
HAL Id: hal-00531051
https://hal.science/hal-00531051v1

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Services Orchestration Evolution : A Merge
Process For Behavioral Evolution

Sébastien Mosser, Mireille Blay-Fornarino, Michel Riveill

To cite this version:
Sébastien Mosser, Mireille Blay-Fornarino, Michel Riveill. Web Services Orchestration Evolution :
A Merge Process For Behavioral Evolution. 2nd European Conference on Software Architec-
ture(ECSA’08), Sep 2008, Paphos, Cyprus. pp.1-16. �hal-00531051�

https://hal.science/hal-00531051v1
https://hal.archives-ouvertes.fr

Web services orchestrations evolution:

A merge process for behavioral evolution

Sébastien Mosser, Mireille Blay–Fornarino, and Michel Riveill

University of Nice Sophia – Antipolis
Cnrs, I3s Laboratory, Rainbow team

Sophia Antipolis, France
{mosser,blay,riveill}@polytech.unice.fr

Abstract. Services Oriented Architectures preach loosely-coupled ser-
vices and high–level composition mechanisms, using for example Web
Services to define services and Orchestrations to compose them. But or-
chestration evolutions imply modification at source code level. This arti-
cle shows how the orchestration paradigm itself can be used to support
evolution of Web Services Orchestrations through a behavioral merge
process. Using the same model to express orchestrations and evolutions,
we expose formally and illustrate in this contribution a merging process
helping Wsoa administrators to deal with behavioral evolutions.

1 Introduction

Services Oriented Architectures (Soa) [1] use the concept of service as an el-
ementary brick to assemble complex systems. Services are loosely–coupled by
definition, and complex services are build upon basics ones using compositions
mechanisms. The loose coupling methodology enables the separation of concerns
and helps systems evolution.

Using Web Services as elementary services, and Orchestrations [2] as compo-
sition mechanism, Web Service Oriented Architectures (Wsoa) provides a way
to implement these loosely–coupled architectures. W3c define orchestrations as
“the pattern of interactions that a Web Service agent must follow in order to
achieve its goal” [3]. Specialized (i.e. elementary) code is written inside Web
Services, and business processes are described as an orchestration of those Web
Services.

Code manipulations, like the refactoring operation, help software evolution
support. In [4], authors identify some challenges for future research on software
evolution and focus on the abstraction need. Lehman identifies as his first “Law
of Software Evolution” [5] that “A program that is used must be continually
adapted else it becomes progressively less satisfactory”. As Wsoa focus on busi-
ness reactivity and eternal adaptation to fit with market and anticipate trends,
this well–known law makes sense twenty four hours a day.

This contribution deals with Wsoa orchestrations evolutions, focusing on
behavioral evolutions. Our originality is to use the same model to represent the

behavior of orchestrations and evolutions. We propose a merging algorithm build
upon this formal model helping integration of evolutions into orchestrations.

We identify in Sect. 2 the need of evolution capabilities inside orchestrations.
Sect. 3 proposes a high level model for orchestrations supporting evolution rea-
soning and Sect. 4 shows how this model works on an example. Sect. 5 exposes
validation of this work, Sect. 6 discusses related work about orchestrations evo-
lution mechanisms. Finally, Sect. 7 concludes this paper and shows perspectives
of our contribution.

2 Orchestration behavioral evolutions

Following the W3c definition, orchestrations can be represented as a “white–
box service”: “service” because it basically defines a public interface (including
data types) and “white–box” means that we can understand the behavior of such
services, defined as the exchange of messages between other services.

Obviously, orchestrations can evolve in three ways: (i) interface, (ii) data
type and (iii) behavior. This study focuses on static behavioral changes, i.e. the
evolution process (presented here in Sect 3) handles orchestrations and evolu-
tion in a non–production state. Interface and data types evolutions are out of
the scope of this paper, and refer more to refactoring [6] and model checking
concepts.

In [7], authors sketched a taxonomy dealing with software changes and evo-
lution. Using this taxonomy, we express in Tab. 1 the kind of evolutions this
contribution deals with: our goal is to propose a partially–automated evolution
process using a high–level reasoning abstraction.

Temporal Properties (When)

Time of change: static Change history: parallel

Change frequency: periodically Anticipation: unanticipated

Object of Change (Where)

Artifact: orchestration Granularity: coarse–grained

Change propagation: traceable Impact: local

Change Support (How)

Degree of Automation: partially–automated Change Type: semantic

Degree of Formality: partial –

Table 1. Wsoa evolution using [Buckley et al, 2005] taxonomy

Example: We consider here an application called Seduite, based on a Wsoa.
This software uses different atomic services as information sources and users
access to information using an orchestration called InfoProvider (Fig. 1). It
describes a basic business process: using an authorization ticket and a user

profile as input data, it will return informations as result from a source
called News in accordance with profile, if the given ticket is a valid ticket.
Two kinds of evolutions commonly encountered1 can be illustrated through the
Seduite example:

– How to add a new source of information service into InfoProvider (e.g. a
weather forecasting service, a calendar service, events notification, restaurant
menu, TV shows, . . .).

– How to ensure that a given input profile is correct (not empty, conform with
current usage of the application, . . .) before invoking sources ?

Fig. 1. InfoProvider orchestration using Eclipse Bpel Designer

Obviously, all these kinds of behavioral evolutions can be done at the orches-
tration language level by editing the source code (e.g. adding some activities,
conditional statements, exceptions, . . .) but this process is error-prone and off–
putting.

Moreover, when the user wants to apply n different evolutions into the same
orchestration (e.g. adding two new sources of informations), she can expect from
the system some support mechanisms to ease the task. Our goal is to automate
this process, providing an evolutions merging algorithm. This algorithm lets the
user focus on evolution interactions and semantic. Next sections focus on these
points, proposing an orchestration model able to merge evolutions.

1 More informations and use cases at http://anubis.polytech.unice.fr/jSeduite

3 A high level reasoning model: “ADORE”

To perform high level composition and to allow reasoning on orchestrations and
evolutions, we define a model called Adore : “Activity moDel suppOrting oR-
chestration Evolution”. This section describes formally this model, and shows on
the Seduite example how we can express an existing orchestration using it. It
also describes the meaning of the Merge operation enabling our process.

3.1 ADORE formalism: Orchestrations & Evolutions

Orchestration: An orchestration is a tuple (A⋆,≺⋆) representing a behavior.
A⋆ is a set of Activity {a1, . . . , an} and ≺⋆ a partial ordering between these
activities.

Activity: An activity is a tuple (uid, K, V ⋆
in, Vout, G

⋆). Each activity is unique
inside an Orchestration and identified by uid. K refers to the Kind of this ac-
tivity, V ⋆

in (resp. Vout) represent inputs (resp. output) Variables (identified by
name). Constants are represented as variables with immutable content. An ac-
tivity can take multiple input variables {in1 . . . inn} but returns exactly one
result Vout (possibly ∅). G⋆ represents conditional guards and allows conditional
expressions (if/then/else).

Partial ordering (≺, precedence rules): Activities are ordered using an operator
≺. The expression a1 ≺ a2 is called a precedence rule and means that a2 must
wait the end of a1 to start its own execution. As our algorithm is based on acyclic
behavior, we do not allow loop expressiveness for now.

Kind: We use in that model a subset of Bpel specifications [8]. We consider the
following kind of allowed activity: (i) variable assignment (assign(function)),
(ii) service invocation (invoke(Service,Operation)), (iii) message reception
(receive), (iv) response sending (reply) and (v) fault report (throw). To deal
with conditional statement, we add a test activity (a test activity evaluate a
boolean predicate. It has exactly one output variable).

Guards: Guards refers to the expected test activity, and add a “true or false”
semantic into our model. Adding guard(at, true) as a guard on an activity a

means that a will start only if at (which is a test activity) output is evaluated
to true. Implicitly, it exists a precedence rule at ≺ a.

Fig. 2 represents the InfoProvider orchestration using both textual and
graphical formalisms (inspired by Uml activity diagrams).

Evolution: An Evolution can be considered as a piece of orchestration which
can be plugged into existing orchestrations. Evolution is therefore as a superset
of orchestrations. A⋆ contains exactly one hook special activity which represent
where the evolution will be connected into an orchestration.

O = ({a1, . . . , a6}, {a1 ≺ a2, a2 ≺ a3, a3 ≺ a4, a4 ≺ a5, a3 ≺ a6})

a1 ≡ (a1, receive, {ticket, profile}, ∅, ∅)

a2 ≡ (a2, invoke(Auth, Check), {ticket}, c, ∅)

a3 ≡ (a3, test(isEqual), {c, true}, ok, ∅)

a4 ≡ (a4, invoke(News, GetInfo), {profile}, result, {guard(a3, true)})

a5 ≡ (a5, reply, {result}, ∅, {guard(a3, true)})

a6 ≡ (a6, throw, {“Bad Ticket”}, ∅, {guard(a3, false)})

Fig. 2. O ≡ Infoprovider orchestration using Adore formalism

Two special activities P and S refers to targeted orchestrations where they
represent hook predecessors (resp. successors) in targeted partial ordering. Con-
sidering Evolution as a superset of Orchestration means that an orchestration
cannot contains any hook, P or S occurrence. Fig. 3 represent graphically an
evolution.

Substitution: Stickel defines a substitution σ in [9] as “a set of substitution
components with distinct first elements, that is, distinct variables being substi-
tuted for”. A substitution component is an ordered pair of two variables x and
y (written as x → y), denoting the replacement of the x by y (x cannot be a
constant). Applying a substitution on an activity performs those replacements.

As boxes and arrows are more readable than huge sets of equations, we define
a graphical syntax to represent Adore entities. Inspired from the Uml activity
diagram formalism, each activity is represented as a box, and precedence rules
using arrows between boxes (a1 → a2 ≡ a1 ≺ a2). Guards are represented
as labels on arrows. To represent hook predecessors and successors, we use the
start/end syntax from Uml: • refers to P, and ⊙ to S.

3.2 Merging process

Using the Adore model, we define a merging process enabling the automatic in-
tegration of n evolutions into an orchestration. This process composes evolutions
between each others, and then, merge the resulting evolution with the targeted
orchestration.

Global overview: Merge({e1, . . . , en}, {k1, . . . , km}, o, b) → o′

The process takes as input a set of evolutions {e1, . . . , en}. As merge conflicts can
occur, user can express some knowledge {k1, . . . , km} to solve them. A knowl-
edge ki can be a substitution component σi, or new elements to add (activity,
precedence rule or guard). The target of the evolution is an orchestration o and
a binding b ≡ bind(hook → ai) expresses where the evolution will be integrated
inside o activities. The process results in a new orchestration o′. It does not
have any side effects on existing orchestration or evolutions, as it works on a
duplicated set of elements2. We consider it as a four steps process, described
here.

1) Merge({e1, . . . , en}, {k1, . . . , km}) → e′ (“Evolution merge”)
As the global process does not have any side effect, all elements (activity, prece-
dence) of {e1, . . . , en} are duplicated before doing anything. This step produces
a new evolution e′, where all evolutions {e1, . . . , en} are merged. From all hook
points {h1, . . . , hn}, we generate a new activity h′ where input variables set is
the union of hi input variables set. The output variable is unified into a new

2 Duplication implies variable renaming to avoid conflicts and new uids for concerned
activities.

one (using a σ). The partial ordering of e′ is an union of existing partial order-
ing, taking care of hooks unification. Guards on h′ are composed as a union of
existing guards on hi, and propagated to h′ successors.

2) DetectConflict(e′) → {conflict1, . . . , conflictn} (“Conflict detection”)
At this step, we analyze the output of the previous step and detect if needed some
merge conflicts3. Some constructions are not allowed in orchestration formalism,
like (i)concurrent write access to a variable, (ii) multiple reply activities (under
non–exclusive conditions), (iii) multiple throw activities (under non–exclusive
conditions) or (iv) write access to a constant. To perform conflict resolution,
we use an incremental approach [11]: the process automatically returns conflicts
to the user, and she gives in response a knowledge (ki, e.g. adding an order
between two concurrent write access to a variable) to solve this conflict. The
merging process is then recalled with this new knowledge.

3) Merge(o, e′, b, {k1, . . . , km}) → o′ (“Orchestration merge”)
Here, we consider that e′ represents the merged evolution (output of step 2) with-
out any conflicts. We now integrate e′ into the original orchestration (following
the binding specification b ≡ σ(hook → ah)) and produce a new orchestration
o′. P and S are substituted with ah predecessors and successors. We compute a
unifying substitution where each hook variable (input, output) is bound to its
equivalent in ah. As in step 1, we perform guards union and propagate resulting
guard set to ah successors.

4) DetectConflict(o′) → {conflict1, . . . , conflictn} (“Conflict detection”)
This step is similar to step two except that a new kind of conflict based on
evolution variables can be detected: all used variables must be declared and
assigned before attempting to be read. Orchestration parameters are assigned as
receive inputs (receiving a constant is considered as a conflict). Other variables
are assigned when used as output of an activity.

As a conclusion, we can see that step 1 and 2 can be done in an abstract manner:
they consist of composing evolutions, without any knowledge about target. The
last steps imply real knowledge about the target, and business–specific skills.
These two operations can be performed by two different users.

4 Illustrating merge process

This section illustrates the previously defined merge process. The first part ex-
plains on an example how activities duplication and unification works. The sec-
ond part illustrates a full merge process, integrating three evolutions into the
InfoProvider orchestration.

3 More information about conflict detection can be found in [10].

4.1 Activities management: duplication, substitution & unification

Guided by the Seduite description, we can imagine a frequent action for the
administrator: “How to add a new source of information ?”. To automate this
action, an evolution Es is expressed (Fig. 3). Es invokes a NewSource service,
and appends its result to the result of the hook activity.

ES ≡ ({h, p2, p3},

{P ≺ h, h ≺ p2, p2 ≺ p3, p3 ≺ S})

h ≡ (h, hook, {P}, R, ∅)

p2 ≡ (p2, invoke(NewSource, GetInfo),

{P}, NS, ∅)

p3 ≡ (p3, assign(append), {R, NS}, R, ∅)

Fig. 3. Es ≡ “How to add a new source of informations ?”

Es describes abstractly how to add a new source of informations. If an ad-
ministrator wants to add a Weather source of information, she will specialize the
semantic of this evolution using a substitution σx. Now, we consider two evo-
lutions obtained by substitutions from the previous one (Ew adding a Weather

source, and Ee adding an Events source) and focus on the first and second steps
of the merge process, i.e. applying Ew⊕e ≡ Merge({Ew, Ee}, ∅) .

σw ≡ σ({NewSource → Weather}) ⇒ Ew ≡ σw(Es)

σe ≡ σ({NewSource → Events}) ⇒ Ee ≡ σe(Es)

First of all, we duplicate each activity to avoid naming conflict (uids, variable
names). The duplication produces the following result:

EEw∪Ee
≡ rename(Ew) ∪ rename(Ee)

≡ ({hw, pw
2
, pw

3
, he, pe

2
, pe

3
},

{P ≺ hw, hw ≺ pw
2
, pw

2
≺ pw

3
, pw

3
≺ S, P ≺ he, he ≺ pe

2
, pe

2
≺ pe

3
, pe

3
≺ S})

hw ≡ (hw, hook, {Pw}, Rw, ∅)

pw
2
≡ (pw

2
, invoke(Weather,GetInfo), {Pw}, NSw, ∅)

pw
3
≡ (pw

3
, assign(append), {Rw, NSw}, RW , ∅)

he ≡ (he, hook, {Pe}, Re, ∅)

pe
2
≡ (pe

2
, invoke(Events, GetInfo), {Pe}, NSe, ∅)

pe
3
≡ (pe

3
, assign(append), {Re, NSe}, Re, ∅)

The process will now perform merge of he and hw into h. As Rw and Re are
output variables of a unified activity, they must be unified too in a R variable.
The process does not have any knowledge ki about inputs parameters Pw and Pe,
and treat them as two different variables. This merge produces a substitution we
apply onto the merged evolution to produce Fig. 4 result. The conflict detection
step (DetectConflict(Ew⊕e)) will return a conflict, as there is no precedence
rule between two different write into variable R.

Fig. 4. Merge({Ew, Ee}, ∅) ⇒ ConcurrentWriteConflict(R, {pw
3 , pe

3})

To solve this conflict, we add a precedence rule between these two activities.
If we consider that Weather information is more important than Events one, we
can express a knowledge k1 to represent it. Even if there is no conflict leading
to it, we can also specify to the merging process using k2 that the hook input
variables have to be substituted to the same P variable.

k1 ≡ augmentOrder(pw
3
≺ pe

3
)

k2 ≡ σ({Pw → P, Pe → P})

These knowledge allow the merge process to perform full merge, and conflict
detection returns an empty set of conflicts. We obtain as output a new evolution
Ew⊕e, Fig. 5.

4.2 Practicing the merge algorithm

In this section, we consider that the administrator wants to perform the following
evolutions inside InfoProvider (Fig. 2): (i) add a weather source of informa-
tion (Ew), (ii) add an events source of information (Ee) and (iii) check profile

Fig. 5. Ew⊕e ≡ Merge({Ew, Ee}, {k1, k2})

correctness before attempting to retrieve informations (Ep). Ep asks a service
to verify the given profile, and throws an exception if this profile is not correct
(Fig. 6).

Fig. 6. Ep ≡ Checking profile correctness evolution

As we attempt to merge Ew and Ep for a second time, we reuse the knowledge
set {k1, k2} from previous section and avoid the conflict detection step to clarify
text. The administrator knows that all hook parameters should be unified, as
they all refer to profile. She expresses this knowledge by adding a knowledge

k3 expressing this unification between hook parameters:

k1 ≡ augmentOrder(pw
3
≺ pe

3
)

k2 ≡ σ({Pw → P, Pe → P})

k3 ≡ σ({Q → P})

Following the merge algorithm, we perform Merge({Ew, Ee, Ep}, {k1, k2, k3})
and compute Ew⊕e⊕p (Fig. 7) as a result of the first merge step. The guard on
hook coming from Ep is propagated to successors of hook (now guarded by
guard(q2, true)). As there is no conflict detected at second step, we can perform
the orchestration merge. Our evolution must be hooked on information retrieving
activity in o, i.e. a4.

Fig. 7. Ew⊕e⊕p ≡ Merge({Ew, Ee, Ep}, {k1, k2, k3})

When invoking Merge(o,Ew⊕e⊕p, bind(hook → a4){k1, k2, k3}) at third step,
the merge process binds hook with a4. We perform usual substitution of hook

output variable with a4 output variable, without any conflict. Moreover, as a4

and hook activities have only one input variable, we can deduce a unification
between these two variables. The activity q1 interacts with a1, and it generates an
UnassignedVariable conflict (q1 read profile content, but has no predecessors).
As profile is an input of o, this assignment is performed by the receive activity
a1. We can automatically add a precedence rule a1 ≺ q1 to solve this conflict.
Fig. 8 represents the final orchestration o′, result of the merge process.

Fig. 8. O′ ≡ Merge({Ew, Ee, Ep}, {k1, k2, k3}, o, σ(hook → a4))

5 Validation & Implementation

Seduite example analysis: We can analyze the example shown previously using
some metrics. We compare the obtained behavior with respect to three parame-
ters: (i) |Act| the cardinality of activities set, (ii) | ≺ | the cardinality of partial
orderings and (iii) |k| the cardinality of the knowledge set. We use the |Xm| no-
tation to express how many elements of |X| were impacted by the merge process
.

Tab 2 exposes results of this analysis. The last line analyzes the final or-
chestration o′. We can see that 93% of precedence rules can be automatically
managed by the merge process. Moreover, 54% of activities must be adapted
to be consistent with the evolution, and all these adaptations are automatically
performed by the merge process.

Behavior |Act| |Actm| | ≺ | | ≺m | |k| |km|

Ew⊕e 5 5 (100%) 7 6 (85%) 2 –

Ep⊕w⊕e 8 6 (75%) 10 9 (90%) 3 –

O′ 13 7 (54%) 14 13 (93%) 4 1 (25%)

Table 2. Measuring Merge impact on Seduite example

Implementation: the merge process is implemented using Prolog. It allows
partially–automated orchestration evolution. Based on Emf [12], we develop a
model-driven software to deal with the merge process. A Java object front–end
allows final user to interactively use the Prolog merge engine in a user–friendly
way. More information can be found on Adore web-site4.

The Seduite system is used to support research on user profiles management
[13] and to validate a French national research project called Faros5, dealing
with Soa reliability. The InfoProvider orchestration is implemented using the
Bpel 2.0 standard. It runs over the Apache Ode open–source orchestration
engine. Seduite applications should be deployed in different academic institu-
tions. We are working on a user-friendly environnment that supports controled
evolutions. It ’s the current validation for web services orchestrations evolution
merging. More information about Seduite implementation can be found on
Seduite web site6. Further validation is an ongoing work. We focus our exper-
iments on large–scale work-flows from grid–computing research field.

6 Related work & Discussions

In [14], Rémy Douence defines Aspect Oriented Programming (Aop) as:

4 http://rainbow.i3s.unice.fr/adore
5 http://www.lifl.fr/faros (french only)
6 http//anubis.polytech.unice.fr/jSeduite

Aop is a set of language mechanisms which enable the introduction of
non anticipated functionalities in a base application. Without these mech-
anisms, the code of the base application should be modified in several
locations. Aop enables to modularise these functionalities

Existent work [15, 16] bind Aop concepts to Orchestrations. These approaches
weave aspects inside the orchestration engine, and allow integration of unforeseen
evolutions directly into the targeted orchestration. These approaches imply mod-
ifications of orchestration engines to add the aspect weaver inside it. Moreover,
users will have to (i) implement their orchestrations using Bpel, (ii) use the
aspect language to express new functionality and finally (iii) deploy orchestra-
tions and weave aspects into an ad’hoc engine. Aspects interactions (i.e. different
aspects woven at the same point) are solved by ordering aspect codes into block
(this code will be executed before that one). Aop considers special keywords to
decorate pointcuts with advices (before, around, after) and use proceed keyword
to represent normal behavior of woven code. Considering the hook as a proceed

and its binding as a pointcut selection, our approach supports the enhancement
of the original behavior of an orchestration. As we reify and then merge behav-
ior instead of expressing advice as black boxes and ordering them, we focus on
parallel execution of distinct evolutions (we do not create order between evolu-
tions unless it is necessary). Moreover, the Adore behavior reification allows
evolution to be composed in a quasi–automatic way, detecting conflits to ensure
orchestration validity. Contrarily to Aop which can be dynamic, our approach
only considers static evolutions. The evolution process is done at model level
and then refined after success into Bpel code using usual models transforma-
tion tools. This approach does not require any specific orchestration engine. As
soon as orchestration engines will support dynamic orchestration changes, our
approach could be used at runtime.

Former work [17] defines an associative and commutative merge algorithm
dealing with components interactions. As this approach is a superset of the pre-
vious one focused on orchestrations and Wsoa, we can restrict the algorithm
described here to ensure associativity and commutativity. If we consider evolu-
tions always using a usual schema7 and no conflict resolution rules, we can ensure
theses properties. Proving associativity and commutativity in others cases is an
ongoing work.

Similar to the Uml templates, evolutions define generic orchestration view
whose some variables (template parameters) need to be bound. The Adore

model is dedicated to orchestration merging and binding step implies automatic
composition of elements. Knowldege is used to reduce the space adressed by
an evolution or to solve a conflict during this automatic merging. It plays the
equivalent role as composition directives as defined in [18] to compose models.

In conclusion, we claim that a high level reasoning model such as our merge
algorithm helps composition mechanisms.

7
P ≺ hook ≺ S

7 Conclusions & Perspectives

In this article, we addressed the problem of Web Services orchestrations evolution
on behavioral part. After identifying some needs of evolution capability on a
real case orchestration, we restrict our investigations to behavioral evolutions.
A formal model called Adore is proposed and we define a merge algorithm
able to compose in a quasi–automatic way evolutions into orchestrations. We
also show on an example how the algorithm works, detailing each steps of the
merge process and focusing on non–trivial parts. Furthermore, we show how this
process can help evolution composition and discuss our work with respect to
related work.

The work presented in this paper collaborates with the Wsoa administrator
for resolving semantic choices. She will help variable unification and conflict res-
olution using her knowledge and skills on the system. As the knowledge domain
is closed to enterprise system boundaries, we can imagine some semantic web
mechanisms to express such knowledge and capitalize enterprise knowledge.

We only consider evolution processes as an enrichment of an orchestration.
We never address the activities removal problem or activity substitution. Aop

define a delegate keyword to substitute the original behavior with a new one
[19]. The merge algorithm will have to be modified to take care of this kind of
evolution. So far, we consider evolution removal as a very simple operation: we
take the original orchestration and the set of wanted evolutions, excepted the
removed one. Finer grain mechanisms can be envisaged to deal with evolution
removal.

The merge algorithm presented here considers only one hook binding inside
the original orchestration. But it could be useful to allow multiple bindings (e.g.
selecting all reply activities inside an orchestration) at merge time. We also
consider that a hook point is an atomic activity. But evolutions can be applied
to a block of activities, adding scope concerns to the merge process [20]. These
two considerations implies the composition of overlapping evolutions when such
a situation occurs.

References

1. MacKenzie, M., Laskey, K., McCabe, F., Brown, P., Metz, R.: Reference Model
for Service Oriented Architecture 1.0. Technical Report wd-soa-rm-cd1, OASIS
(February 2006)

2. Peltz, C.: Web services orchestration and choreography. Computer 36(10) (2003)
3. W3C: Web service glossary. Technical report (2004)
4. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:

Challenges in software evolution. In: IWPSE ’05: Proceedings of the Eighth In-
ternational Workshop on Principles of Software Evolution, Washington, DC, USA,
IEEE Computer Society (2005) 13–22

5. Lehman, M.M.: Laws of software evolution revisited. In: EWSPT ’96: Proceedings
of the 5th European Workshop on Software Process Technology, London, UK,
Springer-Verlag (1996) 108–124

6. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

7. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of
software change. Journal on Software Maintenance and Evolution: Research and
Practice 17(5) (September-October 2005) 309–332

8. Jordan, D., Evedmon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., Gúızar, A., Kartha, N., Liu, K., Khalaf, R.,
Konig, D., Marin, M., Mehta, V., Thatte, S., Van der Rijn, D., Yendluri, P., Yiu,
A.: Web services business process execution language version 2.0. Technical report,
OASIS (2007)

9. Stickel, M.E.: A unification algorithm for associative-commutative functions. J.
ACM 28(3) (1981) 423–434

10. Nemo, C., Blay-Fornarino, M., Kniesel, G., Riveill, M.: SEMANTIC ORCHES-
TRATIONS MERGING - Towards Composition of Overlapping Orchestrations.
In Filipe, J., ed.: 9th International Conference on Enterprise Information Systems
(ICEIS’2007), Funchal, Madeira (June 2007)

11. Mens, T., Van Der Straeten, R.: Incremental resolution of model inconsistencies.
In: WADT 2006. Volume 4409 of Lecture Notes in Computer Science., Springer-
Verlag (2007) 111–126

12. Merks, E., Eliersick, R., Grose, T., Budinsky, F., Steinberg, D.: The Eclipse Mod-
eling Framework. Addison Wesley (2003)

13. Joffroy, C., Pinna-Déry, A.M., Renevier, P., Riveill, M.: ARCHITECTURE
MODEL FOR PERSONALIZING INTERACTIVE SERVICE-ORIENTED AP-
PLICATION. In: 11th IASTED International Conference on Software Engineering
and Applications (SEA’07), Cambridge, Massachusetts, USA, IASTED, ACTA
Press (November 2007) 379–384

14. Douence, R.: A restricted definition of AOP. In Gybels, K., Hanenberg, S., Her-
rmann, S., Wloka, J., eds.: European Interactive Workshop on Aspects in Software
(EIWAS). (September 2004)

15. Charfi, A., Mezini, M.: Aspect-oriented web service composition with ao4bpel. In:
ECOWS. Volume 3250 of LNCS., Springer (2004) 168–182

16. Courbis, C., Finkelstein, A.: Weaving aspects into web service orchestrations. In:
ICWS, IEEE Computer Society (2005) 219–226

17. Blay-Fornarino, M., Charfi, A., Emsellem, D., Pinna-Déry, A.M., Riveill, M.: Soft-
ware interaction. Journal of Object Technology (ETH Zurich) 3(10) (2004) 161–180

18. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class models.
3880 (2006) 75–105

19. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
(July 2003) ISBN-10: 1930110936 ISBN-13: 978-1930110939.

20. Klein, J., Fleurey, F., Jézéquel, J.M.: Weaving multiple aspects in sequence dia-
grams. Transactions on Aspect-Oriented Software Development (TAOSD) LNCS

4620 (2007) 167–199

