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Introduction

In an introductory paper delivered at this Conference1 , "From Quantum Mechanics to Quantum Field Theory: The Hopf route", Allan I. Solomon [START_REF] Solomon | From Quantum Mechanics to Quantum Field Theory: The Hopf route[END_REF][START_REF] Blasiak | Combinatorial Algebra for second-quantized Quantum Theory[END_REF] et al. start their exposition with the Bell numbers B(n) which count the number of set partitions within a given set of n elements. It is shown there that these very elementary combinatorial ideas are in a sense generic within quantum statistical mechanics. Further, it turns out that this approach also leads to a Hopf algebraic description of the physical system. Since recent work on relativistic field theory (perturbative quantum field theory or pQFT) also leads to a Hopf algebra description, the question naturally arises as to whether the algebraic structure, implicit in essentially the nonrelativistic commutation relations, may be extended to the more complicated, relativistic system. Instead of extending the physical picture, we have chosen to follow a mathematical route. Doing so, it turns out that the basic structure, as exemplified in "The Hopf route" for the special case of Bell number diagrams, provides the building blocks of a non-commutative parametric Hopf algebra which specializes on the one hand to a Hopf algebra of noncommutative symmetric functions, and on the other hand to a proper Hopf sub-algebra of that inherent in perturbative quantum field theory (pQFT). It is well known that analysis of pQFT reveals that polyzeta functions, extensions of the Riemann zeta function of number theory, play an important role. It is not surprising therefore that the algebraic analysis embarked upon here should reveal properties of the polyzetas. And indeed it is the case that our algebra admits, as a homomorphic image, the algebra of polyzeta functions of number theory. This foray into number theory leads us to consider Euler's gamma constant γ, and conclude, on the basis of Lemmas given in the text, that γ may in fact be a rational number.

One-parameter groups and the exponential Hadamard product

As often in physics, one has to consider one-parameter groups with infinitesimal generator F , G(t) := e tF .

(1)

When we have two infinitesimal generators which commute [F 1 , F 2 ] = 0 (for example, with functions constructed from two distinct boson modes), one can obtain the group G 12 (t) := e tF 1 F2 with operation

G 12 (t) := G 1 (t ∂ ∂x )[G 2 (x)]| x=0 . (2) 
where G i (t) := e tF i , i = 1, 2. Up to constant terms, this operation is a Hadamard product (i.e. the componentwise product, which we denote below by H) but performed on the exponential generating series [START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF]. Specifically with

F (z) = n≥0 a n z n n! , G(z) = n≥0 b n z n n! , H(F, G) := n≥0 a n b n z n n! . ( 3 
)
This formula is known as the product formula [START_REF] Bender | Quantum field theory of partitions[END_REF]. Since one-parameter groups are exponentials, we can try to find a universal formula for [START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF]. To this end we set

F (z) = exp ∞ n=1 L n z n n! , G(z) = exp ∞ n=1 V n z n n! . ( 4 
)
and remark that F, G can simultaneously be expressed in terms of Bell

2 polynomials [5] B n as exp ∞ n=1 X n z n n! = ∞ n=0 z n n! B n (X 1 , X 2 , • • • X n ) . (5) 
The coefficients of the polynomials B n are positive integers which can be interpreted as the number of unordered set partitions which are collections of mutually disjoint non-empty subsets (blocks) of a (finite) set F whose union is F . For example, the set partitions of F = {1, 2, 3, 4} in two blocks of size two are

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}} . (6) 
The type of a set partition

P = {A 1 , A 2 , • • • A k } of F is the sequence of numbers T ype(P ) := (#{l s.t. |A l | = k}) k≥1 .
For example, the type of the set partition P = {{2, 4, 6, 7}, {1, 5}, {3, 8}} is (0, 2, 0, 1, 0, 0, 0, • • •).

We have the formula

B n (X 1 , X 2 , • • • X n ) = P ∈U Pn X T ype(P ) (7) 
(where U P n is the set of unordered partitions of [1 • • • n]) which can be proved (following the argument of Faà di Bruno) using the exponential formula [START_REF] Poinsot | Statistics on Graphs[END_REF]. Now from (4), ( 5), [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF], one concludes that

H(F, G) = n≥0 z n n! P 1 ,P 2 ∈U Pn L T ype(P 1 ) V T ype(P 2 ) . (8) 
This formula can be rewritten as a diagrammatic expansion using the incidence matrix of the pairs of set partitions P 1 , P 2 involved in [START_REF] Duchamp | Non commutative functions VI: Free quasi-symmetric functions and related algebras[END_REF] with respect to intersection numbers, i.e.

Matrix of (P

1 , P 2 ) = #B 1 ∩ B 2 B 1 ∈P 1 , B 2 ∈P 2 . ( 9 
)
These matrices, with unordered rows and columns, can be represented by a diagram with the following rule. Draw two rows of spots (white spots on the upper row and black on the lower row) label each black spot by a block of P 1 and each white spot by a block of P 2 and join two spots (one of each kind) by the number of common elements in the corresponding blocks 3 . The result is the diagram of the following figure. ). P 1 = {{2, 3, 5}, {1, 4, 6, 7, 8}, {9, 10, 11}} and P 2 = {{1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11}} (respectively black spots for P 1 and white spots for P 2 ).

The incidence matrix corresponding to the diagram (as drawn) or these partitions is

  0 2 1 0 1 1 3 0 0 0 1 2   but,
due to the fact that the defining partitions are unordered, one can permute the spots (black and white) among themselves and so the lines and columns of this matrix can be permuted; the diagram could be represented by the matrix

  0 0 1 2 0 2 1 0 1 0 3 1   as well.
The set of such diagrams will be denoted by diag. This is precisely the set of bipartite graphs with multiple edges and no isolated vertex (and no order between the spots) and integer multiplicities. It is straightforward to verify that concatenation is associative with unit (the empty graph) within the set diag. We therefore denote the result of concatenation by [d 1 |d 2 ] D (arbitrarily putting d 2 on the right of d 1 because the law is commutative). The monoid (diag, [-|-] D , 1 diag ) is a free commutative monoid. Its generators are the connected (nonempty) diagrams (diag c ). The algebra of diag is the set of formal (finitely supported) sums

{ d∈diag α(d)d} α∈C (diag) (10) 
The freeness of diag (as a commutative monoid) implies that this algebra is isomorphic to the algebra of polynomials C[diag c ]. We shall denote it differently (i. e. DIAG) in the sequel (see 3 Compare this diagrammatic approach with the white and black spots of the preceding presentation [START_REF] Solomon | From Quantum Mechanics to Quantum Field Theory: The Hopf route[END_REF].

[3] for details) as we wish to endow it with the structure of a Hopf algebra. Indeed, the diagrams allow us to rewrite formula [START_REF] Duchamp | Non commutative functions VI: Free quasi-symmetric functions and related algebras[END_REF] as

H(F, G) = n≥0 z n n! d∈diag |d|=n mult(d)L α(d) V β(d) (11) 
where 

d → mon(d) = L α(d) V β(d) (12)
is a morphism ?"

The answer is "yes" concerning the algebraic structure of LDIAG as it is easily seen that

mon([d 1 |d 2 ] D ) = mon(d 1 )mon(d 2 ) . (13) 
But the algebra of polynomials is also endowed with the structure of a Hopf algebra (decomposition property [START_REF] Solomon | From Quantum Mechanics to Quantum Field Theory: The Hopf route[END_REF][START_REF] Blasiak | Combinatorial Algebra for second-quantized Quantum Theory[END_REF]). So it is natural to ask whether the coalgebra structure of the polynomials could be lifted to DIAG and, further, if this allows enriching the structure of DIAG to a Hopf algebra. Again, the answer is "yes" and the appropriate comultiplication is denoted by ∆ BS ("black spot" coproduct, see [START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF] for details). Computing ∆ BS (d) is immediate; one simply divides the black spots into two subsets, then obtain the tensors and sum all the results. More formally; noting the set of black spots of the diagram d by BS(d) and denoting by d[I] the sub-diagram whose black spots are in I and the white connected to I, one has

∆ BS (d) = I+J=BS(d) d[I] ⊗ d[J] (14) 
For example, one labels by {a, b, c} the three black spots of the diagram d of Fig 1 . In this case, the coproduct reads

∆ BS (d) = d ⊗ [ ] + [ ] ⊗ d + d[{a}] ⊗ d[{b, c}] + d[{b}] ⊗ d[{a, c}]+ d[{c}] ⊗ d[{a, b}] + d[{a, b}] ⊗ d[{c}] + d[{a, c}] ⊗ d[{b}] + d[{b, c}] ⊗ d[{a}] .

Labelling the nodes and the noncommutative analogue LDIAG

If one needs to label the black spots in order to compute the comultiplication, it is obvious that the precise form of labelling is ultimately irrelevant. It is more important to label the nodes endowing their sets with a linear order (one for the black spots among themselves and one for the white spots). This leads to LDIAG, the (non-deformed) noncommutative analogue of DIAG [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF].

The solution (of this non-deformed problem [START_REF] Duchamp | Feynman graphs and related Hopf algebras[END_REF]) is simple and consists in labelling the black (resp. white) spots from left to right and from "1" to p (resp. q); thus one obtains the labelled diagrams. Again concatenation is associative and endows the set of the labelled diagrams (here denoted by ldiag) with the structure of a monoid (the unit is the empty diagram characterized by p = q = 0). Again, and with the same formula (14) (but not applied to the same objects), the algebra of this monoid, LDIAG and the counit, which consists in taking the coefficient of the empty diagram, is a Hopf algebra4 .

The deformed case.

The preceding coding is particularly well adapted to the deformation we wish to construct here. The philosophy of the deformed product is expressed by the descriptive formula

[d 1 |d 2 ] L(qc,qs) = CS(d 1 ,d 2 ) q w1(CS) c q w2(CS) s CS([d 1 |d 2 ] L(qc,qs) ) (15) 
where

• q c , q s ∈ C or q c , q s formal. These and other cases may be unified by considering the set of coefficients as belonging to a ring K • the exponent of w1(CS) is the number of crossings of "what crosses" times its weight • the exponent of w2(CS) is the product of the weights of "what is overlapped"

• CS(d 1 , d 2 ) are the diagrams obtained from [d 1 |d 2 ]
L by the process of crossing and superposing the black spots of d 2 on to those of d 1 , the order and distinguishability of the black spots of d 1 (i.e. d 2 ) being preserved.

What is striking is that this law is associative. This fact is by no means trivial and three proofs have been given (one of them can be found in [START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF]). It can be shown that this new algebra (associative with unit denoted LDIAG(q c , q s )) can be endowed with two comultiplications, ∆ 0 and ∆ 1 , such that the result is a Hopf algebra which we denote by LDIAG(q c , q s , q t ). It can be shown that this deformed Hopf algebra has two interesting specializations LDIAG(0, 0, 0) ≃ LDIAG and LDIAG(1, 1, 1) ≃ MQSym ; LDIAG(0, 0, 0) (no crossing and no superposition) is the undeformed case whereas LDIAG(1, 1, 1) is MQSym, the Hopf algebra of Noncommutative Matrix Quasisymmetric functions [START_REF] Duchamp | Non commutative functions VI: Free quasi-symmetric functions and related algebras[END_REF].

The arrow LDIAG(1, 1) → polyzetas.

We now explain how a refinement of the "black spot type" β(d) of formula [START_REF] Minh | Differential Galois groups and non commutative generating series of polylogarithms[END_REF] evaluates the statistics (β(d)) by "number of nodes with outgoing degree k". We take advantage of the labelling and count these degrees node by node. Thus, for a labelled diagram d,I(d,k) is simply the outgoing degree of the node with label k. It turns out, and is straightforward to show, that

I(d) := [I(d, 1), I(d, 2) • • • I(d, p)]
(d is a diagram with p black spots) is a composition of the integer |d| (number of edges of d). Now, we define two structures which will be ubiquitous in the next section: the shuffle and stuffle algebras. Let X be any alphabet (i.e. set of variables). The shuffle algebra is defined on C X := C[X * ] by its values on the monomials (here the strings or words) by the following recursion

1 X * ⊔⊔ w = w ⊔⊔ 1 X * = w and xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v) . (16) 
Likewise, let Y = y ii≥1 be a countable alphabet indexed by integers ≥ 1. The stuffle algebra [START_REF] Hoffman | Quasi-shuffle products[END_REF] is defined on C Y := C[Y * ] by a recursion on the words as

1 Y * w = w 1 Y * = w and y i u y j v = y i (u y j v) + y j (y i u v) + y i+j (u v) . (17) 
The shuffle (resp. stuffle) operation endows

C X := C[X * ] (resp. C Y := C[Y * ]
) with the structure of an AAU5 . We define mappings

φ X2LDIAG : LDIAG(1, 0) → C X φ Y 2LDIAG : LDIAG(1, 1) → C Y (18) 
(here

X = {x i } i≥1 ) by φ X2LDIAG (d) = x I(d,1) x I(d,2) • • • x I(d,p) φ Y 2LDIAG (d) = y I(d,1) y I(d,2) • • • y I(d,p) )
and have the following result.

Proposition 1 The mappings

φ X2LDIAG : (LDIAG(1, 0), [ .| .] LD(1,0) → (C X , ) φ Y 2LDIAG : (LDIAG(1, 1), [ .| .] LD(1,1) → (C Y , )
are epimorphisms of AAU's.

This provides our link to the next section.

Knizhnik-Zamolodchikov differential system

In 1986, in order to study the linear representation of the braid group B n [START_REF] Drinfel'd V | Quantum groups Proc. Int. Cong. Math[END_REF] coming from the monodromy of the Knizhnik-Zamolodchikov differential equations over

C n * = {(z 1 , . . . , z n ) ∈ C n |z i = z j for i = j} : dF (z) = Ω n F (z), (19) 
where

Ω n = 1 2iπ 1≤i<j≤n t i,j d(z i -z j ) z i -z j , (20) 
Drinfel'd introduced a class of formal power series Φ on noncommutative variables over the finite alphabet X = {x 0 , x 1 }. Such a power series Φ is called an associator.

Since the system ( 19) is completely integrable then

dΩ n -Ω n ∧ Ω n = 0. ( 21 
)
This is equivalent to the following braid relations

[t i,j , t i,k + t j,k ] = 0, for distinct i, j, k (22) 
[t i,j , t k,l ] = 0, for distinct i, j, k, l.

(23)

• For n = 2, T 2 = {t 1,2 }, one has Ω 2 (z) = t 1,2 2iπ 
d(z 1 -z 2 ) z 1 -z 2 (24) 
and a solution of ( 19) is given by

F (z 1 , z 2 ) = (z 1 -z 2 ) t 1,2 2iπ . ( 25 
)
• For n = 3, T 3 = {t 1,2 , t 1,3 , t 2,3 }, there are two relations :

[t 1,3 , t 1,2 + t 2,3 ] = 0 and [t 2,3 , t 1,2 + t 1,3 ] = 0. ( 26 
)
One has

Ω 3 (z) = 1 2iπ t 1,2 d(z 1 -z 2 ) z 1 -z 2 + t 1,3 d(z 1 -z 3 ) z 1 -z 3 + t 2,3 d(z 2 -z 3 ) z 2 -z 3 ( 27 
)
and a solution of ( 19) is given by

F (z 1 , z 2 , z 3 ) = G z 1 -z 2 z 1 -z 3 (z 1 -z 3 ) t 1,2 +t 1,3 +t 2,3 2iπ (28) 
where G satisfies the following Fuchs differential equation with three regular singularities at 0, 1 and ∞ :

dG(z) = [x 0 ω 0 (z) + x 1 ω 1 (z)]G(z), (29) 
with

ω 0 (z) := dz z and ω 1 (z) := dz 1 -z , (30) 
x 0 := t 1,2 2iπ and

x 1 := - t 2,3 2iπ . (31) 
In the sequel, X * denotes the set of words defined over X = {x 0 , x 1 }.

Proposition 2 ( [START_REF] Minh | Differential Galois groups and non commutative generating series of polylogarithms[END_REF]) If G(z) and H(z) are exponential solutions of (29) then there exists a Lie series

C ∈ Lie C X such that G(z) = H(z) exp(C). Proof -Since H(z)H(z) -1 = 1 then by differentiating, we have d[H(z)]H(z) -1 = -H(z)d[H(z) -1 ]. Therefore if H(z) is solution of the Drinfel'd equation then d[H(z) -1 ] = -H(z) -1 [dH(z)]H(z) -1 = -H(z) -1 [x 0 ω 0 (z) + x 1 ω 1 (z)], d[H(z) -1 G(z)] = H(z) -1 [dG(z)] + [dH(z) -1 ]G(z) = H(z) -1 [x 0 ω 0 (z) + x 1 ω 1 (z)]G(z) -H(z) -1 [x 0 ω 0 (z) + x 1 ω 1 (z)]G(z).
By simplification, we deduce that H(z) -1 G(z) is a constant formal power series. Since the inverse and the product of group-like elements is group-like then we get the expected result.

Iterated integral and Chen generating series

The iterated integral associated with w = x i 1 • • • x i k ∈ X * , over ω 0 and ω 1 and along the path z 0 z, is defined by the following multiple integral z z 0 . . .

z k-1 z 0 ω i 1 (t 1 ) . . . ω i k (t k ), (32) 
where t 1 • • • t r-1 is a subdivision of the path z 0 z. In an abbreviated notation, we denote this integral by α z z 0 (w) and α z z 0 (1

X * ) = 1. Example 1 α z 0 (x 0 x 1 ) = z 0 s 0 ω 0 (s)ω 1 (t) = z 0 s 0 ds s dt 1 -t = z 0 ds s s 0 dt k≥0 t k = k≥1 z 0 ds s k-1 k = k≥1 z k k 2 .
The last sum is nothing other than the Taylor expansion of the dilogarithm Li 2 (z).

Example 2 In the same way the classical polylogarithm of order n ≥ 1 is the iterated integral associated with x n-1 0

x 1 , over ω 0 and ω 1 and along the path 0 z :

Li n (z) = k≥1 z k k n = α z 0 (x n-1 0 x 1 ).
Generalizing to multi-indices (n 1 , . . . , n r ), one has :

Li n 1 ,...,nr (z) = k 1 >...>kr>0 z k 1 k n 1 1 . . . k nr r = α z 0 (x n 1 -1 0 x 1 . . . x nr-1 0 x 1 ).
This provides an analytic prolongation of Li n 1 ,...,nr over the Riemann surface of C \ {0, 1}.

The Chen generating series along the path z 0 z associated with ω 0 , ω 1 is the following power series

S z 0 z = w∈X * α z z 0 (w) w ( 33 
)
and it is a solution of the differential equation (29) with the initial condition

S z 0 z (z 0 ) = 1. ( 34 
)
Any Chen generating series S z 0 z is group-like [START_REF] Ree | Lie elements and an algebra associated with shuffles Ann[END_REF] and depends only on the homotopy class of z 0 z [START_REF] Chen | Iterated path integrals Bull[END_REF]. The product of two Chen generating series S z 1 z 2 and S z 0 z 1 is the Chen generating series

S z 0 z 2 = S z 1 z 2 S z 0 z 1 .
(35)

Polylogarithm, harmonic sum and polyzetas

To the polylogarithm Li n 1 ,...,nr (z) we associate the following ordinary generating series

P n 1 ,...,nr (z) = Li n 1 ,...,nr (z) 1 -z = N ≥0 H n 1 ,...,nr (N ) z N , (36) 
where

H n 1 ,...,nr (N ) = N ≥k 1 >...>kr>0 1 k n 1 1 . . . k nr r (37) 
For n 1 > 1, the limit of Li n 1 ,...,nr (z) and of H n 1 ,...,nr (N ), for z → 1 and N → ∞ exist and, by Abel's Theorem, are equal :

lim z→1 Li n 1 ,...,nr (z) = lim N →∞ H n 1 ,...,nr (N ) = ζ(n 1 , . . . , n r ), (38) 
where ζ(n 1 , . . . , n r ) is the convergent polyzeta

ζ(n 1 , . . . , n r ) = k 1 >...>kr>0 1 k n 1 1 . . . k nr r . (39) 
Definition 1 Let Z be the Q-algebra generated by convergent polyzetas and let Z ′ be the Q[γ]algebra6 generated by Z.

To any multi-index n = (n 1 , . . . , n r ) corresponds the word v = y n 1 . . . y nr over the infinite alphabet Y = {y k } k≥1 . The word v itself corresponds to the word ending by the letter x 1 , u = x n 1 -1 0 x 1 . . . x nr-1 0 x 1 ∈ X * x 1 . Then it is usual to index the polylogarithms, harmonic sums and polyzetas by words (over X or Y ) :

Li n = Li v (z) = Li u , (40) 
P n = P v (z) = P u , (41) 
H n = H v (N ) = H u , (42) ζ(n) = ζ(v) = ζ(u). (43) 
Let us extend, over X * , the definition of {Li w } w∈X * x 1 and {P w } w∈X * x 1 by putting

∀k ≥ 0, Li x k 0 (z) = log k (z) k , P x k 0 (z) = Li x k 0 (z) 1 -z . ( 44 
)
We get the following structures :

Theorem 1 ([16]) (C{Li w } w∈X * , .) ∼ = (C X , ⊔⊔ ). Theorem 2 ([17]) (C{P w } w∈Y * , ⊙) ∼ = (C Y , ). Extended to C = C[z, z -1 , (1 -z) -1 ],
we also get as a consequence

• The polylogarithms {Li w } w∈X * (resp. {P w } w∈Y * ) are C-linearly independent. Then the harmonic sums {H w } w∈Y * are linearly independent. • The polylogarithms {Li l } l∈LynX (resp. {P l } l∈LynY ) are C-algebraically independent. Then the harmonic sums {H l } l∈LynY are algebraically independent. • The polyzetas {ζ(l)} l∈LynX\{x 0 ,x 1 }(resp. LynY \{y 1 }) , are generators of Z. The noncommuting generating series of the polylogarithms is a solution of the differential equation ( 29) with the following boundary condition L(z) z→0 exp(x 0 log z).

(

) 45 
It follows that L is group-like and then H is also group-like, i.e.

∆ ⊔⊔ (L) = L ⊗ L and ∆ (H) = H ⊗ H, ( 46 
)
and we have Theorem 3 Corollary 1 Let z 0 z be a differentiable path on C -{0, 1} such that L admits an analytic continuation along this path. We have S z 0 z = L(z)L(z 0 ) -1 .

L(z) = e x 1 log 1 1-z L reg (z)e x 0 log z and H(N ) = e H 1 (N )
Proof -By Theorem 3, L(z) is group-like. Hence L(z 0 ) is also group-like as is L(z 0 ) -1 . Since the power series L(z)L(z 0 ) -1 and S z 0 z satisfy (29) taking the same value at z 0 then we get the expected result.

Definition 3 We put

Z ⊔⊔ := L reg (1) and Z := H reg (∞).
These two noncommuting generating series Z ⊔⊔ and Z induce the two following regularization morphisms respectively :

Theorem 4 ([18]) Let ζ : (C Y , ) → (R, .
) be the morphism satisfying Theorem 5 ([18]) Let ζ ⊔⊔ : (C X , ⊔⊔ ) → (R, .) be the morphism verifying

• for u, v ∈ Y * , ζ (u v) = ζ (u)ζ (v), • for all convergent words w ∈ Y * -y 1 Y * , ζ (w) = ζ(w), • ζ (y 1 ) = 0.
• for u, v ∈ X * , ζ ⊔⊔ (u⊔⊔v) = ζ ⊔⊔ (u)ζ ⊔⊔ (v), • for all convergent word w ∈ x 0 X * x 1 , ζ ⊔⊔ (w) = ζ(w), • ζ ⊔⊔ (x 0 ) = ζ ⊔⊔ (x 1 ) = 0. Then w∈X * ζ ⊔⊔ (w) w = Z ⊔⊔ .
Corollary 3 ([18]) For any w ∈ Y * , ζ ⊔⊔ (w) belongs to the algebra Z.

Group of associators theorem

Drinfel'd proved that Eqn.(29) admits two particular solutions on the

domain C\] -∞, 0] ∪ [1, +∞[, G 0 (z) z 0 exp[x 0 log(z)] and G 1 (z) z 1 exp[-x 1 log(1 -z)]. (47) 
He also proved that there exists Φ KZ such that

G 0 (z) = G 1 (z)Φ KZ . (48) 
Lê and Murakami expressed the coefficients of the Drinfel'd associator Φ KZ in terms of convergent polyzetas [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF]. Let ρ be the monoid morphism verifying ρ(x 0 ) = -x 1 and ρ(x 1 ) = -x 0 .

We also have [START_REF] Minh | L'algèbre des polylogarithmes par les séries génératrices Proceedings of FPSAC[END_REF] L

(z) = ρ[L(1 -z)]Z ⊔⊔ = e x 0 log z ρ[L reg (1 -z)]e -x 1 log(1-z) Z ⊔⊔ . (50) Thus, 
L(z) z→1 exp(-x 1 log(1 -z)) Z ⊔⊔ . (51) 
It follows from Eqn.(45) and Eqn. (51), with reference [START_REF] Minh | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF], that

Φ KZ = Z ⊔⊔ , (52) 
and it is group-like, i.e.

∆ ⊔⊔ (Φ KZ ) = Φ KZ ⊗ Φ KZ , (53) 
and it can be graded in the adjoint basis [START_REF] Minh | Differential Galois groups and non commutative generating series of polylogarithms[END_REF] as follows

Φ KZ = k≥0 l 1 ,•••,l k ≥0 ζ ⊔⊔ (x 1 x l 1 0 • • • • • x 1 x l k 0 ) k i=0 ad l i x 0 x 1 , (54) 
where, for any l ∈ N and P ∈ C X , • is defined by

x 1 x l 0 • P = x 1 (x l 0 ⊔⊔ P ), (55) 
and ad l x 0 x 1 is the iterated Lie bracket

ad 0 x 0 x 1 = x 1 and ad l x 0 x 1 = [x 0 , ad l-1 x 0 x 1 ]. (56) 
Using the following expansion [START_REF] Bourbaki | Algebra I Chapters[END_REF] ad

n x 0 x 1 = n i=0 i n x n-i 0 x 1 x i 0 , (57) 
one then gets, via the regularization process of Theorem 5, the expression for the Drinfel'd associator Φ KZ given by Lê and Murakami [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF]. Finally, the asymptotic behaviour of L on (51) leads to Proposition 3 ( [START_REF] Minh | Polylogarithms and Shuffle Algebra[END_REF])

S ε 1-ε ε→0 + e -x 1 log ε Z ⊔⊔ e -x 0 log ε .
In other words, Z ⊔⊔ is the regularized Chen generating series S ε 1-ε of differential forms ω 0 and ω 1 : Z ⊔⊔ is the noncommutative generating series of the finite parts of the Chen generating series e x 1 log ε S ε 1-ε e x 0 log ε , the concatenation of e x 0 log ε and then S ε 1-ε and finally, S ε 1-ε . Let {b n,k (t 1 , . . . , t n-k+1 )} n≥k≥1 n∈N + be the Bell polynomials given by the following exponential

generating series 7 ∞ n,k=0 b n,k (t 1 , . . . , t n-k+1 ) v n u k n! = exp u ∞ l=0 t l v l l! . (58) 
We specify the variables {t l } l≥0

t 1 = γ, for l > 1, t l = (-1) l-1 (l -1)!ζ(l), (59) 
then let B(x 1 ) be the following power series

B(x 1 ) = 1 + n≥1 n k=1 b n,k (γ, -ζ(2), 2ζ(3), . . .) (-x 1 ) n n! (60) 
and

B ′ (x 1 ) = e -γ x 1 B(x 1 ). (61) 
We get 7 Compare this expression with the less general Eq.( 5). Here b(n, k) is a refinement by the number of blocks (i.e. k) of Eq.( 5). Thus one has

Bn(X1, X2, • • • Xn) = n k=0 b n,k (X1, . . . , X n-k+1 ) .
Proposition 4 Let Ψ KZ be an element of the quasi-shuffle algebra, (C Y , ), such that

Π X Ψ KZ = B(x 1 )Φ KZ ,
where Π X Ψ KZ is the projection of Ψ KZ over X. Then Ψ KZ is group-like, i.e.

∆ (Ψ KZ ) = Ψ KZ ⊗ Ψ KZ , (62) 
and satisfies

• Ψ KZ | 1 Y * = 1, • Ψ KZ | y 1 = γ, • for any r 1 > 1, Ψ KZ | y r 1 . . . y r k = ζ(r 1 , . . . , r k ), • for any u, v ∈ Y * , Ψ KZ |u v = Ψ KZ |u Ψ KZ |v .
Therefore we obtain, Proposition 5 The noncommutative generating series Ψ KZ can be factorized by Lyndon words as follows

Ψ KZ = e γ y 1 Z .
More generally, we have Proof -Let C ∈ Lie A X . Then, by Proposition 2, L ′ = Le C is solution of (29). Let H ′ be the noncommutative generating series of the Taylor coefficients, belonging to the harmonic algebra, of {(1 -z) -1 L ′ | w } w∈Y * . Then H ′ (N ) is also group-like. By the asymptotic expansion on (51), we get

L ′ (z) ε→1 e -x 1 log(1-z) Z ⊔⊔ e C .
We then put Φ := Z ⊔⊔ e C and deduce that

L ′ (z) 1 -z z→1 Mono(z)Φ and H ′ (N ) N →∞ Const(N )Π Y Φ,
where [START_REF] Minh | Algebraic Combinatoric aspects of asymptotic analysis of nonlinear dynamical systems with singular inputs[END_REF] Mono

(z) = e -(x 1 +1) log(1-z) = k≥0 P y k 1 (z) y k 1 Const = k≥0 H y k 1 y k 1 = exp - k≥1 H y k (-y 1 ) k k .
Let κ w be the constant part of H ′ w (N ). Then,

w∈Y * κ w w = B(y 1 )Π Y Φ.
We now put Ψ := B(y 1 )Π Y (Z ⊔⊔ e C ) (and also Ψ ′ := B ′ (y 1 )Π Y (Z ⊔⊔ e C ). Thus, any associator Φ and its image Ψ, can be determined from the Drinfel'd associator Φ KZ and its image Ψ KZ respectively, by the action of the group of constant Lie exponential series over X. This group is nothing other than the differential Galois group of the differential equation ( 29) and contains in particular [START_REF] Minh | Differential Galois groups and non commutative generating series of polylogarithms[END_REF] the monodromy group of (29) given by [START_REF] Minh | Polylogarithms and Shuffle Algebra[END_REF] M 0 = e 2iπx 0 and M

1 = Φ -1 KZ e -2iπx 1 Φ KZ . ( 63 
)
By Proposition 3, we already saw that Z ⊔⊔ is the concatenation of the Chen generating series [14] e x 0 log ε and then S ε 1-ε and finally, e x 1 log ε :

Z ⊔⊔ ε→0 + e x 1 log ε S ε 1-ε e x 0 log ε . (64) 
From ( 63), the action of the monodromy group gives e x 1 2k 1 iπ Z ⊔⊔ e x 0 2k 0 iπ ε→0 + e x 1 (log ε+2k 1 iπ) S ε 1-ε e x 0 (log ε+2k 0 iπ) (65)

as being the concatenation of the Chen generating series [14] e x 0 (log ε+2k 0 iπ) (along a circular path turning k 0 times around 0), then the Chen generating series S ε 1-ε and finally, the Chen generating series e x 1 (log ε+2k 1 iπ) (along a circular path turning k 1 times around 1). More generally, the action of the Galois differential group of polylogarithms shows that, for any Lie series C, the associator Φ = Z ⊔⊔ e C is the concatenation of some Chen generating series e C and e x 0 log ε ; then the Chen generating series S ε 1-ε and finally, e x 1 log ε :

Φ ε→0 + e x 1 log ε S ε 1-ε e x 0 log ε e C . (66) 
As in the proof of Theorem 6, by construction the associator Φ is then the noncommutative generating series of the finite parts of the coefficients of the Chen generating series S z 0 1-z 0 e C , for z 0 = ε → 0 + .

Lemma 1 Let Φ ∈ dm(A) = {Φ KZ e C | C ∈ Lie A X and e C | ǫ = 1, e C | x 0 = e C | x 1 = 0}. Let Π Y Φ be the projection of Φ over Y . One has Ψ = B(y 1 )Π Y Φ ⇐⇒ Ψ ′ = B ′ (y 1 )Π Y Φ.
In particular,

Ψ KZ = B(y 1 )Π Y Φ KZ ⇐⇒ Ψ ′ KZ = B ′ (y 1 )Π Y Φ KZ .

The route to properties of Euler's γ constant

We have already mentioned that as a remarkable by-product of our extension of the algebraic considerations related to simple quantum mechanics, we are led to algebras involving polyzeta functions. This excursion is not surprising, as it is already well known that evaluations in quantum field theory involve these functions [START_REF] Kreimer | Knots and Feynman Diagrams Cambridge Lecture Notes in Physics CUP[END_REF]. In this context, an important related number is the Euler constant γ. We are thus led to to consider properties of γ. In fact, in this note we arrive at a proposition concerning the rationality of γ. The basis of this result depends on the following conjectures 8 Therefore, if the two preceding conjectures prove to be true, we get the route to a striking result through the complete description of the ideal of relations between polyzetas Statement 4 While Φ describes dm(A), the identities Ψ = B(y 1 )Π Y Φ describe the ideal of polynomial relations of coefficients in A of the convergent polyzetas.

Moreover, if the Euler constant γ does not belong to A then these relations are algebraically independent of γ.

Statement 5 If γ /

∈ A then γ / ∈ Ā.

With A = Q, it follows immediately that Statement 6 γ is not an algebraic irrational number.

Statement 7 γ is a rational number.

Proof -Since γ satisfies t 2 -γ 2 = 0 then γ is algebraic over A = Q(γ 2 ). If γ is transcendental then γ / ∈ A = Q(γ 2 ). Using Corollary 5, with A = Q(γ 2 ), γ is not algebraic over A = Q(γ 2 ). This contradicts the previous assertion. Thus, by Corollary 6, it is established that γ is rational over Q. 

Fig 1 .-

 1 Fig 1. -Diagram from P 1 , P 2 (set partitions of [1 • • • 11]). P 1 = {{2, 3, 5}, {1, 4, 6, 7, 8}, {9, 10, 11}} and P 2 = {{1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11}} (respectively black spots for P 1 and white spots for P 2 ).

Definition 2

 2 We put L(z) := w∈X * Li w (z) w and H(N ) := w∈Y * H w (N ) w.

y 1 H 1 el∈LynY,l =y 1 e

 111 reg (N ), where, denoting by { l} LynX (resp. { l} LynY ) the dual basis of LynX (resp. LynY ), L reg (z) := ց l∈LynX,l =x 0 ,x Li l (z) l and H reg (N ) := ր H l (N ) l.

  Then w∈X * ζ (w) w = Z . Corollary 2 ([18]) For any w ∈ X * , ζ (w) belongs to the algebra Z.

Theorem 6

 6 Let A be a commutative Q-algebra. For any Φ ∈ A X and Ψ ∈ A Y such that Π X Ψ = B(x 1 )Φ, there exists a unique C ∈ Lie A X with coefficients in A such that Φ = Φ KZ e C and Ψ = B(y 1 )Π Y (Φ KZ e C ),where Π Y (Φ KZ e C ) is the projection of Φ KZ e C over Y .

Conjecture 1 Conjecture 2

 12 Let Φ ∈ dm(A) and Ψ ′ = B ′ (y 1 )Π Y Φ. The local coordinates (of the second kind) of Φ (resp. Ψ ′ ), in the Lyndon-PBW basis, are polynomials of generators {ζ(l)} l∈LynX -{x 0 , x 1 } (resp. {ζ(l)} l∈LynY -{y 1 }) of Z. While C describes Lie A X , these local coordinates describe A[{ζ(l)} l∈LynX -{x 0 , x 1 }] (resp. A[{ζ(l)} l∈LynY -{y 1 }]). For any Φ ∈ dm(A), by identifying the local coordinates (of the second kind) on two members of the identities Ψ = B(y 1 )Π Y Φ, or equivalently on Ψ ′ = B ′ (y 1 )Π Y Φ, we get polynomial relations with coefficients in A of the convergent polyzetas.

8 . 8 =y 1 e=y 1 eStatement 9

 88119 Structure of polyzetasLet Φ ∈ dm(A) and let Ψ = B ′ (y 1 )Π Y Φ. We introduce two algebra morphisms φ : (A X , ⊔⊔ ) ) = 1 and φ(x 0 ) = φ(x 1 ) = 0, (69) ψ(ǫ) = 1 and ψ(y 1 ) these factorizations of the monoids by Lyndon words, we getStatement For any Φ ∈ dm(A), let Ψ = B ′ (y 1 )Π Y Φ. Then ց l∈LynX l =x 0 ,x 1 e φ(l) l = e ψ(l) l.In particular, if Φ = Z ⊔⊔ and Ψ = Z thenց l∈LynX l =x 0 ,x 1 e ζ(l) l = e ζ(l) l. Since ∀l ∈ LynY ⇐⇒ Π X l ∈ LynX \ {x 0 } (73)then identifying the local coordinates, we get polynomial relations among the generators which are algebraically independent of γ.For ℓ ∈ LynY -{y 1 } (resp. LynX -{x 0 , x 1 }), let P ℓ ∈ Lie Q X (resp. Lie Q Y ) be the decomposition of the polynomial Π X l ∈ Q X (resp. Π Y l ∈ Q Y ) in the Lyndon-PBW basis { l} l∈LynX (resp. { l} l∈LynY ) and let Pℓ ∈ Q[LynX -{x 0 , x 1 }] (resp. Q[LynY -{y 1 }]) be its dual. Then one obtainsΠ X ℓ -Pℓ ∈ ker φ (resp. Π Y ℓ -Pℓ ∈ ker ψ).In particular, for φ = ζ (resp. ψ = ζ) then one also obtainsΠ X ℓ -Pℓ ∈ ker ζ (resp. Π Y ℓ -Pℓ ∈ ker ζ).Moreover, for any ℓ ∈ LynY -{y 1 } (resp. LynX -{x 0 , x 1 }), the polynomialΠ Y ℓ -Pℓ ∈ Q Y (resp. Q X ) is homogenous of degree equal to | ℓ |> 1.Statement 10 (Structure of polyzetas) The Q-algebra generated by convergent polyzetas is isomorphic to the graded algebra(Q ⊕ (Y -y 1 )Q Y / ker ζ, ).Proof -Since ker ζ is an ideal generated by the homogenous polynomials then the quotientQ ⊕ (Y -y 1 )Q Y / ker ζ is graded.Statement 11The Q-algebra of polyzetas is freely generated by irreducible polyzetas.Proof -For any λ ∈ LynY , if λ = Pλ then one obtains the conclusion otherwise Π X λ -Pλ ∈ ker ζ. Since Pλ ∈ Q[LynX] then Pλ is polynomial in Lyndon words of degree less than or equal to |λ|. Since each Lyndon word does appear in this decomposition of Pλ , after applying Π Y , we may repeat the same process until we obtain irreducible polyzetas.
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Named after the mathematician and science fiction author Eric Temple Bell (1883, Scotland, to 1960, US).

At this stage, it is only a graded bialgebra but, as it is graded and of finite dimension, a general theorem states that an antipode exists; (see[START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF] formula[START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF] for an explicit formula of this antimorphism).

Associative Algebra with Unit: Here they are, moreover, Hopf algebras[START_REF] Hoffman | Quasi-shuffle products[END_REF] but we will not need this here.

Here, γ stands for the Euler constant γ = .5772156649015328606065120900824024310421593359399235988057672348848677 . . .