
HAL Id: hal-00531052
https://hal.science/hal-00531052

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are Functional Languages a good way to represent
productive meta-models ?

Sébastien Mosser

To cite this version:
Sébastien Mosser. Are Functional Languages a good way to represent productive meta-models ?. 4th
European Lisp Workshop (ELW’07), Jul 2007, Berlin, Germany, France. pp.1-6. �hal-00531052�

https://hal.science/hal-00531052
https://hal.archives-ouvertes.fr

Are functional languages a good way to represent

productive meta–models ?

Sébastien Mosser

University of Nice (France)
CNRS – I3S Lab – Rainbow team

4th European Lisp Workshop, ECOOP’07

Abstract

Following Model Driven Development guidelines, developers will de-
fine meta–models, models and then implement transformations between
models. Existing tools based on models require highly specific skills and
knowledge from developers, and use Domain Specific Language (Dsl) as
the entry point for final users.

Is it possible to describe Dsl–based meta–models using functional pro-
gramming concepts and languages ? Can we do fast Model Driven Devel-

opment using such techniques ?

1 Introduction : a model world

The Model Driven Architecture [OMG, 2005] paradigm is based on model defi-
nitions and model transformations (or refinement). High-level abstract models
are progressively transformed into concrete platform models. As an endless
hierarchy, each model is described by a meta–model, itself a model.

Comparisons between models and grammar have been studied since several
years [Klint et al., 2005]. For example, the Lisp language describes Lisp pro-
grams, and the compiler will transform it into native code at runtime. Therefore,
Lisp language can be considered as a meta–model describing Lisp programs
Platform Independent Model, and the interpreter implements a transformation
from this Pim to native executable code Platform Specific Model.

Model–focused researches are based on standards like Uml, Atl, Qvt, . . .
In [Muller and Hassenforder, 2005], the authors show a bridge between Domain
Specific Languages (Dsl) based GrammarWare and ModelWare using those
techniques.

The goal of this short paper is to discuss, relying on our experience in def-
inition of meta–models, how functional programming concepts can be used to
define Dsl–based meta–models and implement transformations. Section 2 de-
scribes a simple meta–model and identifies some transformations. We propose

1

a functional approach of model definition and transformations in section 3. Sec-
tion 4 describes a related work developed by our team using this technique,
and discusses some limits discovered during this development. Finally, section
5 concludes this paper.

2 A productive meta–model example

We use as an example a simplified meta–model for arithmetic binary expression.
We inductively define an expression as a number (sequence of digits) or as a
binary operator applied to two expressions. A Dsl (Fig. 1) support model
definition following this meta–model (Fig. 2(a)).

Binary expression meta–model is considered as productive regarding possible
refinements. An expression can be transformed into several target models. This
section focus on two kinds of targets : (i) evaluation platforms and (ii) display
platforms.

Root ::= <Expr>

Expr ::= 0 | [1 − 9]+[0 − 9]∗ | (<Expr>)

| <Expr> + <Expr> | <Expr> − <Expr>

| <Expr> ∗ <Expr> | <Expr> / <Expr>

Figure 1: Binary expression simplified grammar

(a) Uml expressions meta–model (b) Model example

Figure 2: Uml description

2

Models : Using this Dsl, users can express models. We consider in this
paper as an example the expression e defined as e = ((20+32)−(5∗4))/2 (Uml

instantiation is shown in Fig. 2(b)).

Model productions : There are a lot of existent heterogeneous languages
able to evaluate a binary expression like e. We can use for example (i) dc

(reversed polish notation), (ii) Lisp (fully nested and parenthesised notation)
or (iii) Python (infix notation). Tab. 1 show concrete syntax for e using those
languages.

Language Concrete Syntax describing e

dc dc -e "20 32 + 5 4 * - 2 / p"

Lisp (format t "~a~%" (/ (- (+ 20 32) (* 5 4)) 2))

Python print ((20+32) - (5*4)) / 2

Table 1: Expression evaluation target languages

We could also display mathematical expression using various tools, like
LATEX, GraphViz, MathML,. . . as shown in Fig. 3. Instead of the previous
ones, those meta–models use a very different basis than the source meta–model.

e = (20+32)−(5×4)
2

(a) LATEX (b) GraphViz

Figure 3: Expression display target languages

Productive meta–models implementation : There are several usual ap-
proaches of productive meta–model implementation. A first way is to consider
models as objects graphs and use design patterns [Gamma et al., 1993] to im-
plement transformations (as a visit of the object graph). Another way is to
implement models and transformations as in [Muller et al., 2005], using spe-
cialised environment.

Problems : Those techniques are heavyweight. To implement expected
transformations, you will have to formally define source and targets meta–model
elements, using specialised tools or “good practices”. Even in front of a simple

3

problem (e.g. transform an abstract arithmetic expression into several targets
in a extensible way), the initial problem seem overwhelmed by those tools.

3 Model transformations as s–expr evaluation

Models & Transformations : We propose to use functional languages s–
expressions to represent a productive meta–model. The Dsl compiler will pro-
duce unevaluated s–expressions instead of objects graphs.

As models are defined as s–expressions, models transformations or refine-
ments can be implemented using native Lisp function definitions mechanisms.
A transformation is then implemented as a set of function definitions, following
meta–model definition and targeted platform specificities.

Example : We define in the following code (Listing. 1, line 2) an s–
expression1 for e , and two possible transformations. The first one produces
interpretable Lisp code, and the second one produces dc command line invoca-
tion. The project website (cf. section 4) shows more complex transformations
based on another meta–model.

1 ;; e <- ((20 + 32) - (5 * 4)) / 2

(setq e (quote (root (divide (minus (plus 20 32) (star 5 4) 2)))))

3

;; Example #1 : s-expr -> Lisp code

5 (defun root (exp) (format t "~a = ~a~%" exp (eval exp)))

(defun divide (a b) (list (quote /) a b))

7 (defun minus (a b) (list (quote -) a b))

(defun plus (a b) (list (quote +) a b))

9 (defun star (a b) (list (quote *) a b))

(eval e)

11

;; Example #2 : s-expr -> dc command line

13 (defun root (exp) (format t "dc -e \"~a p\" ~%" exp))

(defun divide (a b) (format nil "~a ~a / " a b))

15 (defun minus (a b) (format nil "~a ~a - " a b))

(defun plus (a b) (format nil "~a ~a + " a b))

17 (defun star (a b) (format nil "~a ~a * " a b))

(eval e)

Listing 1: Model and transformations examples

4 Validation : reaching the limits . . .

Our team is working on Web Services Orchestrations merge 2 [Nemo et al., 2007].
Enterprise use Web Services Business Process Execution Language (Wsbpel

[OASIS, 2007]) to describe orchestrations. Wsbpel is a huge and complex Xml

1As mathematical operators still obviously exists in Lisp, we refer to our − binary operator
using minus symbolic name, . . .

2Adore Project : http://rainbow.i3s.unice.fr/adore

4

dialect. We define a simplified orchestration language called Boa to foster pro-
totyping of abstract orchestrations.

Boa–defined orchestrations have to be transformed into (i) Prolog facts
(merging), (ii) C# code (execution) and (iii) GraphViz description (display).

Boac, a DSL to s–expr compiler : We implement a Dsl compiler sup-
porting Boa meta–model (available on the project website). This compiler is
written using a functional language, and produces unevaluated s–expressions.
We implement needed transformations using previously shown technique, by
defining functions. It results in a simple compiler source code and really concise
and readable transformations expressions.

Discussion : The Lisp evaluation mechanism use an depth–first evaluation
of s–expression, which seems to be a handicap for some meta–models. But,
definition of macros or continuations can be used to handle evaluation and
solve this problem.

Short and elegant code is more easy to understand than long and complex
code. Following the well-known “Small is beautiful” proverb, we decide to avoid
Swiss Army knifes function definitions. For example, we implement variable
declaration validation, type consistency checking and design–time defects de-
tection as three different set of functions, sequentially evaluated. This approach
is not optimal in performance terms, but ensures extensibility and maintain-
ability.

As boac is a young experiment, we do not address model evolution and
tracking concerns for now.

5 Conclusion

In this paper, we show that some meta–models can be defined using functional
concepts, and then transformed using native evaluation mechanisms. We also
validate our idea on a real–life software, ready to use rapidly and available for
download on the project website.

A lot of meta–models are in facts languages abstraction. Microsoft choose to
see Model Driven Development as Language Driven Development. In these cases,
functional representations seem to be a good way to express pivot meta–model
and to express different transformations. Functional languages answer criteria
listed in [Oldevik et al., 2004] about Model to Text transformations needs.

Functional mechanisms can express Mda concepts, and are closer than peo-
ple usually think. We defend that a functional approach of model transforma-
tion may fill the gap between those two worlds. Obvious limits and criticism can
easily be handled by Lisp native mechanism, relying on a solid and well-known
basis. As Lisp initial concepts engender a lot of object features (Clos, dynamic
typing, . . .), it can maybe be used to enrich Mda features, as a virtual machine
for model interpretation.

5

References

[Gamma et al., 1993] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1993). Design patterns: Abstraction and reuse of object-oriented design.
Lecture Notes in Computer Science, 707:406–431.

[Klint et al., 2005] Klint, P., Lammel, R., and Verhoef, C. (2005). Toward an
engineering discipline for grammarware. ACM Trans. Softw. Eng. Methodol.,
14(3):331–380.

[Muller et al., 2005] Muller, P.-A., Fleurey, F., Vojtisek, D., Drey, Z., Pollet, D.,
Fondement, F., Studer, P., and Jézéquel, J.-M. (2005). On Executable Meta-
Languages applied to Model Transformations. In Model Transformations In
Practice Workshop.

[Muller and Hassenforder, 2005] Muller, P.-A. and Hassenforder, M. (2005).
HUTN as a Bridge between ModelWare and GrammarWare . In WISME
Workshop, MODELS / UML’2005 (WISME), Montego Bay, Jamaica.

[Nemo et al., 2007] Nemo, C., Blay-Fornarino, M., Kniesel, G., and Riveill,
M. (2007). SEMANTIC ORCHESTRATIONS MERGING - Towards Com-
position of Overlapping Orchestrations. In Filipe, J., editor, 9th Interna-
tional Conference on Enterprise Information Systems (ICEIS’2007), Funchal,
Madeira.

[OASIS, 2007] OASIS (2007). Web services business process execution language
version 2.0. Technical report, OASIS.

[Oldevik et al., 2004] Oldevik, J., Neple, T., and Aagedal, J. O. (2004). Model
Abstraction versus Model to Text Transformation. In Second European Work-
shop on Model Driven Architecture (MDA). University of Kent.

[OMG, 2005] OMG (2005). Model driven architecture official website.
http://www.omg.org/mda/.

6

