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Benjamin FAVETTO

November 16, 2010

Abstract
In this article, general estimating functions for ergodic diffusions sam-
pled at high frequency with noisy observations are presented. The the-
ory is formulated in term of approximate martingale estimating func-
tions based on local means of the observations, and simple conditions
are given for rate optimality. The estimation of diffusion parameter is
faster that the estimation of drift parameter, and the rate of conver-
gence in the Central Limit Theorem is classical for the drift parameter
but not classical for the diffusion parameter. The link with specific
minimum contrast estimators is established, as an example.

Key Words: estimating functions, diffusion process, parametric inference,
discrete time noisy observations, central limit theorem

1 Introduction

The aim of this article is to study estimating functions based on the ob-
servations of a noisy discretely observed one-dimensional diffusion inspired
by Sørensen (2009). A one-dimensional diffusion process (Xt) is considered,
solution of the stochastic differential equation

dXt = b(Xt, κ)dt+ σ(Xt, λ)dBt, X0 = η (1)

where (Bt)t≥0 is a standard Brownian motion and η is a real valued random
variable independent of B. The functions b(x, κ) and σ(x, λ) are respectively
defined on R×Θ1 and R×Θ2 where Θ1 (resp. Θ2) is a compact convex subset
of Rd1 (resp. Rd2). For sake of simplicity, in the proofs, we assume that
d1 = d2 = 1. The true value of the parameter is denoted by θ0 = (κ0, λ0)

and θ0 ∈
◦
Θ, where Θ = Θ1 × Θ2 a product of compact subsets. The

expectation under the probability distribution Pθ is denoted Eθ, for θ ∈ Θ,
and Eθ0 for the expectation under the probability distribution Pθ0 .

At time ti = iδN , i = 0, . . . , N , with δN the sampling time, the observa-
tion YiδN is given by

YiδN = XiδN + ρNεiδN (2)
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where ρN is the standard deviation of the observation noise, and (εiδN )
is a sequence of independent and identically distributed centered random
variables, independent of the diffusion (Xt), with unitary variance. Two
cases are considered for the standard deviation of the observation noise: in
the first case, denoted as (B1), ρN = ρ > 0 is constant, whereas in the
second case (B2), ρN → 0 as N → ∞. Moreover, in the sequel, ρN is
assumed to be known.

In Favetto (2010), minimum contrast estimators based on local means
of the (YiδN ) have been studied: dividing the N observations into kN blocks
of pN observations, such that N = pNkN , and setting ∆N = pNδN , the
local mean on the jth block (starting at time j∆N and finishing at time
(j + 1)∆N − δN = j∆N + (pN − 1)δN ) is

Y j
• =

1
pN

pN−1∑
i=0

Yj∆N+iδN ,

with the asymptotic framework: N → ∞, δN → 0, tN = NδN = kN∆N →
∞ (high frequency sampling.) Moreover, the discretization step size and the
number of observations in one block are linked by δN = p−αN , where α ∈ (1, 2]
is the local mean size parameter, which has to be tuned in practice. The case
α = 2 is specific because the variance ρ2

N has to be taken into account in
the results (see Favetto (2010) for a discussion on α based on simulations).

Our focus is on approximate martingale estimating functions based on
the (Y j

• ). An exhaustive review on estimating functions for diffusion pro-
cesses can be found in Sørensen (2010). The estimating functions GN,α
considered here depend on α ∈ (1, 2] and they are given by

GN,α(θ) =
kN−2∑
j=1

gα(δN , Y j+1
• − Y j

• , Y
j−1
• ; θ, ρN ) (3)

where the function gα(δ, y, x; θ, ρ), valued in R2, is such that GN,α is ap-
proximately a martingale estimating function. Hence, the aim of this paper
is to prove that the estimator θ̂N given as the solution of GN,α(θ̂N ) = 0 is
consistent and asymptotically Gaussian. Notice the lag in (3) that must be
introduced as (Y j

• ) is not Markov.
The case of martingale estimating functions for discrete observations

of diffusion processes has been treated in Bibby and Sørensen (1995), and
the case of estimating functions that do not have the martingale property
has been treated in Kessler (2000), with a fixed sampling time ∆. Kessler
and Sørensen (1999) introduce martingale estimating functions based on
the eigenfunctions of the infinitesimal generator of the diffusion. Sørensen
(2009) focuses on the high-frequency asymptotics for an ergodic diffusion.

The article is organized as follows: Section 2 is devoted to the presenta-
tion of the model and the assuptions, which are closed to those presented in
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Favetto (2010). Section 3 contains the main results for the convergence in
distribution of the variation and the quadratic variation of the local means,
and the result of asymptotic normality for the estimators associated to the
estimating functions. Section 4 is devoted to the examples, some concluding
remarks are given in Section 5 and the proofs are gathered in Section 6.

2 Model and Assumptions

Consider the one-dimensional stochastic differential equation

dXt = b(Xt, κ0)dt+ σ(Xt, λ0)dBt, X0 = η (4)

where B is a standard Brownian motion, θ0 = (κ0, λ0) is the true value of
the parameter, and η is a real valued random variable independent of B.

From now on, we set b(x) = b(x, κ0) and σ(x) = σ(x, λ0) and make clas-
sical assumptions on functions b and σ ensuring that (4) admits an unique
strong solution (Xt)t≥0, defined on a probability space (Ω,F ,P), and that
this solution is positive recurrent on R.

(A1) Functions b and σ belong to C2(R), σ(x) > 0 for all x, and there exists
c > 0 such that for all x ∈ R:

|b(x)|+ |b′(x)|+ |b′′(x)| ≤ c(1 + |x|),
σ(x) + |σ′(x)|+ |σ′′(x)| ≤ c(1 + |x|).

(A2) For x0 ∈ R, let s(x) = exp(−2
∫ x
x0

b(u)
σ2(u)

du) denote the scale den-
sity and m(x) = 1

σ2(x)s(x)
the speed density. Assume

∫
−∞ s(x)dx =∫ +∞

s(x)dx =∞ and
∫ +∞
−∞ m(x)dx = M <∞.

(A3) Let ν0(dx) = 1
Mm(x)dx. For all k > 0, ν0 admits a finite moment of

order k.

(A4) For all k > 0, supt≥0 E(|Xt|k) <∞.

(A5) The common distribution of the random variables εiδN admits a 8th
order moment, and is symmetric.

Assumption (A1) implies that (4) admits a unique strong solution on
R. Under (A1) and (A2), ν0 is the unique invariant probability of (4) and
(Xt) is ergodic.

Furthermore, Assumptions (A1)-(A3) imply (A4) if η has distribution
ν0 or η is deterministic (for the latter case, see Gloter (2006), Proposition
3).

Conditions on the function gα for optimality are stated now. The two
components of gα are denote by (g1,α, g2,α)T , and we assume that gα(δ, y, x; θ, ρ)
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satisfies the conditions of Sørensen (2009) recalled below. First, the condi-
tion for rate optimality is

∂yg2,α(0, 0, x; θ, ρ) = 0 (5)

for all x ∈ R, all ρ > 0 and all θ ∈ Θ, where ∂yg2,α(0, 0, x; θ, ρ) = 0 means
∂yg2,α(0, y, x; θ, ρ) = 0 evaluated at y = 0. This condition is also called
Jacobsen’s condition in Sørensen (2009), and corresponds to one of the con-
ditions obtained in Jacobsen (2002).

For directly observed diffusion models, rate optimality is important be-
cause the diffusion coefficient parameter can be estimated at a higher rate
than the drift parameter, and this result remains true for a diffusion observed
with a noise.

Setting c(x, λ) = σ(x, λ)2, the second Jacobsen condition is

∂yg1,α(0, 0, x; θ, ρ) =
∂κb(x, κ)
c(x, λ)

and ∂2
y2g2,α(0, 0, x; θ, ρ) =

∂λc(x, λ)
c(x, λ)2

(6)

for all x ∈ R, all ρ > 0 and all θ ∈ Θ. In Sørensen (2009), this condition
ensures the efficiency of the estimators in the case of direct observations of
an ergodic diffusion.

The class Cp1,p2,p3(R+×R2×Θ×R+) is defined as the set of real functions
f(t, y, x; θ, ρ) satisfying

1. f is p1 times continuously differentiable in t, p2 times continuously
differentiable in y and p3 continuously differentiable in κ and λ ;

2. f and all partial derivatives of f are of polynomial growth uniformly
for θ ∈ Θ.

The class Cp1,p2,p3(R2×Θ×R+) is defined in an similar way for functions
f(y, x; θ, ρ). A function f(y, x; θ, ρ) is said to be of polynomial growth in y
and x uniformly for θ ∈ Θ (recall that Θ is assumed to be a compact subset
of R2) if there exists a constant c > 0 such that, for all x, y ∈ R and all
ρ > 0,

sup
θ∈Θ
|f(y, x, ; θ, ρ)| ≤ c(1 + |x|c + |y|c).

From now on, R(δ, y, x; θ, ρ) denotes a generic function such that

|R(δ, y, x; θ, ρ)| ≤ F (y, x; θ, ρ)

with F of polynomial growth in y,x and ρ, uniformly in θ. The function gα
is assumed to belong to the class C1,3,2 in the sequel.

LetHNj be the σ-field defined byHNj = σ(Xs, 0 ≤ s ≤ j∆N )∨σ(εiδN , iδN ≤
(j − 1)∆N + (pN − 1)δN ), such that Y j

• is HNj+1 measurable.
The function g(δ, y, x; θ, ρ) is assumed to satisfy the following condition

(D)
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1. For all θ ∈ Θ,

Eθ(g(δN , Y j+1
• − Y j

• , Y
j−1
• ; θ, ρN )|HNj ) = δ

2− 2
α

N R(δN , Y j−1
• , Xj∆N

; θ, ρN )
= ∆2

NR(δN , Y j−1
• , Xj∆N

; θ, ρN ),

2. The function g(δ, y, x; θ, ρ) has an expansion in power of δ: there exist
functions g(1) and g(α) such that

(a) if α ∈ (1, 3
2 ] or α = 2, the expansion is

g(δ, y, x; θ, ρ) = g(0, y, x; θ, ρ)+δ1− 1
α g(1)(y, x; θ, ρ)+δ2− 2

αR(δ, y, x; θ, ρ);

(b) if α ∈ (3
2 , 2), the expansion is

g(δ, y, x; θ, ρ) = g(0, y, x; θ, ρ) + δ1− 1
α g(1)(y, x; θ, ρ)

+δ
1
α g(α)(y, x; θ, ρ) + δ2− 2

αR(δ, y, x; θ, ρ)

with R(∆, y, x; θ, ρ) a generic remainder dominated by a function of
polynomial growth in y and x, uniformly in θ. (Remind that δN = p−αN ,

hence ∆N = pNδN = p1−α
N = δ

1− 1
α

N , for a given α ∈ (1, 2].)

The condition on the expansion has to be precised: for α ∈ (1, 3
2 ], the

inequality 1
α ≥ 2− 2

α holds, and for α = 2, we have 1− 1
α = 1

α , whereas for

α ∈ (3
2 , 2), the inequality 2− 2

α <
1
α < 1− 1

α holds. Notice that δ
1− 1

α
N = ∆N

and δ
1
α
N = ∆

1
α−1

N , this term is needed to take into account the noise.
Finally, for any non-singular matrix MN , the estimating functions GN,α

and MNGN,α give the same estimator, and the matrix MN may depends
on δN . Therefore, a given version of an estimating function may not satisfy
the above condition, but the point is that one version, up to a matrix MN

must exist and satisfy this condition. For example, it may be necessary to

multiply one of the coordinates by ∆N = δ
1− 1

α
N .

3 Rate-optimal estimating functions for local means

In this section, asymptotic results are proved for approximate martingale
estimating functions based on local means. In particular, it is shown that
the estimator of the parameter in the diffusion coefficient converges in dis-
tribution faster than the estimator of the parameter in the drift coefficient.

The infinitesimal generator of the diffusion (Xt) is

Lθ = b(x, κ)
d

dx
+

1
2
c(x, λ)

d2

dx2
.
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For a function h(y, x) of two variables, Lθh is defined by

Lθ(h(δ, θ′, ρ))(y, x) = b(x, κ)∂yh(δ, y, x; θ′, ρ) +
1
2
c(x, λ)∂2

y2h(δ, y, x; θ′, ρ).

The modified generator is also introduced as

L̄θ = b(x, κ)
d

dx
+

1
3
c(x, λ)

d2

dx2

= Lθ − Cθ

with Cθ = 1
6c(x, λ) d2

dx2 . Indeed, it comes from Proposition 2 (proved in
Favetto (2010) and recalled in the Appendix) that, for f a twice contin-
uously differentiable real function with bounded second derivative, with

∆N = pNδN = δ
1− 1

α
N ,

Eθ0(f(Y j+1
• − Y j

• )|HNj ) = f(0) + f ′(0)Eθ0(Y j+1
• − Y j

• |HNj )

+
1
2
f ′′(0)Eθ0((Y j+1

• − Y j
• )2|HNj ) + ∆NoP (1)

= f(0) + ∆N (f ′(0)b(Xj∆N
, κ0) +

1
3
f ′′(0)c(Xj∆N

, λ0))

+∆
1

α−1

N f ′′(0)ρ2
N + ∆NoP (1)

by Taylor’s formula.
The following lemma provides an useful identity for the next computa-

tions.

Lemma 1. Under Condition (D), for all x ∈ R, all θ ∈ Θ and all ρ > 0

g(0, 0, x; θ, ρ) = 0,
g(1)(0, x; θ, ρ) = −L̄θ(g(0, θ, ρ)(0, x) if α ∈ (1, 2),

g(α)(0, x; θ, ρ) = −ρ2∂2
y2g(0, 0, x; θ, ρ) if

3
2
< α < 2,

g(1)(0, x; θ, ρ) = −L̄θ(g(0, θ, ρ)(0, x)− ρ2∂2
y2g(0, 0, x, θ, ρ) if α = 2.

Remark. This lemma has to be compared with the result in Sørensen
(2009), when the diffusion is directly observed. For α ∈ (1, 2), the result on
g(1) is the same except that it involves L̄θ in place of Lθ. For α ∈ (3

2 , 2), the
rate of sampling has to be taken into account, by the additional term g(α)

which contains the variance ρ2 of the observation noise. In the case α = 2,
the time-step of a block of observations is ∆N = p−1

N and an additional term
is needed in g(1).

Setting ρ∞ = limN→∞ ρN , two cases are distinguished for the limit the-
orems: for the first one, Assumption (B1) holds, or Assumption (B2) when
α ∈ (1, 2), or α = 2 and ρ∞ = 0, and in this case, the variance of the noise
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does not appear in the limit theorems. For the second case, Assumption
(B1) holds with α = 2, and ρ2

∞ = ρ2 > 0 appears in the limit theorems.
Let γ(θ, θ0, ρ∞) be defined as

γ(θ, θ0, ρ∞) = ν0((b(., κ0)− b(., κ))∂yg(0, 0, .; θ, ρ∞)) (7)

+
1
3
ν0((c(., λ0)− c(., λ))∂2

y2g(0, 0, .; θ, ρ∞)),

and the matrix

Āθ(., ρ) =

(
∂κb(., κ)∂yg1(0, 0, .; θ, ρ) 1

3∂λc(., λ)∂2
y2g1(0, 0, .; θ, ρ)

∂κb(., κ)∂yg2(0, 0, .; θ, ρ) 1
3∂λc(., λ)∂2

y2g2(0, 0, .; θ, ρ)

)
.

Notice that Āθ(x, ρ) = ∂θL̄θ(g(0, θ, ρ))(0, x) = ∂θLθ(g(0, θ, ρ))(0, x)−∂θCθ(g(0, θ, ρ))(0, x).
Setting S = ν0(Aθ0(., ρ∞)), the following identity holds

∂θg
(1)(0, x; θ, ρ) = −∂θLθ(g(0, θ, ρ))(0, x)− Lθ(∂θg(0, θ, ρ))(0, x)

+∂θCθ(g(0, θ, ρ))(0, x) + Cθ(∂θg(0, θ, ρ))(0, x).

With φ(θ, θ0, ρ∞) defined by

φ(θ, θ0, ρ∞) = ν0(L̄θ0(∂θg(0; θ, ρ∞))(0, .)−L̄θ(∂θg(0; θ, ρ∞))(0, .))−ν0(Āθ(., ρ∞)),

and ∂θg the matrix of partial derivatives with respect to κ and λ, the fol-
lowing lemma contains the main statements for convergence in probability
results (under Pθ0).

Lemma 2. Under Assumptions (A1)-(A5), for a local mean size parameter
α ∈ (1, 2] and Assumption (B1) or (B2),

1
kN∆N

kN−2∑
j=1

g(∆N , Y
j+1
• − Y j

• , Y
j−1
• ; θ, ρN )

Pθ0−→ γ(θ, θ0, ρ∞), (8)

1
kN∆N

kN−2∑
j=1

∂θg(∆N , Y
j+1
• − Y j

• , Y
j−1
• ; θ, ρN )

Pθ0−→ φ(θ, θ0, ρ∞) (9)

uniformly in θ ∈ Θ.

Recall that, with b(.) = b(., κ0), for a function f = f(., θ0), the empirical
mean ν̄N (f), the variation ĪN (f) and the quadratic variation Q̄N (f) of the
local means of the observations are defined by

ν̄N (f) =
1
kN

kN−1∑
j=0

f(Y j
• ),

ĪN (f) =
1

kN∆N

kN−2∑
j=1

f(Y j−1
• )(Y j+1

• − Y j
• −∆Nb(Y j−1

• )),

Q̄N (f) =
1

kN∆N

kN−2∑
j=1

f(Y j−1
• )(Y j+1

• − Y j
• )2.

7



The convergence in distribution of the functionals ĪN and Q̄N , which
are useful to study the asymptotic normality of the estimator θ̂N , is now
precised.

Theorem 1. Assume (A1)-(A5) and (B1) or (B2). If α ∈ (1, 2] and

Nδ
3− 2

α
N → 0, then √

NδN ĪN (f) L−→ N (0, ν0(f2σ2)).

A comment has to be done about the assumption Nδ
3− 2

α
N → 0: when

the diffusion is directly observed at time iδN , a similar result holds under
the condition Nδ2

N → 0. Here, the condition kN∆3
N → 0 is needed, and

kN∆3
N = Nδ

3− 2
α

N . When α = 2, the usual condition Nδ2
N → 0 is obtained,

but when α ∈ (1, 2), a stronger assumption is needed on the sampling rate
than if the discretized diffusion process were observed directly.

The convergence in distribution for the quadratic variation is precised
below.

Theorem 2. Assume (A1)-(A5), and Nδ
2− 1

α
N → 0.

• If (B1) or (B2) with α ∈ (1, 2) or α = 2 and (B2) (ρN → 0), then√
Nδ

1
α
N (Q̄N (f)− ν̄N (f(

2
3
σ2 + 2ρ2

N∆
2−α
α−1

N ))) L−→ N (0, ν0(f2σ4));

• If α = 2 and (B1) (ρN = ρ) , then√
Nδ

1
α
N

(
Q̄N (f)− ν̄N

(
f

(
2
3
σ2 + 2ρ2

)))
L−→ N (0, ν0(f2(σ4+4σ2ρ2+12ρ4)).

In this second theorem, the condition Nδ
2− 1

α
N = kN∆2

N → 0 is needed.

This is more stringent that Nδ
2− 2

α
N → 0: Nδ

3
2
N → 0 is needed in the case

α = 2, for example. Moreover, a distinction has to be done in the case
α = 2, ρN = ρ, because the variance of the observation noise ρ2 appears in
the asymptotic variance, which is increased significantly. Notice also that the

rate kN = Nδ
1
α
N is not classical : when the diffusion is directly observed, the

usual rate of convergence for a similar central limit theorem is N , whereas

here it is slower. That explains why the condition Nδ
2− 1

α
N is more stringent

in the case of diffusions observed with noise.
And there is the multivariate version of the two last theorems.

Theorem 3. Assume (A1)-(A5), and Nδ
2− 1

α
N → 0. Then, for f a function

which satisfies (C1), and α ∈ (1, 2],
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 √
NδN ĪN (f)√

Nδ
1
α

N

(
Q̄N (f)− ν̄N

(
f

(
2
3σ

2 + 2∆
2−α
α−1
N ρ2

N

)))  L−→ N2

((
0
0

)
,

(
W1(f) 0

0 W2(f)

))
(10)

with, in the case α ∈ (1, 2) and (B1) or (B2), or in the case α = 2 with
(B2),

W1(f) = ν0(f2σ2) and W2(f) = ν0(f2σ4)

and in the case α = 2, with (B1),

W1(f) = ν0(f2σ2) and W2(f) = ν0(f2(σ4 + 4ρ2σ2 + 12ρ4)).

For the applications, the following corollary is needed.

Corollary 1. Assume (A1)-(A5), Nδ
2− 1

α
N → 0 for an α ∈ (1, 2]. Consider

a sequence of functions fN (x, θ) and a function f(x, θ) satisfying (C1), a
sequence vN → 0 such that, for all x,

sup
θ∈Θ
|fN (x, θ)− f(x, θ)| ≤ vN (1 + |x|),

then √
NδN ĪN (fN )√

Nδ
1
α

N

(
Q̄N (fN )− ν̄N

(
fN

(
2
3σ

2 + 2∆
2−α
α−1
N ρ2

N

)))  L−→ N2

((
0
0

)
,

(
W1(f) 0

0 W2(f)

))
.

(11)

The main theorem about the estimation of θ0 = (κ0, λ0) and the asymp-
totic behaviour of the estimator θ̂N = (κ̂N , λ̂N ) is derived from the latter
results.

With the rate optimality condition and the second Jacobsen’s condition,
the Central Limit Theorem gives the optimal rate of convergence for the
estimator of the parameter involved in the diffusion coefficent.

Theorem 4. Assume (A1)-(A5), (D), and that the following identifiability
condition{

ν0((b(., κ0)− b(., κ))∂yg1(0, 0, .; θ, ρ∞)) 6= 0 for κ 6= κ0

ν0((c(., λ0)− c(., λ0))∂2
y2g2(0, 0, .; θ, ρ∞)) 6= 0 for λ 6= λ0

is satisfied. Define S = ν0(Aθ0(., ρ∞)). Assume that S is invertible, S1,1 6=
0, S2,2 6= 0, and ∂κ∂

2
y2g2(0, 0, x; θ, ρ) = 0 for all θ, x and ρ, then there

exists a consistent estimator θ̂N solution of GN,α(θ̂N ) = 0, is unique with a
probability that goes to one as N →∞, and asymptotically Gaussian:( √

NδN (κ̂N − κ0)√
Nδ

1
α
N (λ̂N − λ0)

)
L−→ N

02,

 W1(∂yg1(0,0,.;θ0,ρ∞))

S2
1,1

0

0
W2(∂2

y2
g2(0,0,.;θ0,ρ∞))

4S2
2,2


(12)

as N →∞, with NδN →∞ and Nδ
2− 1

α
N → 0.
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The assumption Nδ
2− 1

α
N in this theorem corresponds to kN∆2

N → 0. In
the case of direct observations, the usual condition is Nδ2

N → 0 (see e.g.
Sørensen (2009)).

One of the main differences between the estimating functions built on
the local means (Y j

• ) and those built on the direct observations (Xj∆N
)

is that the approximation Y j+1
• − Y j

• is HNj+2 measurable and involves the
random variables ζj+1,N and ζ ′j+2,N (see the Appendix) which have an MA(1)
structure, whereas the approximation X(j+1)∆N

−Xj∆N
involves the random

variable B(j+1)∆N
− Bj∆N

and is GNj+1 measurable. To avoid cumbersome
correlations between Y j

• and Y j+1
• , the estimating function for λ0

HN,α(θ) =
1

kN∆N

kN−2∑
j=1

g2,α(δN , Y 3j+1
• − Y 3j

• , Y 3j−1
• ; θ, ρN ), (13)

is considered, for a sample XiδN , i = 0, . . . , 3N of size 3N + 1 in place of
N + 1, with N = pNkN . The results of uniform convergence in probability
under Pθ0 remain valid:

HN,α(θ) =
1
3
ν0((c(., λ0)− c(., λ))∂2

y2g2(0, 0, .; θ, ρ∞)) + oP (1),

∂θHN,α(θ) = ν0(L̄θ0(g2(0, θ, ρ∞))− L̄θ(g2(0, θ, ρ∞)))

−1
3
ν0(∂λc(., λ)∂2

y2g2(0, 0, .; θ, ρ∞)) + oP (1)

uniformly in θ ∈ Θ. But for the convergence in distribution, the asymptotic
variance decreases.

Theorem 5. Assume that Nδ
2− 1

α
N → 0. Under (A1)-(A5), for a function

f satisfying Condition (C1),

√
Nδ

1
α

N

 1
kN∆N

kN−2∑
j=1

f(Y 3j−1
• )(Y 3j+1

• − Y 3j
• )2

− 1
kN

kN−2∑
j=0

f(Y 3j
• )(

2
3
σ(Y 3j
• )2 + 2ρ2

N∆
2−α
α−1
N )

 L−→ N (0,W3(f))

where W3(f) = 8
9ν0(f2σ4) if α ∈ (1, 2) and (B1) or (B2), or α = 2 and

(B2), and W3(f) = ν0(f2(8
9σ

4 + 8ρ4)) if α = 2 and (B1).

Then, with an estimator λ̂N of λ0 based on the estimating function HN,α

and a sample of size 3N + 1, the estimator λ̂N is consistent and asymptoti-
cally Gaussian:√

Nδ
1
α
N (λ̂N − λ0) L−→ N

(
0,
W3(∂2

y2g2(0, 0, .; θ0, ρ∞))

4S2
2,2

)
(14)

10



as N →∞, with NδN →∞ and Nδ
2− 1

α
N → 0.

Then, for α ∈ (1, 2), the estimator of λ0 based on the estimating function
HN,α has a better asymptotic variance. If the second Jacobsen’s condition
holds, the asymptotic variance is

W3(∂2
y2g2(0, 0, .; θ0, ρ∞))

4S2
2,2

= 2
{
ν0

(
(∂λc(., λ0))2

c(., λ0)2

)}−1

.

This is the same asymptotic variance as in the case of direct observations of
the diffusion, and the estimator is efficient.

4 Applications and examples

The main application of these results about estimating functions is the
asymptotic normality of the minimum contrast estimators built in Favetto
(2010).

Consider the contrast

EN (θ) =
kN−2∑
j=1

{
3

2∆N

(Y j+1
• − Y j

• −∆Nb(Y
j−1
• , κ))2

cN (Y j−1
• , λ)

+ log(cN (Y j−1
• , λ))

}
(15)

where cN (., λ) = c(., λ) + 3ρ2
N∆

2−α
α−1

N . Then

∂

∂κ
EN (θ0) = −3

kN−2∑
j=1

(
∂κb(Y

j−1
• , κ0)

cN (Y j−1
• , λ0)

(
Y j+1
• − Y j

• −∆Nb(Y j−1
• , κ0)

))
,

∂

∂λ
EN (θ0) = −

kN−2∑
j=1

(
∂λc(Y

j−1
• , λ0)

cN (Y j−1
• , λ0)2

)
3

2∆N
(Y j+1
• − Y j

• −∆Nb(Y j−1
• , λ0))2

+
kN−2∑
j=1

(
∂λc(Y

j−1
• , λ0)

cN (Y j−1
• , λ0)2

)
(c(Y j−1

• , λ0) + 3∆
2−α
α−1

N ).

Hence, for α ∈ (1, 2], the associated estimating function GN,α(θ) is de-
fined by

GN,α(θ) =
1

kN∆N


kN−2∑
j=1

∂κb(Y
j−1
• , κ)

cN (Y j−1
• , λ)

(
Y j+1
• − Y j• −∆Nb(Y

j−1
• , κ)

)
kN−2∑
j=1

∂λc(Y
j−1
• , λ)

cN (Y j−1
• , λ)2

(
1

2
(Y j+1
• − Y j• −∆Nb(Y

j−1
• , κ))2 − ∆N

3
c(Y j−1
• , λ)−∆

1
α−1
N ρ2

N

)


with ∆N = δ
1− 1

α
N .

Setting cρ(x, λ) = c(x, λ) if 1 < α < 2 and cρ(x, λ) = c(x, λ) + 3ρ2 if

α = 2, as |cN (x, λ)−cρ(x, λ)| ≤ 3∆
2−α
α−1

N ρN if α ∈ (1, 2) or α = 2 and ρN → 0,

11



and vanishes if α = 2 and ρN = ρ, let G?N,α(θ) be the estimating function
defined by

G?N,α(θ) =
1

kN∆N


kN−2∑
j=1

∂κb(Y
j−1
• , κ)

cρ(Y
j−1
• , λ)

(
Y j+1
• − Y j• −∆Nb(Y

j−1
• , κ)

)
kN−2∑
j=1

∂λc(Y
j−1
• , λ)

cρ(Y
j−1
• , λ)2

(
1

2
(Y j+1
• − Y j• −∆Nb(Y

j−1
• , κ))2 − ∆N

3
c(Y j−1
• , λ)−∆

1
α−1
N ρ2

N

)


This definition is justified by Corollary 1. The estimator θ̂N is defined by
G?N,α(θ̂N ) = 0.

Setting

g1,α(δ, y, x; θ, ρ) =
∂κb(x, κ)
cρ(x, λ)

(y − δ1− 1
α b(x, κ)),

g2,α(δ, y, x; θ, ρ) =
∂λc(x, κ)
cρ(x, λ)2

{
1
2

(y − δ1− 1
α b(x, κ))2 − δ1− 1

3

3
c(x, λ)− δ

1
α ρ2

}
,

we have

g
(1)
1,α(y, x; θ, ρ) = −∂κb(x, κ)

cρ(x, λ)
b(x, κ),

g
(1)
2,α(y, x; θ, ρ) = −1

3
c(x, λ)

∂λc(x, λ)
cρ(x, λ)2

− yb(x, κ) if 1 < α < 2,

= −1
3
cρ(x, λ)

∂λc(x, λ)
cρ(x, λ)2

− yb(x, κ) if α = 2,

g
(α)
1,α(y, x; θ, ρ) = 0,

g
(α)
2,α(y, x; θ, ρ) = −ρ2∂λc(x, λ)

cρ(x, λ)2

and g(α) is only needed if α ∈ (3
2 , 2]. Otherwise, δ

1
α
N = O(δ

2− 2
α

N ).
The estimating function G?N,α satisfies the rate optimality condition:

∂yg2,α(0, 0, x; θ, ρ) = 0

and the second Jacobsen condition if cρ = c, i.e. if α ∈ (1, 2) or if α = 2 and
(B2). Hence, in this case, the following result holds.

Theorem 6. Assume that α ∈ (1, 2) and (B1) or (B2), or α = 2 and (B2).
Then the estimator θ̂N = (κN , λN ) defined by G?N,α(θ̂N ) = 0 is consistent,
and asymptotically Gaussian:( √

NδN (κ̂N − κ0)√
Nδ

1
α
N (λ̂N − λ0)

)
L−→ N

0,

 {
ν0

(
(∂κb(.,κ0))2

c(.,λ0)

)}−1
0

0 9
4

{
ν0

(
(∂λc(.,λ0))2

c(.,λ0)2

)}−1


as N →∞, with NδN →∞ and Nδ

2− 1
α

N → 0.
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In the case α = 2 and ρN = ρ, with cρ(x, λ) = c(x, λ) + 3ρ2, the second
Jacobsen’s condition is not satisfied. The estimator θ̂N is still consistent,
but we have

( √
NδN (κ̂N − κ0)√
Nδ

1
α
N (λ̂N − λ0)

)
L−→ N

0,


ν0

(
(∂κb(.,κ0))2c(.,λ0)

cρ(.,λ0)2

)
ν0
(

(∂κb(.,κ0))2

cρ(.,λ0)

)2 0

0 9
4

ν0

(
(∂λc(.,λ0))2(c2+4cρ2+12ρ4)

cρ(.,λ0)4

)
ν0

(
(∂λc(.,λ0))2

cρ(.,λ0)2

)2




as N →∞, with NδN →∞ and Nδ

2− 1
α

N → 0.

An other estimating function can be considered:

G♦N,α(θ) =
1

kN∆N


kN−2∑
j=1

∂κb(Y
j−1
• , κ)

c(Y j−1
• , λ)

(
Y j+1
• − Y j• −∆Nb(Y

j−1
• , κ)

)
kN−2∑
j=1

∂λc(Y
j−1
• , λ)

c(Y j−1
• , λ)2

(
1

2
(Y j+1
• − Y j• )2 − ∆N

3
c(Y j−1
• , λ)−∆

1
α−1
N ρ2

N

)


but G♦N,α is not a gradient: there is no function V such that G♦N,α =
grad (V ). Indeed, setting

g♦1,α(δ, y, x; θ, ρ) =
∂κb(x, κ)
c(x, λ)

(y − δ1− 1
α b(x, κ)),

g♦2,α(δ, y, x; θ, ρ) =
∂λc(x, λ)
c(x, λ)2

(
y2

2
− δ1− 1

α
c(x, λ)

3
c(x, λ)− δ

1
α ρ21α∈( 3

2
,2]

)
it comes ∂λg♦1,α 6= ∂κg

♦
2,α.

However, g♦α satisfies the second Jacobsen’s condition. Setting θ̂♦N as the
solution of G♦N,α(θ) = 0,

( √
NδN (κ̂N − κ0)√
Nδ

1
α
N (λ̂N − λ0)

)
L−→ N

0,


{
ν0

(
(∂κb(.,κ0))2

c(.,λ0)

)}−1
0

0 9
4

ν0

(
(∂λc(.,λ0))2(c2+4cρ2+12ρ4)

c(.,λ0)4

)
ν0

(
(∂λc(.,λ0))2

c(.,λ0)2

)2




as N →∞, with NδN →∞ and Nδ
2− 1

α
N → 0.

Hence, the asymptotic variance obtained for the estimation of κ0 is the
same that in the case of direct observations of the diffusion process.

4.1 The Ornstein-Uhlenbeck diffusion

Let (Xt) be the solution of

dXt = κXtdt+ λdBt,
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with κ < 0, λ > 0 and X0 deterministic or distributed with the stationary
distribution of (Xt). Explicit estimators κ̂N and λ̂N are given in Favetto
(2010) and recalled here

λ̂2
N =

3
2kN∆N

kN−2∑
j=1

(Y j+1
• − Y j

• −∆N κ̂NY
j−1
• )2 − 3ρ21{α=2};

κ̂N =
1

∆N

∑kN−2
j=1 Y j−1

• (Y j+1
• − Y j

• )∑kN−2
j=1 (Y j−1

• )2
.

For α ∈ (1, 2) or α = 2 and ρN → 0, these estimators are asymptotically
Gaussian: ( √

NδN (κ̂N − κ0)√
Nδ

1
α
N (λ̂N − λ0)

)
L−→ N

(
0,
(

2|κ| 0
0 9

4λ
4

))

as N →∞, with NδN →∞ and Nδ
2− 1

α
N → 0.

4.2 The hyperbolic diffusion

Let (Xt) be the solution of

dXt = κXtdt+ λ
√

1 +X2
t dBt, X0 = η ∈ R, (16)

where η is a random variable independent of (Bt), κ < 0 and λ > 0. In this
case, the model is positive recurrent if |κ| + λ2

2 > 0, and in this case, its
stationary distribution has density

ν0(x) ∝ 1

(1 + x2)1+
|κ|
λ2

.

If X0 = η has distribution ν0(x)dx, then,
√

1 + 2|κ|
λ2 η has Student distribu-

tion. In this case,

Eθ(X0) = 0 and Eθ
(

X2
0

1 +X2
0

)
=

3 + 2|κ|
λ2(

2|κ|
λ2 + 1

)3/2
.

Then the estimators for κ0 and λ2
0 are

κ̂N =
1

∆N

∑kN−2
j=1

Y j−1
•

1+(Y j−1
• )2

(Y j+1
• − Y j

• )∑kN−2
j=1

(Y j−1
• )2

1+(Y j−1
• )2

,

λ̂2
N =

3
2kN∆N

kN−2∑
j=1

(Y j+1
• − Y j

• −∆N κ̂NY
j−1
• )2

1 + (Y j−1
• )2

,
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and they are asymptotically Gaussian

( √
NδN (κ̂N − κ0)√
Nδ

1
α
N (λ̂N − λ0)

)
L−→ N

0,

 λ2
(

2|κ|
λ2 +1

)3/2

3+
2|κ|
λ2

0

0 9
4λ

4




as N →∞, with NδN →∞, δN → 0 and Nδ
2− 1

α
N → 0, in the case α ∈ (1, 2)

or α = 2 and ρN → 0.

5 Concluding remarks

In this article, the asymptotic normality of the minimum constrast esti-
mators of Favetto (2010) is proved in the context of estimating functions,
which correspond to the gradient of the contrast function. Two different
rates of convergence in distribution are obtained for the drift parameter and
the diffusion coefficient parameter. The drift parameter estimator κ̂N is
asymptotically Gaussian at rate

√
NδN , which is the usual rate for directly

observed diffusions, whereas the diffusion coefficient parameter estimator

λ̂N is asymptotically Gaussian at rate
√
Nδ

1
α
N : this is slower than the rate

of convergence
√
N for directly observed diffusions, and depends on the lo-

cal mean parameter α. Finally, the results presented here show that even
for non-Markovian observations, it is possible to introduce an estimating
function, and obtain an estimator with good asymptical properties.
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6 Proofs

In the proofs, we use for sake of simplicity ∆N = δ
1− 1

α
N .

Proof of Lemma 1. Setting

Bj,N = Eθ(g(∆N , Y
j+1
• − Y j

• , Y
j−1
• ; θ, ρN )|HNj ),

15



we have, with Taylor’s formula,

Bj,N = g(0, 0, Y j−1
• ; θ, ρN ) + ∂yg(0, 0, Y j−1

• ; θ, ρN )Eθ(Y j+1
• − Y j

• |HNj )

+
1
2
∂2
y2g(0, 0, Y j−1

• , θ, ρN )Eθ((Y j+1
• − Y j

• )2|HNj )

+∆Ng
(1)(0, Y j+1

• ; θ, ρN ) + ∆
1

α−1

N g(α)(0, Y j−1
• ; θ, ρN )

+∆2
NR(∆N , Y

j−1
• , Xj∆N

; θ, ρN )
= g(0, 0, Y j−1

• ; θ, ρN ) + ∂yg(0, 0, Y j−1
• ; θ, ρN )∆Nb(Xj∆N

, κ)

+
1
2
∂2
y2g(0, 0, Y j−1

• , θ, ρN )(∆Nc(Xj∆N
, λ) + 2∆

1
α−1

N ρN )

+∆Ng
(1)(0, Y j−1

• ; θ, ρN ) + ∆
1

α−1

N g( 1
α−1

)(0, Y j−1
• ; θ, ρN )

+∆2
NR(∆N , Y

j−1
• , Xj∆N

; θ, ρN ).

Then, replacing Xj∆N
by Y j−1

• ,

Bj,N = g(0, 0, Y j−1
• ; θ, ρN )

+∆N (L̄θ(g(0, θ, ρN ))(0, Y j−1
• ) + g(1)(0, Y j−1

• ; θ, ρN ))

+∆
1

α−1

N (g( 1
α−1

)(0, Y j−1
• ; θ, ρN ) + ρ2

N∂
2
y2g(0, 0, Y j−1

• , θ, ρN ))
+∆2

NR(∆N , Y
j−1
• , Xj∆N

; θ, ρN )

where the terms

∆N∂yg(0, 0, Y j−1
• ; θ, ρN )(b(Xj∆N

, κ)− b(Y j−1
• , κ))

and
∆N

2
∂2
y2g(0, 0, Y j−1

• , θ, ρN )(c(Xj∆N
, λ)− c(Y j−1

• , λ))

are HNj measurable and negligible: their conditional expectation given HNj−1

is of order ∆2
N . The proof ends with

Eθ(g(∆N , Y
j+1
• − Y j

• , Y
j−1
• ; θ, ρN )|HNj ) = O(∆2

N )

and the identification of the terms. 2

Proof of Lemma 2. SettingAj,N (θ, θ0) = Eθ0(g(∆N , Y
j+1
• −Y j

• , Y
j−1
• ; θ, ρN )|HNj ),

Aj,N (θ, θ0) = ∆N (g(1)(0, Y j−1
• ; θ, ρN ) + L̄θ0(g(0, θ))(0, Y j−1

• , ρN )

+∆
1

α−1

N (g(α)(0, Y j−1
• ; θ, ρN ) + ρ2

N∂
2
y2g(0, 0, Y j−1

• , θ, ρN ))
+∆2

NR(∆N , Y
j−1
• , Xj∆N

; θ, ρN )
= ∆N (L̄θ0((g(0, θ, ρN ))(0, Y j−1

• )− L̄θ(g(0, θ, ρN ))(0, Y j−1
• )

+∆2
NR(∆N , Y

j−1
• ; θ, ρN ).

Splitting the sum 1
kN∆N

∑kN−2
j=1 Aj,N (θ, θ0) in three parts, we conclude for

the pointwise convergence with Lemma 4 in the Appendix. For the uniform

16



convergence in θ, recall that Θ is compact and the functionals ĪN (f(., θ))
and Q̄N (f(.θ)) studied in Favetto (2010) converge in probability uniformly
in θ.

Thus, with Taylor’s formula, as g admits a developpment in powers of
∆,

g(∆, Y j+1
• − Y j

• , Y
j−1
• ; θ, ρN ) = g(0, 0, Y j−1

• ; θ, ρN )
+(Y j+1

• − Y j
• )∂yg(0, 0, Y j−1

• , θ, ρN )

+
1
2

(Y j+1
• − Y j

• )2∂2
y2g(0, 0, Y j−1

• ; θ, ρN )

+∆Ng
(1)(0, Y j−1

• ; θ, ρN )

+∆
1

α−1

N g( 1
α−1

)(0, Y j−1
• ; θ, ρN )

+∆2
NR(∆N , Y

j+1
• − Y j

• , Y
j−1
• ; θ, ρN ).

Therefore, with g(1)(0, Y j−1
• ; θ, ρN ) = −L̄θ(g(0, θ, ρN )), the convergence of

1
kN∆N

kN−2∑
j=1

(∂yg(0, 0, Y j−1
• ; θ, ρN )(Y j+1

• − Y j
• −∆Nb(Y j−1

• , κ0))

+∂2
y2g(0, 0, Y j−1

• ; θ, ρN )(
1
2

(Y j+1
• − Y j

• )2 − ∆N

3
c(Y j−1
• , λ0)−∆

1
α−1

N g( 1
α−1

)(0, Y j−1
• ; θ)))

in probability is uniform in θ ∈ Θ. 2

Proof of Theorem 1. In this proof, we set b(.) = b(., κ0) and σ(.) =
σ(., λ0). Considering a function f satisfying Condition (C1) and the random
variables defined in Lemma 3, we have, for 1 ≤ j ≤ kN − 2,

f(Y j−1
• )(Y j+1

• − Y j
• −∆Nb(Y j−1

• )) = f(Y j−1
• )(Y j+1

• − Y j
• −∆Nb(Xj∆N

))
+∆N (b(Xj∆N

)− b(Y j−1
• )).

With Proposition 2,

f(Y j−1
• )(Y j+1

• − Y j
• −∆Nb(Xj∆N

)) = f(Y j−1
• )σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N )
+f(Y j−1

• )ρN (εj+1
• − εj•)

+f(Y j−1
• )τj,N .

Considering √
kN∆N ĪN (f) =

4∑
`=1

R̄
(`)
N
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with

R̄
(1)
N =

1√
kN∆N

kN−2∑
j=1

f(Y j−1
• )σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ),

R̄
(2)
N =

1√
kN∆N

kN−2∑
j=1

f(Y j−1
• )ρN (εj+1

• − εj•),

R̄
(3)
N =

1√
kN∆N

kN−2∑
j=1

f(Y j−1
• )τj,N ,

R̄(4)
n =

1√
kN∆N

kN−2∑
j=1

f(Y j−1
• )∆N (b(Xj∆N

)− b(Y j−1
• )).

let r(1)
j,N be defined by

r
(1)
j,N = f(Y j−1

• )σ(Xj∆N
)ζj+1,N + f(Y j−2

• )σ(X(j−1)∆N
)ζ ′j+1,N ,

where the terms have been rearranged, to have r(1)
j,N be HNj+1 measurable.

The first quantity of interest is

R̄
(1)
N =

1√
kN∆N

kN−2∑
j=1

f(Y j−1
• )σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ),

and

R̄
(1)
N =

1√
kN∆N

kN−2∑
j=2

r
(1)
j,N + oP (1).

To prove the convergence in distribution of R̄(1)
N , a Central Limit Theorem

for martingale arrays (Theorem 3.2 in Hall and Heyde (1980)) is used. The
conditional centering E(r(1)

j,N |HNj ) = 0 is ensured and the conditional variance
is

E((r(1)
j,N )2|HNj ) = ∆N

(
f(Y j−1

• )2σ(Xj∆N
)2∆N

(
1
3

+
1

2pN
+

1
6p2
N

)
+f(Y j−2

• )2σ(X(j−1)∆N
)2

(
1
3
− 1

2pN
+

1
6p2
N

)
+f(Y j−2

• )σ(X(j−1)∆N
)f(Y j−1

• )σ(Xj∆N
)
1
3

(
1− 1

p2
N

))
.

Hence
1

kN∆N

kN−1∑
j=2

E((r(1)
j,N )2|HNj ) P−→ ν0(f2σ2).
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We easily bound E((r(1)
j,N )4|HNj ) with Proposition 2 and derive

1
k2
N∆2

N

kN−1∑
j=2

E((r(1)
j,N )4|HNj ) P−→ 0.

Then,
R̄

(1)
N

L−→ N (0, ν0(f2σ2)).

We now prove that R̄(`)
N = oP (1) for ` = 2, 3 and apply Slutsky’s lemma to

conclude. Dealing firstly with R̄
(3)
N ,

∣∣E(f(Y j−1
• )τj,N |HNj )

∣∣ ≤ c(1+ |Y j−1
• |)∆N (∆N (1+ |Xj∆N

|3)+ρ2
N

√
E((εj•)4)).

Then, the tools are similar to the pointwise convergence: as τj,N is HNj+2

measurable, R̄(3)
N is split in three sums, in order to prove that it converges

in probability to 0 with Lemma 4. With the condition kN∆3
N → 0,

1
kN∆N

∑
2≤3j≤kN−2

√
kN∆NE(f(Y 3j−1

• )τ3j,N |HN3j)
P−→ 0.

It comes

E(f(Y j−1
• )2τ2

j,N |HNj ) ≤ c(1 + |Y j
• |2)∆N (1 + |Xj∆N

|2 + ρ2
NE((εj•)

2))

×(∆N (1 + |Xj∆N
|4) + ρ2

N

√
E((εj•)4)).

Hence, as N →∞,

1
kN∆N

kN−2∑
j=1

E(f(Y 3j−1
• )2τ2

3j,N |HN3j) −→ 0

in probability.
From now on, R̄(2)

N is considered. Leet the HNj+1 measurable random
variable

r
(2)
j,N = (f(Y j−2

• )− f(Y j−1
• ))ρεj•

and then

R̄
(2)
N =

1√
kN∆N

kN−2∑
j=2

r
(2)
j,N + oP (1).

Therefore E(r(2)
j,N |HNj ) = 0 and

E((r(2)
j,N )2|HNj ) = (f(Y j−2

• )− f(Y j−1
• ))2ρ2

NE((εj•)
2).
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As ∆N = p1−α
N ,

1
kN∆N

kN−2∑
j=2

E((r(2)
j,N )2|HNj ) =

1
kN

kN−2∑
j=2

ρ2
N

p2−α
N

(f(Y j−2
• )− f(Y j−1

• ))2

and this quantity vanishes in probability, for α ∈ (1, 2], with Assumption
(B1) or (B2). Finally,

R̄(4)
n =

1√
kN∆N

kN−2∑
j=1

f(Y j−1
• )∆N (b(Xj∆N

)− b(Y j−1
• )).

For 2 ≤ j ≤ kN − 2,

f(Y j−1
• )(b(Xj∆N

)− b(Y j−1
• )) = f(Y j−2

• )(b(Xj∆N
)− b(Y j−1

• ))
+f(Y j−2

• )(b(X(j−1)∆N
)− b(Y j−1

• ))
+(f(Y j−1

• )− f(Y j−2
• )(b(Xj∆N

)− b(Y j−1
• ).

With Proposition 1 in the Appendix and the Cauchy Schwarz inequality, it
comes

|E(f(Y j−2
• )(b(Xj∆N

)− b(Y j−1
• ))|HNj−1)| ≤

cf(Y j−2
• )(∆N (1 +X2

(j−1)∆N
) + ρ2

N

√
E((εj−1

• )4)),
|E(f(Y j−2

• )(b(X(j−1)∆N
)− b(Y j−1

• ))|HNj−1)| ≤

cf(Y j−2
• )(∆N (1 +X2

(j−1)∆N
) + ρ2

N

√
E((εj−1

• )4)),
|E((f(Y j−1

• )− f(Y j−2
• )(b(Xj∆N

)− b(Y j−1
• )|HNj−1)| ≤

c(1 +X2
j∆N

+ ρ2
NE((εj−1

• )2))(∆N (1 +X4
j∆N

) + ρ2
N

√
E((εj−1

• )4)).

With kN∆3
N = Nδ

3− 2
α

N → 0, R̄(4)
N = oP (1). 2

Proof of Theorem 2. With the notations of Proposition 2,

(Y j+1
• − Y j

• )2 = (∆Nb(Xj∆N
) + τj,N )2 + σ(Xj∆N

)2(ζj+1,N + ζ ′j+2,N )2

+ρ2
N (εj+1

• − εj•)2 + 2ρN (∆Nb(Xj∆N
) + τj,N )(εj+1

• − εj•)
+2(∆Nb(Xj∆N

) + τj,N )σ(Xj∆N
)(ζj+1,N + ζ ′j+2,N )

+2ρNσ(Xj∆N
)(ζj+1,N + ζ ′j+2,N )(εj+1

• − εj•).
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Setting UN (f) =
√
kN (Q̄N (f)− ν̄N (f(2

3σ
2 + 2ρ2

N∆
2−α
α−1

N ))), we define

u
(1)
j,N = f(Y j−1

• )σ(Xj∆N
)2(

1
∆N

(ζj+1,N + ζ ′j+2,N )2 − 2
3

)

u
(2)
j,N =

2
3
f(Y j−1

• )(σ(Xj∆N
)2 − σ(Y j

• )2)

u
(3)
j,N = f(Y j−1

• )ρ2
N (

1
∆N

(εj+1
• − εj•)2 − 2∆

2−α
α−1

N )

u
(4)
j,N = 2f(Y j−1

• )σ(Xj∆N
)ρN

1
∆N

(ζj+1,N + ζ ′j+2,N )(εj+1
• − εj•)

u
(5)
j,N = f(Y j−1

• )(∆Nb(Xj∆N
) + τj,N )2

u
(6)
j,N = 2f(Y j−1

• )(∆Nb(Xj∆N
) + τj,N )σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N )

u
(7)
j,N = 2f(Y j−1

• )ρN (∆Nb(Xj∆N
) + τj,N )(εj+1

• − εj•)

so that

UN (f) =
1√
kN

kN−2∑
j=1

7∑
`=1

u
(`)
j,N .

Recall that ζj+1,N is HNj+1 measurable and ζ ′j+2,N is HNj+2,N measurable,
so some terms have to be reordered to use a Central Limit Theorem for
martingale array. Then,

U
(1)
N =

1√
kN

kN−2∑
j=1

u
(1)
j,N =

1√
kN

kN−2∑
j=2

s
(1)
j,N +

1√
kN

kN−2∑
j=2

s̃
(1)
j,N + oP (1)

with

s
(1)
j,N = f(Y j−1

• )σ(Xj∆N
)2

(
ζ2
j+1,N

∆N
−mN

)

+f(Y j−2
• )σ(X(j−1)∆N

)2

(
ζ ′2j+1,N

∆N
−m′N

)
+2f(Y j−2

• )σ(X(j−1)∆N
)2 ζj,Nζ

′
j+1,N

∆N
,

s̃
(1)
j,N = f(Y j−1

• )σ(Xj∆N
)2

(
1

2pN
+

1
6p2
N

)
+f(Y j−2

• )σ(X(j−1)∆N
)2

(
− 1

2pN
+

1
6p2
N

)
where mN = 1

3 + 1
2pN

+ 1
6p2N

, m′N = 1
3 −

1
2pN

+ 1
6p2N

and χN = 1
6(1− 1

p2N
) such

that ζj+1,N ∼ N (0,mN∆N ), ζ ′j+1,N ∼ N (0,m′N∆N ), and Cov (ζj+1,N , ζ
′
j+1,N ) =

χN∆N . As p−1
N = ∆

1
α−1

N ≤ ∆N , with kN∆2
N = Nδ

2− 1
α

N → 0, we deduce

1√
kN

kN−2∑
j=2

s̃
(1)
j,N = oP (1).
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The conditional centering condition holds: E(s(1)
j,N |HNj ) = 0. With

(s(1)
j,N )2 = f(Y j−1

• )2σ(Xj∆N
)4

(
ζ2
j+1,N

∆N
−mN

)2

+f(Y j−2
• )2σ(X(j−1)∆N

)4

(
ζ ′j+1,N

2

∆N
−m′N

)2

+4f(Y j−2
• )2σ(X(j−1)∆N

)4
ζ2
j,Nζ

′
j+1,N

2

∆2
N

+2f(Y j−2
• )σ(X(j−1)∆N

)2f(Y j−1
• )σ(Xj∆N

)2

(
ζ2
j+1,N

∆N
−mN

)(
ζ ′j+1,N

2

∆N
−m′N

)

+4f(Y j−2
• )σ(X(j−1)∆N

)2f(Y j−1
• )σ(Xj∆N

)2

(
ζ2
j+1,N

∆N
−mN

)
ζj,Nζ

′
j+1,N

∆N

+4f(Y j−2
• )2σ(X(j−1)∆N

)4

(
ζ ′j+1,N

2

∆N
−m′N

)
ζj,Nζ

′
j+1,N

∆N

and

E((s(1)
j,N )2|HNj ) = 2f(Y j−1

• )2σ(Xj∆N
)4m2

N

+2f(Y j−2
• )2σ(X(j−1)∆N

)4m′N
2

+4f(Y j−2
• )2σ(X(j−1)∆N

)4
ζ2
j,N

∆N
m′N

+4f(Y j−2
• )σ(X(j−1)∆N

)2f(Y j−1
• )σ(Xj∆N

)2χ2
N ,

Lemma 4 and (32) imply

1
kN

kN−2∑
j=2

E((s(1)
j,N )2|HNj ) −→ ν0(f2σ4)

in probability. The fourth conditional moment E((s(1)
j,N )4|HNj ) is bounded

with Proposition 2 and

1
k2
N

kN−2∑
j=2

E((s(1)
j,N )4|HNj ) −→ 0

in probability. Theorem 3.2 in Hall and Heyde (1980) can be applied to
obtain

U
(1)
N

L−→ N
(
0, ν0(f2σ4)

)
.

Considering now U
(2)
N = 1√

kN

∑kN−2
j=1 u

(2)
j,N , with Proposition 1,

|E(u(2)
j,N |H

N
j )| ≤ c|f(Y j−1

• )|(∆N (1 +X2
j∆N

) + ρ2
NE((εj•)

2))
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and with kN∆2
N = Nδ

2− 1
α

N , U (2)
N = oP (1).

The third term is

U
(3)
N =

1√
kN

kN−2∑
j=1

u
(3)
j,N =

1√
kN

kN−2∑
j=2

s
(3)
j,N + oP (1)

where

s
(3)
j,N = (f(Y j−2

• ) + f(Y j−1
• ))ρ2

N (
(εj•)2

∆N
−∆

2−α
α−1

N )− 2f(Y j−2
• )ρ2

N

εj−1
• εj•
∆N

is HNj+1 measurable. The conditional centering holds: E(s(3)
j,N |HNj ) = 0 and

E((s(3)
j,N )2|HNj ) = 2(f(Y j−2

• ) + f(Y j−1
• ))2 ρ4

N

∆2
Np

2
N

+ 4f(Y j−1
• )2ρ4

N

(εj−1
• )2

∆2
NpN

.

Then, two cases have to be considered:

1. If α ∈ (1, 2) or ρN → 0 and α = 2, from the previous computation

1
kN

kN−2∑
j=2

E((s(3)
j,N )2|HNj ) = oP (1),

2. If α = 2 and ρN = ρ,

1
kN

kN−2∑
j=2

E((s(3)
j,N )2|HNj ) = 12ν0(f2ρ4) + oP (1).

In the case 1, Lemma 4 implies that U (3)
N = oP (1), but in the case 2, a

Central Limit Theorem for martingale array is necessary: using

1
k2
N

kN−2∑
j=2

E((s(3)
j,N )4|HNj ) = oP (1),

we derive
U

(3)
N

L−→ N (0, 12ν0(f2ρ4)).

Notice that, in this case, E(s(1)
j,Ns

(3)
j,N |HNj ) = 0, and then U

(1)
N and U

(3)
N are

asymptotically uncorrelated.
Setting

s
(4)
j,N = 2f(Y j−2

• )ρNσ(X(j−1)∆N
)

1
∆N

(
ζj,Nε

j
• + ζ ′j+1,Nε

j
• − ζ ′j+1,Nε

j−1
•
)

−2f(Y j−1
• )ρNσ(Xj∆N

)
εj•ζj+1,N

∆N
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where r(4)
j,N is HNj+1 measurable, with E(r(4)

j,N |HNj ) = 0, the fourth term is
reordered:

U
(4)
N =

1√
kN

kN−2∑
j=1

u
(4)
j,N =

1√
kN

kN−2∑
j=2

s
(4)
j,N + oP (1).

The conditional variance is

E
(

(s(4)
j,N )2

∣∣∣HNj ) = 4f(Y j−2
• )2ρ2

Nσ(X(j−1)∆N
)2

(
ζ2
j,N

∆N
+m′N +

(εj−1
• )2

∆N
m′N

)
+4f(Y j−1

• )2ρ2
Nσ(Xj∆N

)2mN

−8f(Y j−1
• )σ(Xj∆N

)f(Y j−2
• )σ(X(j−1)∆N

)ρ2
NχN .

Hence, the same two situations have to be considered:

1. If α ∈ (1, 2) or ρN → 0 and α = 2,

1
kN

kN−2∑
j=2

E
(

(s(4)
j,N )2

∣∣∣HNj ) = oP (1).

2. If α = 2 and ρN = ρ,

1
kN

kN−2∑
j=2

E
(

(s(4)
j,N )2

∣∣∣HNj ) = 4ν0(f2ρ2σ2) + oP (1).

Besides, in case 1, using Lemma 4, U (4)
N = oP (1), whereas in case 2,

1
k2
N

kN−2∑
j=2

E
(

(s(4)
j,N )4

∣∣∣HNj ) = oP (1)

and the Central Limit Theorem for martingale array implies

U
(4)
N

L−→ N (0, 4ν0(f2ρ2σ2).

Finally,
E(s(1)

j,Ns
(4)
j,N |H

N
j ) = 0, E(s(2)

j,Ns
(4)
j,N |H

N
j ) = 0

and U
(1)
N , U

(3)
N , U

(4)
N are asymptotically uncorrelated.

To finish the proof, let U (`)
N = 1√

kN

∑kN−2
j=1 u

(`)
j,N for ` = 5, 6, 7. With

Propositions 1, 2, and the Cauchy Schwarz inequality,

E(|u(5)
j,N ||H

N
j ) ≤ c|f(Y j−1

• )|∆N (1 +X2
j∆N

+ ρ2
NE((εj•)

2))
×(∆N (1 +X4

j∆N
+ ρ2

N

√
E((ε•)4)),

E(|u(6)
j,N |+ |u

(7)
j,N ||H

N
j ) ≤ c|f(Y j−1

• )|∆N (1 + |Xj∆N
|2 + ρN

√
E((εj•)2))

×(
√

∆N (1 +X2
j∆N

+ ρNE((ε•)4)
1
4 ).
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With kN∆2
N → 0, we have U (`)

N = oP (1) for ` = 5, 6, 7.
2

Proof of Theorem 3. As we deal with martingale arrays, with the
notations of Theorems 5.1 and 5.2, it is sufficient to remark that

1
kN

kN−2∑
j=1

E(r(1)
j,Ns

(1)
j,N |H

N
j ) = oP (1).

2

Proof of Corollary 1. As fN (x)− f(x) = vN (1 + |x|), we have

|ν̄N (fN )− ν̄N (f)| ≤ 1
kN

kN−1∑
j=0

|fN (Y j
• )− f(Y j

• )|

≤ vN ×
1
kN

kN−1∑
j=0

(1 + |Y j
• |)

and the last quantity tends to 0 in probability. It is also sufficient to consider
the case f = 0.

Then, considering the proof of Theorem 1, and keeping the same nota-
tions for R̄(`)

N , ` = 1 . . . 4, we consider

R̄
(1)
N =

1√
kN∆N

kN−2∑
j=1

fN (Y j−1
• )σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ).

Splitting the sum into three parts, using Lemma 4 and

E(f(Y 3j−1
• )2σ(Xj∆N

)2(ζj+1,N+ζ ′j+2,N )2|HN3j) ≤ cvN (1+|Y j−1
• |2)σ(Xj∆N

)2∆N ,

R̄
(1)
N tends to 0 in probability. The same argument is used for the other

terms in
√
kN∆N ĪN (fN ) and

√
kN Q̄N (fN ).

2

Proof of Theorem 4. Consider the estimating function

GN (θ) =
1

kN∆N

kN−2∑
j=1

g(δN , Y j+1
• − Y j

• , Y
j−1
• ; θ, ρN ).

By Lemma 2, we have GN (θ0)→ 0 and ∂θGN (θ)→ φ(θ, θ0, ρ∞) in probabil-
ity, under Pθ0 , uniformly in θ ∈ Θ. As φ(θ0, θ0, ρ∞) = −S is invertible, this
implies the existence and the consistency of θ̂N , with standard arguments
(see Bibby and Sørensen (1995), Theorem 3.2).

A Taylor’s formula around θ̂N shows:

GN (θ̂N )−GN (θ0) =
(∫ 1

0
∂θGN (θ0 + u(θ̂N − θ0))du

)
(θ̂N − θ0).

25



As ∂θGN (θ) converges uniformly in probability to φ(θ, θ0, ρ∞) and θ̂N con-
verges in probability to θ0,∫ 1

0
∂θGN (θ0 + u(θ̂N − θ0))du

Pθ0−→ φ(θ0, θ0, ρ∞) = −S.

With a second Taylor’s formula around Y j+1
• − Y j

• :

g(δN , Y j+1
• − Y j

• , Y
j−1
• ; θ0, ρN ) = (Y j+1

• − Y j
• )∂yg(0, 0, Y j−1

• ; θ0, ρN )

+
1
2

(Y j+1
• − Y j

• )2∂2
y2g(0, 0, Y j−1

• , θ0, ρN )

+∆Ng
(1)(0, Y j−1

• , θ0, ρN )

+∆
1

α−1

N g(α)(0, Y j−1
• ; θ0, ρN )

+∆2
NR(∆N , Y

j+1
• − Y j

• , Y
j−1
• ; θ0, ρN ).

Then, with Lemma 1,

g(δN , Y j+1
• − Y j

• , Y
j−1
• ; θ0, ρN ) = (Y j+1

• − Y j
• )∂yg(0, 0, Y j−1

• ; θ0, ρN )
−∆Nb(Y j−1

• , κ0)∂yg(0, 0, Y j−1
• ; θ0, ρN )

+
1
2

(Y j+1
• − Y j

• )2∂2
y2g(0, 0, Y j−1

• , θ0, ρN )

−∆N

3
∂2
y2g(0, 0, Y j−1

• , θ0, ρN )

−∆
1

α−1

N ρ2
N∂

2
y2g(0, 0, Y j−1

• , θ0, ρN )
+∆2

NR(∆N , Y
j+1
• − Y j

• , Y
j−1
• ; θ0, ρN ).

Thus,

g(δN , Y j+1
• − Y j

• , Y
j−1
• ; θ0, ρN ) =(

∂yg1(0, 0, Y j−1
• ; θ0, ρN )(Y j+1

• − Y j
• −∆Nb(Y

j−1
• , κ0))

0

)
+

 ∂2
y2g1(0, 0, Y j−1

• ; θ0, ρN )(1
2(Y j+1
• − Y j

• )2 − ∆N
3 c(Y j−1

• , λ0)−∆
1

α−1

N ρ2
N )

∂2
y2g2(0, 0, Y j−1

• ; θ0, ρN )(1
2(Y j+1
• − Y j

• )2 − ∆N
3 c(Y j−1

• , λ0)−∆
1

α−1

N ρ2
N )


+∆2

NR(∆N , Y
j+1
• − Y j

• , Y
j−1
• ; θ0, ρN ).

The results comes from Theorem 3. 2

Proof of Theorem 5. With the notations of the proof of Theorem 5.2, it
is sufficient to remark that u(1)

3j,N isHN3j+2 measurable, conditionally centered,
and

E((u(1)
3j,N )2|HN3j) =

8
9
ν0(f2σ4) + oP (1).

Then, the correlation between ζj+1,N and ζ ′j+1,N is avoided, and the asymp-
totic variance is reduced in the Central Limit Theorem. 2

26



References

Bibby, B. M. and Sørensen, M. (1995). Martingale estimation functions for
discretely observed diffusion processes. Bernoulli, 1(1-2):17–39.

Favetto, B. (2010). Consistent parameter estimation by contrast minimiza-
tion for noisy discrete observations of a hidden diffusion process. MAP5
2010-13.

Gloter, A. (2000). Discrete sampling of an integrated diffusion process and
parameter estimation of the diffusion coefficient. ESAIM Probab. Statist.,
4:205–227 (electronic).

Gloter, A. (2006). Parameter estimation for a discretely observed integrated
diffusion process. Scand. J. Statist., 33(1):83–104.

Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its application.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York.
Probability and Mathematical Statistics.

Jacobsen, M. (2002). Optimality and small ∆-optimality of martingale es-
timating functions. Bernoulli, 8(5):643–668.

Kessler, M. (2000). Simple and explicit estimating functions for a discretely
observed diffusion process. Scand. J. Statist., 27(1):65–82.

Kessler, M. and Sørensen, M. (1999). Estimating equations based on eigen-
functions for a discretely observed diffusion process. Bernoulli, 5(2):299–
314.

Sørensen, M. (2009). Efficient estimation for ergodic diffusions sampled at
high frequency. Preprint.

Sørensen, M. (2010). Estimating functions for diffusion-type processes.
Preprint.

Appendix

Consider the following random variables which will appear in some expan-
sions,

ξj,N =
1

∆3/2
N

=
∫ (j+1)∆N

j∆N

(s− j∆N )dBs, (17)

ξ′j+1,N =
1

∆3/2
N

=
∫ (j+2)∆N

(j+1)∆N

((j + 2)∆N − s)dBs. (18)
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Analogously, define:

ξi,j,N =
1

δ
3/2
N

∫ j∆N+(i+1)δN

j∆N+iδN

(s− j∆N − iδn)dBs, (19)

ξ′i+1,j,N =
1

δ
3/2
N

∫ j∆N+(i+2)δN

j∆N+(i+1)δN

(j∆N + (i+ 2)δN − s)dBs. (20)

Some basic properties of these random variables are summarized in Lemma
5 in the Appendix.

Define the following random variables:

ζj+1,N =
1
pN

pN−1∑
i=0

∫ (j+1)∆N

j∆N+iδN

dBs, (21)

ζ ′j+2,N =
1
pN

pN−1∑
i=0

∫ (j+1)∆N+iδN

(j+1)∆N

dBs. (22)

Notice that

ζj+1,N =
1
pN

pN−1∑
k=0

(k + 1)
∫ j∆N+(k+1)δN

j∆N+kδN

dBs, (23)

ζ ′j+2,N =
1
pN

pN−1∑
k=0

(pN − 1− k)
∫ (j+1)∆N+(k+1)δN

(j+1)∆N+kδN

dBs, (24)

and that

1
pN

pN−1∑
k=0

(k + 1)δN =
∆N

2
+

δN
2pN

, (25)

1
pN

pN−1∑
k=0

(pN − k − 1)δN =
∆N

2
− δN

2pN
. (26)

Lemma 3. The random variables ζj+1,N and ζ ′j+1,N are G(j+1)∆N
mesurable,

and ζ ′j+2,N is independent of G(j+1)∆N
. Moreover, we have

E(ζj,N |GNj ) = 0
E(ζ ′j+1,N |GNj ) = 0

E((ζj+1,N )2|GNj ) = ∆N

(
1
3

+
1

2pN
+

1
6p2
N

)
E((ζ ′j+1,N )2|GNj ) = ∆N

(
1
3
− 1

2pN
+

1
6p2
N

)
E(ζj+1,Nζ

′
j+1,N |GNj ) =

∆N

6

(
1− 1

p2
N

)
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Lemma 4. Let χNj , U be random variables, with χNj being GNj -measurable.
The following two conditions:∑kN−1

j=0 E(χNj |GNj−1) P→ U,∑kN−1
j=0 E((χNj )2|GNj−1) P→ 0

imply
∑kN−1

j=0 χNj
P→ U .

Proposition 1. Under (A1), we have for j ≤ kN − 1,

Y j
• −Xj∆N

= σ(Xj∆N
)
√

∆Nξ
′
j,N + e′j,N + ρNε

j
• (27)

with |E(e′j,N |HNj )| ≤ c∆N (1 + |Xj∆N
|) and

E(e′j,N
2|HNj ) ≤ c∆2

N (1 + |Xj∆N
|4), E(e′j,N

4|HNj ) ≤ c∆3
N (1 + |Xj∆N

|4).

If moreover (A5) holds, for k ≤ 8, there exists c > 0 such that, for j ≤
kN − 1:

E
(
|Y j
• −Xj∆N

|k
∣∣∣HNj ) ≤ C (∆k/2

N (1 + |Xj∆N
|k) + ρkNE

(
|εj•|k

))
. (28)

Lemma 5. The random variables ξj,N and ξ′j+1,N are independent and gaus-
sian; ξj,N is GNj+1 measurable and independent of GNj ; ξ′j+1,N is GNj+2 mea-
surable and independent of GNj+1. We will use the following expectations:

E(ξj,N |GNj ) = E(ξ′j+1,N |GNj ) = 0,
E(ξ2

j,N |GNj ) = E(ξ′2j+1,N |GNj ) = 1
3 ,

E((ξ2
j,N −

1
3)2|GNj ) = E((ξ′2j+1,N − 1

3)2|GNj ) = 2
9 ,

E((ξ2
j,N −

1
3)ξ′j,N |GNj ) = E((ξ′2j+1,N − 1

3)ξ′j,N |GNj ) = 0,
E(ξj,Nξ′j,N |GNj ) = 1

6 .

This lemma, based on elementary computations, is mentioned in Gloter
(2000).

Theorem 7. Assume (A1)-(A5).

1. If δN = p−αN with α ∈ (1, 2) (∆N = p1−α
N ) and (B1) (ρN = ρ > 0),

then

Q̄N (f(., θ)) =
1

kN∆N

kN−2∑
j=1

f(Y j−1
• , θ)(Y j+1

• −Y j
• )2 P−→ 2

3
ν0(f(., θ)σ2),

(29)

2. If δN = p−2
N (∆N = 1

pN
) and (B1) (ρN = ρ > 0), then

Q̄N (f(., θ)) P−→ 2
3
ν0(f(., θ)σ2) + 2ρ2ν0(f(., θ)), (30)
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3. If δN = p−αN , α ∈ (1, 2] with (B2) (ρN → 0), then

Q̄N (f(., θ)) P−→ 2
3
ν0(f(., θ)σ2), (31)

where all the convergences in probability are uniform in θ ∈ Θ, as N →∞,
with δN → 0, pN →∞, kN →∞, ∆N → 0 and NδN →∞.

Lemma 6. Assume (A1)-(A3). Let f ∈ C1(R × O), where O is an open
neighbourhood of Θ, satisfy

sup
θ∈Θ
{|f(x, θ)|+ |∂xf(x, θ)|+ |∂θf(x, θ)|} ≤ C(1 + |x|)

then:
1
kN

kN−1∑
j=0

f(Xj∆N
, θ) −→

kN→∞
ν0(f(., θ)) (32)

uniformly in θ, in probability.

In Favetto (2010), several properties of Y j
• and some results of con-

vergence in probability for functionals of the blocks have been established.
Recall that the random variables ζj,N and ζ ′j+1,N are defined in (4.8), and
Lemma 4 is used to establish convergence in probability results.

Proposition 2. Under Assumptions (A1)-(A2) and (A5), we have

Y j+1
• −Y j

• = ∆Nb(Xj∆N
)+σ(Xj∆N

)(ζj+1,N +ζ ′j+2,N )+τj,N +ρN (εj+1
• −εj•)

where τj,N is HNj+2 mesurable, and there exists a constant c such that

|E(τj,N |GNj )| ≤ c∆N (∆N (1 + |Xj∆N
|3) + ρ2

N

√
E((εj•)4)),

E(τ2
j,N |GNj ) ≤ c∆N (1 + |Xj∆N

|2 + ρ2
NE((εj•)

2))(∆N (1 + |Xj∆N
|4) + ρ2

N

√
E((εj•)4)),

E(τ4
j,N |GNj ) ≤ c(1 + |Xj∆N

|4 + ρ4
NE((εj•)

4))(∆4
N (1 + |Xj∆N

|4) + ρ4
N

√
E((εj•)8)),

|E(τj,Nζj+1,N |GNj )| ≤ c∆N (1 + |Xj∆N
|2 + ρ2

NE((εj•)
2))(∆N (1 + |Xj∆N

|4) + ρ2
N

√
E((εj•)4)),

|E(τj,Nζ ′j+2,N |GNj )| ≤ c∆N (1 + |Xj∆N
|2 + ρ2

NE((εj•)
2))(∆N (1 + |Xj∆N

|4) + ρ2
N

√
E((εj•)4).
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