not occur.

The analysis based on bifurcation plots became possible thanks to wide spread of
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simulation techniques and achievement of high effectiveness by them. It enabled to create more and more advanced mathematical models and this way more precise description of the phenomena taking place in a real object. In most present-day studies of stability of rail vehicle motion bifurcation plots (stability plots) are first built and then analysed. When building these plots, the results of simulations of motion are utilised, with vehicles represented by their mathematical models of different complexity. In most such studies motion along a straight track is considered. Their authors focus on analysis of the lateral dynamics of vehicle, and base on analysis of the parameters that characterize vibrations (self-exciting ones) of vehicle model. Example of such works might be those by Gash at al. (1984), [START_REF] True | Railway vehicle chaos and asymmetric hunting[END_REF], True andJensen (1994-a, 1994-b), [START_REF] True | Non-linear Railway Dynamics and Chaos[END_REF], [START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF], [START_REF] Stichel | Limit cycle behavior and chaotic motions of two-axle freight wagons with friction damping[END_REF][START_REF] Schupp | Computational bifurcation analysis of mechanical systems with applications to Railway vehicles[END_REF], [START_REF] Goodall | Non-linear dynamic techniques v. equivalent conicity methods for rail vehicle stability assessment[END_REF], as well as [START_REF] Polach | On non-linear methods of bogie stability assessment using computer simulations[END_REF].

Important problem in studying stability of motion is looking for critical values of bifurcation parameters (also called active parameters of the system). These are values for which a significant increase or change in type of solution of mathematical model occurs. In case of rail vehicle model the velocity of motion v is such a parameter. Influence of this parameter on the system properties is actually illustrated on bifurcation plot (Fig. 1). For velocities smaller than critical value, denoted with v n , one always obtains stable stationary solutions (y lw = 0). In the moment of occurrence of velocity v n (and above v n ), a sudden change of solution character can happen from stable stationary to stable periodic one (solid line for both types of stable solutions is used in Fig. 1). Such change corresponds to appearance of self-exciting vibrations in the system. For the systems of hard excitation, the necessary condition for such appearance is presence of sufficiently big initial conditions. Just described phenomenon is related to occurrence of subcritical Hopf's bifurcation indicated in Fig. 1. In case of the system with subcritical properties (as shown in Fig. 1), bifurcation of the stable stationary solution into unstable stationary and unstable periodic solutions happens.

M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS

Since solutions move away from the unstable (periodic) solution and tend to the stable solutions, so under sufficiently large perturbation (initial conditions), they are attracted by the stable periodic solution. For smaller perturbations, they are attracted by the stable stationary solution, as long as v n <v<v c . For the systems of soft excitation, the bifurcation is of supercritical character (e.g. [START_REF] Xu | Nonlinear stability analysis of a bogie of a low-platform wagon[END_REF]. Then v n = v c and no line representing unstable periodic solutions exists.

Reaching the critical value of active parameter by system does not mean a loss of the stability. It happens so, as the newly created periodic solution lasts for freely long time (here on the freely long distance of simulation). Besides, one can note in Fig. 1 that periodic character of solutions is preserved with a rise of bifurcation parameter value in the supercritical zone (i.e. for v>v c ). The situation changes when active parameter reaches value v s (Fig. 1). Then, unbounded growth of the oscillations occurs resulting in stoppage of the calculations. Such growth is sometimes quite sudden. Sometimes however, the periodic character of the solution is lost first. The amplitude and frequency change slowly and also it is not the stationary solution. Concluding, some symptoms of unstable motion can be observed prior to the unbounded growth. The point in Fig. 1, denoted with symbol v c indicates the value of critical velocity for a linear system (e.g. Moelle and[START_REF] Moelle | Nonlinear bogie hunting[END_REF][START_REF] Schupp | Computational bifurcation analysis of mechanical systems with applications to Railway vehicles[END_REF].

The search of critical value for bifurcation parameter, and the character and value of the solutions for entire scope of bifurcation parameter changes, makes a subject for stability studies of non-linear systems. In particular, for rail vehicles, it most frequently corresponds to values of critical velocity v n , as well as to the character and fluctuations in lateral displacements of wheelsets below and above v n , up to v s .

Finally, it is should be stressed that chaotic solutions (e.g. [START_REF] Verhulst | Nonlinear differential equations and dynamical systems[END_REF] can appear in the rail vehicle-track system, as shown mainly in works by True (e.g. True, 1992;True andJensen, 1994-a, 1994-b;[START_REF] Jensen | On the new route to chaos in railway dynamics[END_REF][START_REF] Hoffmann | Dynamics of European two-axle freight wagons[END_REF][START_REF] Hoffmann | The dynamics of European two-axle railway freight wagons with UIC standard suspension[END_REF])
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but also in works by others (e.g. [START_REF] Stichel | Limit cycle behavior and chaotic motions of two-axle freight wagons with friction damping[END_REF][START_REF] Zboinski | Development of the method and analysis for non-linear lateral stability of railway vehicles in curved track[END_REF]. The nonlinearities in vehicle suspension system (dry friction, bump stops, clearances and so on) seem to intensify their appearance. The works cited above show that the method of studying the dynamical properties on the basis of bifurcation plots suits excellently to the analysis of such systems.

The model being investigated

Simulation studies within this article were performed utilising the modelling method, mathematical model, and simulation software applied in the earlier works. Therefore we confine the information on this topic. Mathematical model of the system was built in accordance with the generalised methodology of modelling for railway vehicle dynamics [START_REF] Zboinski | Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics[END_REF][START_REF] Zboinski | Relative kinematics exploited in Kane`s approach to describe multibody systems in relative motion[END_REF](Zboinski, , 2004)). Dynamics of vehicle in this method is the dynamics of relative motion. It means the description in relation to the reference systems that are moving along track centre line. In the description, Lagrange formalism of type II was applied but adapted to the description in moving reference frames, [START_REF] Zboinski | Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics[END_REF]Kisilowski and Knothe (Eds.), 1991). Consequently, 2nd-order ordinary differential equations describe motion of the mechanical system.

The most comprehensive specification of the mathematical model, and of the corresponding simulation software can be found in the work by [START_REF] Zboinski | Dynamical investigation of railway vehicles on a curved track[END_REF].

Nevertheless, also other references [START_REF] Zboinski | Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics[END_REF](Zboinski, , 2004;;[START_REF] Zboinski | Simulation investigation of railway vehicle dynamics in curved track[END_REF], 2004-a, 2006) can be helpful. Here, let us remind you that it is a model of the two-axle non-traction rail vehicle, with primary suspension only, of structure given in Fig. 2(c form the discrete vehicle-track system of 18 degrees of freedom. The values of vehicle and track models' parameters can be found in Table 1 (one can see also [START_REF] Zboinski | Dynamical investigation of railway vehicles on a curved track[END_REF][START_REF] Zboinski | Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics[END_REF]. Kinematical non-linearities [START_REF] Zboinski | Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics[END_REF], imaginary forces of inertia [START_REF] Zboinski | Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics[END_REF][START_REF] Zboinski | Relative kinematics exploited in Kane`s approach to describe multibody systems in relative motion[END_REF] arising from description in moving reference systems, non-linear geometry in wheel/rail contact, as well as the non-linear tangential contact forces calculated with the use of FASTSIM programme [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF] constitute the non-linearities in the system.

Wheel and rail profiles with the real nominal shape (one of reasons of the non-linear geometry of contact) were applied in the model. Information about the geometry is introduced into the model through contact parameter tables. They are created with the use of RSGEO programme by [START_REF] Kik | Comparison of the behaviour of different wheelset-track models[END_REF], which is distributed by ArgeCare. The input data in this programme are Cartesian co-ordinates of wheel and rail profiles (either theoretical or measured). After smoothing this data with RSPROF subroutine, the RSGEO procedure solves two-dimensional geometrical problem, consisting in searching for position of contact points between the profiles as a function of their lateral relative shift y rel =y-y t (see Fig. 2(a)). Next, the corresponding parameters are calculated and tabulated as a function of y rel . In addition, variation in contact parameters coming out from wheelset yaw rotation (variable angle of attack ψ) is taken into account. This is done by generating several tables for selected range of ψ. Contact parameters are linearly interpolated relative to both the y rel and the ψ. Account is taken of wheelset roll rotation φ through the geometrical constraint between y and φ. Most of the results presented in this paper were obtained for wheel/rail pair of S1002/UIC60 type being a standard in Europe. Only results shown in Section 6 refer to the Russian pair of SZDwheel/R65 type.

Phenomenon studies of the appearance and duration of self-exciting vibrations

Simulation studies relating to the self-exciting vibrations phenomenon started with the
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straight track case that is better examined one. At the same time, the authors treated the straight track as a special case of the circular curve of infinite radius R = ∞. Next, our studies covered the whole range of curve radii, from the large ones R = 10000 m down to the small ones R = (300) 600 m. Investigations for particular radii R started from small velocities v.

Each simulation of motion was realised with the constant velocity v. Taking into account that all system parameters remain constant during simulation, velocity v is the only parameter characterising the amount of energy being supplied into the system. The observed quantity is leading wheelset's lateral displacement y lw .

Before we shall proceed to presenting and discussing example simulation results some introductory considerations are necessary. Let us realise that the problem of looking for saddle-node bifurcation (see Fig. 1) that determines critical velocity v n (being the minimum v to start self-exciting vibrations) can be formulated in two different ways. First is the formulation as a stability problem for the periodic solution (limit cycle). Second is the formulation as a problem of existence of multiple solutions. Authors of present paper take advantage of both formulations. In fact the simplified procedure being the combination of both formulations was used.

In case of the first formulation three approaches could be exploited. The first needs sweeping over a range of initial conditions and check if despite their different values the same solution is obtained for the velocity selected. This approach matches closely mathematical definition of the stability. Variation of over the velocity v around v n is obviously also necessary. The next options are two different methods for precise v n determination. These are the ramping method based on continuous decrease of velocity during the single simulation (e.g. [START_REF] Schupp | Computational bifurcation analysis of mechanical systems with applications to Railway vehicles[END_REF][START_REF] Hoffmann | Dynamics of European two-axle freight wagons[END_REF][START_REF] Hoffmann | The dynamics of European two-axle railway freight wagons with UIC standard suspension[END_REF] or the method based on series of simulations for decreasing velocities, where results of preceding simulation are used as initial conditions in the current one.
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The authors used first of the approaches mentioned above. Some simplifications were applied, however. At first, this approach was used just in the initial stage of the investigations.

Next, the procedure was limited to selected radii R. These were R=600, 2000, 6000 m and ∞ (i.e. ST). Also, variation over v was limited, namely realised with 3-4 m/s interval. Such procedure was used mainly in order to be sure that real limit cycle was obtained and no multiple periodic solutions existed. As a consequence slightly overestimated values of v n could sometimes be obtained. Nevertheless, possible inaccuracy in velocity v n , not bigger than 4 m/s, was accepted. Example of formal stability study corresponding to the first formulation, for ST and selected velocity, is shown in Fig. 3.

In the case shown in Fig. 3 initial conditions were imposed on lateral displacements (y lw , y tw ) of both wheelsets. Here, the limit cycles are obtained only for the initial conditions bigger than 0.004 m. For the smaller ones stable stationary solutions are obtained (vibrations decay). Thus, it can be concluded that the limit cycle we deal with in Fig. 3 is that of hard excitation. This means also that subcritical Hopf's bifurcation exists in case of the investigated system. Similar results for the selected curve radii (specified above) were obtained, too.

Preview of all results of this type allowed to know common properties of the analysed vehicle-track system for the range of radii R. Based on such knowledge a decision was taken with care to choose one set of the initial conditions for the rest of radii, despite it could result in approximate values of v n for them. The expected inaccuracies should rather not exceed 4 m/s. The above decision was taken with serious thought, but in the main in order to speed up the calculations. Note that thanks to it just variation over the velocity was possible in the next simulations. That is why simulation results in the next subsections refer just to this set. Note also that in fact switch to the second formulation while looking for v n value (saddle-node bifurcation) was realised in this way. The reason for such switch are primary objectives of our
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studies, which needed faster calculations. The objectives themselves are presented further on.

Motion along straight track

In accordance with the foregoing considerations, the simulation results are in a form of plots representing the dependence of leading wheelset's lateral displacement y lw upon distance. Results in Fig. 4 were achieved for velocities of motion equal 20, 25, and 30 m/s, respectively. In each case, the initial conditions were imposed on both wheelsets, i.e. y lw (0) = y tw (0) = 0,0045 m. Under these conditions, the wheelset displaced from the centre position (track centre line) returns to it (to the balance y lw = 0) after some time. With increase of velocity v, the vibration amplitudes increase for the same distance, and also there is an elongation of distance on which the vibrations disappear (the balance is reached).

Disappearance of vibrations means that amount of energy being supplied to the system is smaller than the amount of energy dissipated there. Under such circumstances, there is no chance for the self-exciting vibrations not to decay. One can state than, that the motion of vehicle is the stable stationary one within here discussed range of velocity.

Increasing still the velocity of motion (the amount of energy supplied to the system), the distance elongates again, necessary for the vibrations to disappear (Fig. 5(a)). At certain velocity (here 40 m/s), the lateral displacements y lw take form that makes it impossible to state univocally, at the standard distance of simulation, whether they increase or decrease (Fig. 5(b)). Theoretically, vibrations can either disappear or develop into limit cycle (constant amplitude). Range of velocities with the behaviour like in Fig. 5(b) was however very narrow.

In such situations, simulations for a longer distance (order of magnitude of a few thousands m) can give the answer. Here, vibrations tended to decay. On the other hand, the simulations for so long distances can generate doubts about their accuracy (Zboinski and Dusza, 2004-b).

Rise of velocity to 43 m/s caused the displacements reached constant value of the amplitude (and frequency) on the standard section of distance. One can state that solutions
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have got character of the limit cycle being a result of self-exciting vibrations generated by the mechanical system. At this value of velocity of motion, the amount of energy being supplied to the system is equal to the amount of energy dissipated there.

Such state of the system can last for freely long time (in this instance, on a freely long distance). If one presents the results on the phase plane (Fig. 6), then one can notice that after an initial stage of motion, the trajectory describes single stable limit cycle. Width of the obtained figure arises from the account taken of transient stage before vibrations became steady.

Motion along circularly curved track

In a way analogous to straight track, the simulations were performed for motion of vehicle model in the curved track. The case study below is a circular curve of radius R = 600 m. Results in Fig. 7 represent wheelset's lateral displacements for velocities of 20, 25, and 30 m/s, respectively. As before, the initial conditions were imposed on both wheelsets, i.e. y lw (0) = y tw (0) = 0,0045 m.

One may observe in Fig. 7 that with increase of velocity v, there is an elongation of distance on which wheelset displaced from its balance position returns to the steady state solution (the horizontal line). The amplitudes of displacements y lw increase for the same distance with increase of v, as well. Important difference comparing to the straight track is asymmetry of wheelset lateral displacement y lw with respect to the track centre line (i.e. to y lw =0 position). This asymmetry rises with the rise of velocity v. On the route discussed here, the superelevation of constant value h = 0,16 m was applied. This is the maximum admissible value used in practice. For the values of velocity chosen here, the superelevation deficiency occurs, being just one reason for the unsymmetrical position of wheelset in the curve. Another important reason is difference in tangential contact forces acting on the left and right wheels.

It is related to the different paths to travel by the inner-and the outer wheel in the curve and Next increments in the velocity of motion (Figs. 8(a) and (b)) elongate again the distance necessary for the vibrations to disappear. This increments also increase the amplitudes of vibrations for the same distance and the asymmetry of wheelset displacement y lw with respect to the track centre line. Final increment of velocity v (up to 43 m/s in Fig. 8(c)) causes that the vibrations are not of decaying character any more but take the form of steady amplitude and frequency (limit cycle). Value of v related with a jump from the stable stationary solutions to the stable periodic solutions, obtained for R=600 m, is the same as that obtained for the straight track. Similar are also such values of v obtained for rest of the radii. Thus, the conclusion can now be formulated for the investigated system. So, provided initial conditions are big enough, the radius R does not influence very much velocity v that is necessary to supply the amount of energy into the system, which is capable to initiate selfexciting vibrations. Similarly to straight track, the result exposed on phase plane (Fig. 9) creates, after an initial stage of motion, the single stable limit cycle.

Negative values of the lateral displacements y lw in Fig. 7 and Fig. 8 have got a conventional character. They arise from the fact of simulating motion in the curve turning to the left. For curves turning to the right, the results are antisymmetric in relation to the horizontal axis (Ox axis) and take positive values.

Motion with velocities higher than the critical one

Accepting the assumption that stable motion of the investigated object occurs when the model describing it gives stable stationary solutions or stable periodic solutions, being the limit cycles, it seems justified to study the parameters of these cycles in the entire range of velocities they occur. Consequently, the results are presented of the succeeding simulations for straight track with velocities of 50, 55 and 65 m/s, respectively (Fig. 10).

One can see that following an increase in velocity v, the vibration amplitudes grow
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slightly. At velocities 50 and 55 m/s (Figs. 10(a) and 10(b)) they still preserve the character of limit cycle. However, this situation changes at some velocity v s (in this instance 65 m/s -Fig. 10(c)). Here, at the terminal part of the studied distance, the vibrations yet loose character of limit cycle (the amplitude and frequency change). At this velocity, our calculations yield unbounded growth in amplitude and are stopped. Two types of such growth were observed in our studies. The first corresponds to Fig. 10(c). Here, unbounded growth in the wheelset yaw angle ψ lw (angle of attack) happened, while no such growth in y lw was observed. For the second, direct unbounded growth in y lw occurs. Samples of that type of results can be found in [START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF], Zboinski andDusza (2004-b, 2008). The behaviours as described mean that with velocity v s , the amount of energy supplied to the system is bigger than amount of the energy dissipated there. Therefore such cases evidence the unstable motion of vehicle model.

Analogous results, though shifted (i.e. asymmetrical) in relation to the horizontal axis, we obtained for the circular curves.

Two additional comments should be made in view of the previous paragraph. Firstly, we have not investigated directly the reason of the unbounded growths of oscillations.

Nevertheless, results in Zboinski andDusza (2004-b, 2008) revealed that appearance of the unbounded growth in the range of realistic velocities v and also values of v s depend strongly on the method of wheelset's mean rolling radius r t modelling. The differences between particular methods were so big that one can not be sure if discussed growths reflect any physical phenomena. They could also be a result of wrong r t modelling and of wrong modelling in general.

Secondly, the difference that was discussed in subsection 1.2 between stoppage of calculations for velocity v s , which is represented e.g. by Fig. 10(c), and the real derailment should be reminded here. In addition, under v s we should mean any velocity at which the calculations are stopped, no matter we deal with the unbounded growth started from periodic
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(or quasi-periodic), stationary (or quasi-stationary), and even chaotic solutions.

Employing observations of self-exciting vibrations and stationary solutions in evaluation of vehicle stability in curves

One can get bifurcation plot basing on observations of change of the system's selected variable, in particular domain, under the influence of changing value of a bifurcation parameter. Here, such observations refer to the change of wheelset lateral displacement y lw , in distance domain, under the influence of changing velocity v (e.g. Figs. 4, 5, and 10). The obtained theoretical bifurcation plot for the given conditions (given curve radius R and superelevation H) could look like Fig. 11(a). This plot is similar to that for straight track in Fig. 1. The major difference appears for stationary solutions (i.e. for v < v c ), because then y lw ≠ 0 in a curved track. The reasons are explained further on. Another difference concerns terminal part of the plot. Note that points in In terms of building Fig. 11(a) in practice some additional information is beneficial. The reader should realise certain possible differences in determining the lines for unstable and stable periodic solutions. In case of unstable periodic solutions (dashed line joining the attractors at velocities v c and v n ), stability analysis in type shown in Fig. 3 must be used.

Sweeping over values of the initial conditions is the absolute necessity. We mean to have the possibility of determining such results. For example, studies concluded with Fig. 3 

made it
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possible to determine the point on the corresponding dashed (unstable) line of the following co-ordinates: v=46 m/s, y lw =0.00418 m. In case of stable periodic solutions, possessing greater practical significance, the stability analysis with a thorough variation over values of the initial conditions can also be used. On the other hand, however, the simplified and faster approach based on check of the periodic solution's existence could carefully be used, too (as explained at the beginning of Section 3). It is really an attractive alternative. Here, one or a few selected set(s) of initial conditions is(are) used, depending on the system properties. While using this approach, however, one should treat it all the time as a supplement to the stability approach.

In case of any doubts or randomly (just for check) the switch to sweeping over a range of the initial conditions is recommended. Despite higher risk of omission of unexpected solutions (multiple or chaotic ones), such simplified approach can be a reasonable compromise in terms of the calculation efficiency. Now note, that during motion of the model along perfectly straight track, in conditions when vibrations decay (Fig. 4), values of displacements y lw become constant and y lw = 0 at the same time. If motion in the similar conditions takes place along circular track, then the value of y lw becomes also constant, but in the main y lw ≠ 0 (Fig. 7). It comes out from existing in curves no balance of the lateral forces acting on wheelset in its symmetrical (y lw = 0) lateral position. If in the straight track the self-exciting vibrations exist, i.e. the observed lateral displacements y lw are in type of limit cycle, then sign of displacements y lw changes (Fig. 10).

Change of the y lw sign can also happen in circular curve (Fig. 8(c)) where limit cycle is asymmetrical. Moreover, for both the stationary and periodic solutions, the solutions (s r ) for a curve turning to right and solutions (s l ) for the curve turning to left are antisymmetric (s r = -s l ) to each other, provided the same curve radius R. So, the sign of y lw depends on the direction of a curve turn.

Consequently, the question comes into being what value of displacements y lw should
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be taken on the bifurcation plot, since maximum value of y lw is not univocal. Therefore in Fig. 11(a), the maximum of absolute value of lateral displacement (|y lw | max) was adopted instead of maximum of the displacement (y lw max) used in Fig. 1.

In order to represent the character of solutions (stationary or periodic) and give the information on asymmetry of limit cycle in a curve, additional characteristic parameter of the limit cycle needed to be introduced. Peak-to-peak value was taken, measured as a distance between succeeding peaks of vibrations, from the plots representing leading wheelset's lateral displacement y lw versus distance (Fig. 11(d)). The denotation (p-t-p y lw ) was adopted for that parameter. Obviously, in case of stable stationary solutions its value equals zero. The observation of changes in values of (p-t-p y lw ) under the influence of velocity variation leads to the second, non-standard bifurcation plot (Fig. 11(b)) for given conditions of motion (given curve radius R and superelevation H). This plot is absolutely necessary to fully characterize the system in instance of the stability analysis in a curved track.

The pair of bifurcation plots in Figs. 11(a 
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Building the pair of the complete graphs for functions (|y lw | max) = f(v) and (p-t-p y lw ) = f(v) needs at least a dozen or so simulations performed of the model motion, each for different velocity v but all for the same curve radius R and superelevation H.

The method of creating stability maps illustrating stability of model within the entire range of curve radii

Basically, the procedure of stability analysis in a curve is analogous to that applied for a straight track. Nevertheless, the differences should not be passed over in silence, especially in view of significant expenditure of additional work and of additional troubles that may appear. In order to visualize better the additional attention and measures caused by the stability analysis for circular curves a block diagram was elaborated (Fig. 12). This diagram does not arise from the theory. It is mainly the result of experience gathered by the authors while realising the following works: Zboinski (1998), [START_REF] Zboinski | Simulation investigation of railway vehicle dynamics in curved track[END_REF], 2004-a, 2004-b, 2006[START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF]. It was assumed that all measures for determination of stability regions for straight track are standard ones, e.g. like in [START_REF] Moelle | Nonlinear bogie hunting[END_REF] and Gasch at al. (1994). That is why this part was put into one block. The part being the extension of standard measures, necessary to include motion in curves in the analysis, is more detailed.

Blocks related to this part should be taken into account in succession going from the top to the bottom.

Observations leading to creation of diagrams in Figs. 11(a (Zboinski andDusza, 2004-a, 2006;[START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF].

Let us notice that the preparation of stability map for the entire range of curve radii needs execution of at least several dozen single simulations of motion.

Representation of stability of motion in the form of stability maps. Assumptions of the method

According to the idea presented above, a number of simulations were done in order to get a representation of stability for the vehicle (its model described in Section 2). These simulations were done for straight sections ST and circular curves, from small to large radii R.

In each group of simulations for particular R, each single simulation was done for a different velocity v, however so as to cover the range from 5 m/s to v s = v s(R) . For each simulation with a given velocity, the plot was created of wheelset lateral displacements versus velocity (as e.g. Figs. 4,5,7,8 and 10). From the plots of such type, the values of maximum wheelset lateral displacements and peak-to-peak values of the displacements were read off. These values exposed as the functions of velocity for entire scope of curve radii created stability map composed of Fig. 13 Each line on the map illustrates the result for route with different curve radius. Its values are specified next to the lines. Studies were started from small velocity (v=5 m/s).

Solutions of the model have got stable stationary character here. In Fig. 13 it matches usually non-zero values of maximum lateral displacements (y lw max) and in Fig. 14 zero peak-to-peak values (p-t-p y lw = 0). In case of curved track and the stationary solutions, different than zero values of (y lw max) are, among others, related to track superelevation. It was selected for each value of R individually, being the nominal one for critical velocity v n . This means an excess of superelevation in all simulations with velocities smaller than v n . For very small velocities and large radii R, it results in a change of the sign of maximum displacements y lw (see Fig. 13).
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Thus, for cases like those, and only for them, use of (|y lw | max) would be misleading.

Therefore, we departed from the recommendation formulated for Fig. 11(a) to present the maximum of absolute value of the displacements (|y lw | max) on the first of bifurcation plots.

Instead, the bifurcation plot was created for curves turning to the right as well as the maximum of the displacements (y lw max) is represented in Fig. 13. Important in Figs. 13 and 14 are the vertical lines for velocity of 43 m/s. These lines separate the range of stable stationary solutions from the range of stable periodic ones. Also, a step change in maximum values of lateral displacements and peak-to-peak values of the displacements happens here. Just mentioned velocity is the non-linear critical velocity v n . In the range of present article, it is the smallest velocity of motion for which the self-exciting vibrations exist in the form of limit cycle. Using the way of velocity v n determination described at the beginning of chapter 3, value of v n appeared to be the same for all radii R (from R = 600 m to ST) in the investigated system.

The biggest wheelset's lateral displacements (y lw max) occurred for the route with R=600 m, for both the stationary and the periodic solutions (Fig. 13). Generally, for periodic solutions (i.e. when v > v n ), the bigger the radius R, the smaller the maximum displacement (y lw max) for analogous velocities v. Here, minimum value of (y lw max) is reached for straight track ST. Next, peak-to-peak values (p-t-p y lw ) have got opposite direction of the growth for the periodic solutions. They are smallest for the route with R=600 m, and the bigger the radius R, the bigger the peak-to-peak value (p-t-p y lw ) for analogous velocities v. It reaches maximum for straight track ST. Terminal point of each line corresponds to the velocity v s , for which the calculations are stopped due to unbounded growth of the oscillations, as earlier defined in Subsection 3.3. As it can be seen, velocity v s increases with a rise of radius R.

Compare for instance v s(600) =47 m/s, v s(1200) =57 m/s, v s(3000) =63 m/s, and v s(ST) =65 m/s with each other. On the routes with curve radii R < 600 m, the calculations were stopped (due to
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unbounded growth of solution) for velocities smaller than the critical velocity v n , i.e. within stationary solutions range. That is why we decided not to present these results on the plots. Despite a significant similarity of the map composed of Fig. 13 and Fig. 14 to theoretical plots in Fig. 11(a) and Fig. 11(b), the differences exist that should be discussed now. Firstly, the maps shown here do not present lines for unstable solutions. Secondly, they do not contain the information on linear critical velocity v c . Thirdly, non-linear critical velocity v n is determined with numerically effective, however simplified method. Thus approximate values of v n were obtained. Nevertheless, one can always do it more precisely by thorough variation over values of the initial conditions for all curve radii and usage of smaller velocity interval. Another possibility would be to use already mentioned different methods of v n determination. So, the ramping method or the method based on series of simulations for decreasing velocities (where results of preceding simulation are used as initial conditions in the current one) could be utilised. Fourthly, velocities v s indicate univocally terminal points of the lines for stable solutions. Nevertheless, these points have got some conventional character.

They do not define the physical derailment of the vehicle. One can use them only as some qualitative measure of the derailment risk. In this context, eventual comparing of v s values for different vehicles or the same vehicle with different parameters (e.g. in the suspension) seem to be sensible. Above mentioned differences result mainly from aims of our studies and choice of the corresponding simplifying assumptions. Our aim was to elaborate a method of stability analysis in curves for the entire range of radii R, as effective as possible. Next point was to enable to treat relatively quickly as much factors that might influence stability of railway vehicles in curves as possible. Besides, some of the simplifications in the presented maps seem to have got more theoretical than practical significance. For instance, in case of system with subcritical Hopf bifurcation (as in Fig. 1), one should rather not expect that for velocities
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between v n and v c stable stationary solutions correspond to behaviour of a real system. It comes out from properties of a real track that possess both the geometrical irregularities and the asymmetry in vertical stiffness. This is a reason of excitation in the real system.

Consequently while studying the stability for v n <v<v c , one should rather expect that bigger initial conditions leading to the periodic solutions, correspond to the real conditions of motion better than smaller (or zero) ones, leading to the stationary solutions. In supercritical case [START_REF] Xu | Nonlinear stability analysis of a bogie of a low-platform wagon[END_REF], the problem does not exist, since then v n =v c . The step change from stationary to periodic solutions, provided no multiple periodic and chaotic solutions occur, evidence almost for sure that we deal with subcritical Hopf's bifurcation in case of the investigated model.

At this stage of the article two matters should be stressed. First is the uniform character of the model properties for all radii R (including ST), as in Figs. 13 and14. The most distinctive here is a division of the velocity range into two parts by common critical velocity value v n =43 m/s. These parts refer to the stable stationary and periodic solutions, correspondingly. Also dependence of (y lw max) and (p-t-p y lw ) on radius R is uniform. It seems, at small risk of mistake, that these features result from the simple vehicle model we used. We mean simple model structure (Fig. 1), linear suspension elements and nominal (unworn) S1002/UIC60 wheel/rail profiles.

The second matter to be stressed are the consequences of just described uniform properties, for the method we applied in the present article. It should be stated, here, that earlier described simplifications in the method were possible to apply thanks to those uniform properties. Consequently, in instance of more severe non-linearities and complicated structure of the model more caution must be applied and better justified formal methods are recommended. We mean in particular: looking for the saddle-node bifurcation utilising formulation of the problem as a stability problem for periodic solution rather than as a problem of existence of multiple solutions (Section 3); alternative use of different exact
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methods of velocity v n determination; and determination of courses for unstable periodic solutions. Failure to do so may result in wrong determination of v n , and omissions of multiple and chaotic solutions that might actually be of importance for theory or practice.

Sample of stability analysis -investigation into influence of the chosen factor on the stability

With use of the method presented, the studies were done for considerable number of factors on their influence on the stability. These factors were: shape of wheel and rail nominal profiles; wear of wheel and rail profiles with regard to its magnitude and place of the biggest intensity; track superelevation; parameters in vehicle suspension, including values of stiffness and damping for longitudinal, lateral and vertical directions; vehicle type (bogie, 2-axle vehicle); method of considering wheelset's angle of attack; method of determination of wheelset mean rolling radius; and rail inclination. Results of these studies were presented in [START_REF] Zboinski | Simulation investigation of railway vehicle dynamics in curved track[END_REF], 2004-a, 2004-b, 2006, 2008) and [START_REF] Dusza | Simulation studies of railway vehicle motion stability in curves with regard to influence of changes of the system chosen parameters[END_REF].

From the factors mentioned above, we selected one to be presented in this article. It is the shape of wheel and rail profiles. We'll show the very spectacular influence of this factor on the corresponding stability maps. The results differ from those in the above cited references, including solutions for velocities smaller than v n . The analysis is confined to just two pairs of profiles since first of all, we treat it as a sample of the method's potentiality.

Results for the pair of wheel/rail profiles of type S1002/UIC60 are shown in Fig. 13 and The course of (y lw max) below the critical velocity is qualitatively similar for both pairs. In terms of magnitude, the displacements are bigger for the second pair of profiles.

Track superelevation for both pairs was chosen as a constant for each of the radii R and having nominal value for velocity v = 43 m/s, being the critical velocity for model equipped with the first pair. Values of (y lw max) for S1002/UIC60 pair are bigger in general, and also for the same velocities, than values of (|y lw | max) for SZDwheel/R65 pair. Important difference makes the boundary value of curve radius R below which the limit cycle does not appear above critical velocity v n . In case of the standard European pair, there is no such value.

It means that exceeding v n results in appearance of the limit cycles for all values of R. The exception are those radii only (R < 600 m) for which v s (calculations stop) is reached prior to v n . In case of the Russian pair this boundary value is approximately R = 2150 m. This means that for curves with radii R < 2150 m, there are no limit cycles at all, also after v n is exceeded.

Peak-to-peak values (p-t-p y lw ) for both pairs are the very biggest for straight track ST.

Qualitative differences for this quantity in case of both pairs of profiles are visible. In the main they appear for R < ∞. However, they become spectacular for R < 2150 m, what is connected with absence of limit cycles for such R in case of the second pair (Fig. 16). Values of (p-t-p y lw ) for the second pair are visibly smaller than for the fist one, in general.

In consequence of just described differences between both pairs of profiles, we can formulate the following recommendations and conclusions for the railway practice. The
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second pair of profiles gives stationary solutions below v = 25 m/s, i.e. about 90 km/h. So, it is more suitable for freight rather than for passenger cars that run with high and very high speeds. The first pair gives stationary solutions below v = 43 m/s, i.e. about 155 km/h, thus it is much better suited for passenger cars than the previous one. When in the range of selfexciting vibrations (limit cycles), the second pair has better properties in terms of ride quality than the first pair (smaller maximum and peak-to-peak values of the displacements y lw ).

Despite very limited connection of v s with a real derailment, much higher values of v s for the second pair cannot be passed over in silence. Although, it is not proven, it seems that smaller risk of the derailment could be concluded for the SZDwheel/R65 pair comparing to the S1002/UIC60 pair. On the other hand, it should be emphasised that nominal profile of S1002 wheel is derived from the profile shapes we obtain as a result of wear process. Wheel profile used by SZD railways is closer to the conical profile (than S1002 profile) and that is why it can take different shape(s), caused by its wear during operation. It will obviously result in a change of the vehicle dynamical properties, maybe towards properties for the S1002 profile.

Independently of these considerations, another fact should be stressed. Namely, parameters of vehicle suspension affect the dynamical properties significantly, and in particular the value of v n . Thus, intentional change of these parameters, or of the suspension construction, may improve the dynamical properties of vehicle for both pairs of the profiles.

Conclusion

The basic idea of determining areas of stable and unstable solutions of railway vehicle models in a curved track was presented in the present article. Strong reference to physical aspects of the problem was made at the same time. Here, the fundamental importance of selfexciting vibrations was indicated. Next, the importance and validity was shown of Hopf's and saddle-node bifurcations in curved track analysis, just like it is in straight track case.

Thanks to the simple model used in the simulations, it became possible to explain the
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place and usefulness of the basic knowledge on the self-exciting vibrations and the bifurcations mentioned in the railway vehicle stability analysis in a curved track. The procedure (method) to determine the stable stationary and periodic solutions in a curved track was also presented. The simplicity of the model resulted in absence of phenomena of unexpected multiple and chaotic solutions in our results. Thanks to it, we could simplify the procedure vastly. The benefits are faster calculations and consequently more factors investigated that influence stability in a curved track. In general case, however, there is a risk of omitting some multiple and chaotic solutions and to determine critical velocity incorrectly.

That is why authors of the present paper do not consider their procedures as absolutely recommended. They advise to utilise as much as possible from their approach, being very careful at the same time. In the general case or in the case of particular vehicle of more sophisticated structure (e.g. 4-axle, bogie vehicle) or strong non-linearities (e.g. dry friction in the suspension or worn wheel/rail profiles) more formal approach is unavoidable. For instance formal stability study rather than looking for multiple solutions in determining saddle-node bifurcation is more reliable. Comparing to what the authors did in this paper the following three elements should be supplemented. First, all radii R should be covered by the stability analysis (instead of just the selected ones). Second, such analysis should be performed for velocities at smaller interval (about 1 m/s instead of 3-4 m/s). Third, whole velocity range should be treated in that way (instead of mainly the range around v n ).

Study on stability of rail vehicle model utilising observation of the system quantities that change with appearance of self-exciting vibrations is recently the basic and effective research method for multi-dimensional systems of such kind [START_REF] Kisilowski | History of Stability of Railway and Road Vehicles[END_REF]. This method enables to determine precisely the critical value of active parameter as well as analyse the model properties in subcritical and supercritical zones of the parameter value. This is the essence of utilisation of the method in practice. Motion with velocities higher than critical one 
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Table 1 .

 1 Parameters of the analysed vehicle-track system

			Measurement	HSFV1 freight
	Notation	Description	unit	car parameters
	m b	vehicle body mass	kg	30000
	m	wheelset mass	kg	2392
	I b ξ	body moment of inertia; longitudinal axis	kgm 2	51000
	I b η	body moment of inertia; lateral axis	kgm 2	240000
	I b ζ	body moment of inertia; vertical axis	kgm 2	222000
	I ξ	wheelset moment of inertia; longitudinal axis	kgm 2	1662
	I η	wheelset moment of inertia; lateral axis	kgm 2	50
	I ζ	wheelset moment of inertia; vertical axis	kgm 2	1662
	k zz	vertical stiffness of the 1st level of suspension	kN/m	4100
	k zy	lateral stiffness of the 1st level of suspension	kN/m	431
	k zx	longitudinal stiffness of the 1st level of suspension	kN/m	2067
	c zz	vertical damping of the 1st level of suspension	kNs/m	28
	c zy	lateral damping of the 1st level of suspension	kNs/m	56
	c zx	longitudinal damping of the 1st level of suspension	kNs/m	0
	a	semi-wheel base	m	3,15
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is not desired during vehicle operation. It is obvious that appearance of the hunting in the real system is definitely worse that its absence. It results in: worse running quality, bigger wear in rail/wheel system, raised derailment risk, and faster degradation of the track. Despite that, the motion in such conditions does not mean an absolutely unacceptable situation (e.g. in terms of safety). Therefore, knowledge about solutions (behaviour) in this velocity range is not less interesting than for the smaller velocities. Besides, note that such situation can happen in reality in case of motion with the excessive velocity (above the admissible one). Let us take the entrance into curve of small radius as an example, where admissible velocity is distinctly smaller than in the straight section. In such instance, knowledge about the width of range of stable periodic solutions (i.e. interval between v n and v s ) provides the information on the safety margin between achievement of critical value of velocity and stability loss, resulting in loss of faith in the results of numerical simulations.

The authors succeeded to demonstrate that their approach can be applied well to the circular sections of track. The method used by them appeared to be efficient and reliable, as shown in numerous studies on influence of different factors on the stability of motion. The results obtained show the sense of stability analysis in curved track and its practical aspects which are sometimes questioned. Original in the method is creation of stability maps being in fact a kind of the bifurcation plots. The maps do not restrict themselves to results of stability analysis for single curves of a certain radius R. They also expose representation of model's stability for the entire range of curve radii, and straight track as well. The authors express their hope that this paper will contribute to widening the circle of people of opinions conformable to theirs on the stability of rail vehicles in general, and on the stability in curved track in particular.
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