
HAL Id: hal-00531050
https://hal.science/hal-00531050

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Service Composition: Mashups Driven
Orchestration Definition

Sébastien Mosser, Franck Chauvel, Mireille Blay-Fornarino, Michel Riveill

To cite this version:
Sébastien Mosser, Franck Chauvel, Mireille Blay-Fornarino, Michel Riveill. Web Service Composition:
Mashups Driven Orchestration Definition. International Conference on Itelligent Agents, Web Tech-
nologies and Internet Commerce (IAWTIC’08), Dec 2008, Vienna, Austria. pp.1-6. �hal-00531050�

https://hal.science/hal-00531050
https://hal.archives-ouvertes.fr


Web Services Composition: Mashups Driven Orchestration Definition

Sébastien Mosser, Franck Chauvel, Mireille Blay-Fornarino, Michel Riveill

University of Nice – Sophia Antipolis,

CNRS, I3S Laboratory, RAINBOW team,

Sophia Antipolis, France

{mosser,blay,riveill}@polytech.unice.fr
franck.chauvel@i3s.unice.fr

Abstract

On the one hand, mashups are a new kind of web ap-

plication built upon the composition of different resources

in a user-friendly way. Tools based on such concepts fo-

cus on graphic design and allows final users to build com-

plex applications using pipes to connect data sources into

a data–flow. It underlines a constant need for making ser-

vices resuable in an easy way. On the other hand, Web Ser-

vices Oriented Architecture (WSOA) supports development

of high quality applications based on a control–flow be-

tween services. We explore in this paper how a WSOA can

be defined as a data-flow in a mashup-like approach, where

Model Driven Engineering techniques enable a clever com-

position of data-flows and the generation of control-flows

based architecture.

1. Introduction

One of the major trend in web-based system design is

to use graphical programming environment. Mashups [24]

for instance allow web-system designers (“web architect”)

to graphically combine web content and services, produc-

ing new features for their system [5]. For Human-Computer

Interaction community, “mashups allow end-user program-

ming for the Web” [26]. Mashups design fits biologist needs

[3] as well as semantic web experiments [6]. From a techni-

cal point of view, mashups rely on dedicated platforms, like

JOPERA [21] as a dedicated mashup application server or

shared mashup platform1.

On the opposite Web Service Oriented Architectures

(WSOA) provides a way to implement scalable Services

Oriented Architectures (SOA, [13]) using web services as

elementary services, and orchestrations [22] as composition

mechanisms. The W3C defines orchestrations as “the pat-

1http://pipes.yahoo.com, http://www.popfly.ms, . . .

tern of interactions that a Web Service agent must follow in

order to achieve its goal” [25]. Specialized (i.e. elemen-

tary) code is written inside web services, and each business

process is described as an orchestration of those web ser-

vices.

The contribution of this paper is to fill the gap be-

tween mashups and orchestrations, as the mashup emer-

gence shows that the WSOA methodology is not yet the ab-

straction level that a web architect needs. Then our contri-

bution proposes to take advantages of the model-driven ap-

proach [11] by capturing mashups and WSOA dialects into

dedicated meta-models. Thus, we propose to make an au-

tomatic transformation between models which conform to

these two meta-models.

The remainder of the paper is organized as follow. The

next section uses an academic information system case

study (named SEDUITE) to illustrate why we need to au-

tomatically produce WSOA from mashups. Section 3 de-

scribes the two meta-models used to capture both web ar-

chitects’ and WSOA designers’ dialect. We propose in Sec-

tion 4 a transformation and apply it on our example. Tools

support is exposed in Section 5. After having presented a

selection of relevant contributions on this area in Section 6,

we conclude the paper showing perspectives of mashup to

WSOA transformations.

2. Mashups examples: SEDUITE

SEDUITE is an information system especially designed

for academic institutions. It aims to retrieve and then broad-

cast “scholar” information (events, timetable) to students

and teachers. Based on a WSOA, it exposes information

sources as services and uses orchestrations to retrieve and

then compose information. Information is accessed via dif-

ferent physical devices like public plasma screen or private

personal digital assistant (PDA). More information about



SEDUITE can be found on the project website2.

2.1. Mashup syntax & Semantic

We use a graphical syntax to represent mashups. As

there is no real consensus on graphical mashups formalism,

we define a syntax inspired by McGraw VAL data-flow lan-

guage, defined in [14]. Rectangles represent sources of in-

formations, circles represent filters applied on informations

and direct arcs represent information path between those

nodes. Triangles represent nodes’ inputs with associated

name, and quoted text means constant input. The resulting

graph represents a mashup. This simple graphical syntax

fosters final user friendliness, massively used in mash-up

tools.

The execution of a graph is based solely on operand

availability: each node may begin execution as soon as all

input are present. When a node completes, results are trans-

mitted via the output arcs to next node(s).

2.2. Information mashups

FIG 1 shows how public school information can be com-

posed before being displayed on public screen. Weather,

Timetable and News are sources of information imple-

mented as legacy services. We retrieve from the weather

forecast service information about school city (here “Nice,

FR”), and filter timetable events on classes physically

present in our building (here CS3, CS4, CS5). Global

news, filtered events and weather forecast are then con-

catenated (using ’+’) and returned. This information flow

is considered as a new available information source called

SchoolInfo.

Figure 1. SchoolInfo mashup

School users (students, teachers, administrative staff,

. . . ) are interested in more personalized information [9].

The mashup in FIG 2 defines how personal information can

be retrieved from the system. A user expresses a profile (de-

fined as a set of values representing services parameters),

connect this profile to information sources. User’s personal

informations (friends timetable events and weather forecast

2http://anubis.polytech.unice.fr/jSeduite

information of her living place) are then broadcasted with

usual informations when she use this mashup.

Figure 2. UserInfo mashup

2.3. Goal: reaching an existing system

It seems natural for SEDUITE designers to express in-

formation flows as arrows between boxes. But in order to

fit with underlying legacy and scalable infrastructure, a de-

signer can only deal with orchestrations of web services.

So, she must (i) transform by hand a data-flow (design do-

main) into a control-flow implementation to find the entry

point of the expected orchestration, (ii) express this orches-

tration using a specialized language and (iii) take into ac-

count existing services constraints.

Considering the previously defined mashups as two

different versions of the same functionality (ie retrieve

information), we aim to generate a single orchestration

called InformationProvider which provides these

two business operations. This orchestration will have to call

existing services (News, Weather, . . . ). Recurrent sub-

processes (like filtering timetable events) can be identified

as a business functionality and then provided as an opera-

tion of another orchestration focused on timetable manage-

ment.

3. Sketching meta-models

In order to support such an automatic transformation

process, we define two meta-models to capture domain-

specific expression capability. This section presents the

transformation source and target meta-models.

3.1. Source: Mashups data-flow

Our meta-model (FIG 3) defines a Flow as a set of

Nodes and DataPaths to connect Nodes.

Inspired by Garlan [2] who defines Pumps and Fil-

ters, this meta-model specializes the Node concept into

(i) Sources and (ii) Processes. A Source only

provides output Slots, where a Process applies a

function on input Slots and provides output Slots.



Figure 3. Mashup data-flow meta-model

A Node can accept some parameters: (i) Constants, (ii)

FlowParameters where parameter values comes from

an output Slot and (iii) EntryParameters valued at

runtime by final user.

3.2. Target: WSOA control-flow

We voluntary define a reduced WSOA meta-model in FIG

4, as this contribution focus on the architectural transforma-

tion of a data-flow (mashup) into a control-flow (orchestra-

tion).

Figure 4. Reduced WSOA meta-model

A System is defined as a set of Services.

Each Service defines Operations, accepting several

Parameters as input. An Operation can return a

Parameter as output value. Orchestrations special-

ize the Service concept, referencing other Services as

partners. An Operation is considered by default as a

black box, but can be enriched by a Behaviour, expressed

in an external formalism such as WSBPEL (Web Services

Business Process Execution Language, [10]) for example.

4. Transformation: Reaching the WSOA

The goal of this transformation is to generate an adequate

WSOA from a set of mashups. Different mashups refering to

a same functionnality are grouped in an orchestration where

each mashup corresponds to an operation. For each opera-

tion, we have to generate a control-flow, ie identify peram-

eters of operations, optimize control flow avoiding useless

service calls, and identify some parts of the control flow as

new services. We propose here a methodology which first

reason on the data-flow before transform it into a control–

flow.

4.1. Data–flow reasoning & Optimization

We identify several graph rewriting techniques Tx which

allow us to optimize the data–flow as the first step of the

transformation.

• T0: “Unfolding invocation”. If reusing mashups is

natural at design level, it leads to redundant service in-

vocations when implementing it as a control-flow. So

the first step consists in “unfolding” mashups. Unfold-

ing operation (ie replace each mashup by its definition

inside others mashups) allows a global reasoning on

the whole data-flow structure. Architecture in FIG 2 is

easier to understand, design and adapt than the one in

FIG 5. However the last one is a better base model for

optimization and generation of a WSOA.

• T1: “Grouping invocation”. When working on un-

folded data-flows, overlapping invocation and invo-

cation sequences can appear. Some optimization

can then semi-automatically be performed to “group”

these invocations into a single one or to retract some.

In case of need, it can involve the data-flow designer

[19]. For instance, as WSOA fundamentally relies on

stateless Web Services, different references to a same

source of information with the same parameters gives

the same result and can be avoided. In a general case,

we established a compositional algebra based on the

semantics of the data-sources and filters.

• T2: “Identifying business operations”. When a

data-path is recognized several times from different

mashups after T1 usage, we identify it as a business

operation which should be exposed on its own and

shared among others control-flow. The identification

is based on maximum-length sequence recognition.

Identifying recurrent data paths [23] through multiple

expressed mashups eases the architect work of iden-

tifying control-flow granularity. Software refactoring

community [1] uses similar techniques to extract re-

current methods from existing source code.



4.2. Control-flow generation

Based on the resulting set of data-flows, we now generate

control-flows conforming to the WSOA meta-model. First

of all, we identify in the mashup data-flows legacy services

as fixed points during the transformations. Theses nodes

are binded to black-box Services and will be used as

Partners in the targeted architecture. Then, we perform

an inversion3 of the data-flow to identify entry points of the

control flow as graph source4. Each identified entry point

is mapped to an operation of the orchestration and then re-

tracted (ie retracting the Node and all DataPath using it)

from the inverted mashup. We iterate over the mashup node

set and stop the loop when all entry points are fixed points.

EntryParameters of the original mashup are han-

dled through the data-path and rises as Parameters

of generated Operations. Others flow parame-

ters are reified inside the behaviour of the resulting

Orchestration: (i) Constants are generated as

WSOA behaviour constants and (ii) FlowParameters as

partners invocation.

Due to previous section reasoning, the resulting control-

flow is not only a valid WSOA in term of meta-model struc-

tural conformity, but it conforms too to usual guidelines of

SOA [20].

4.3. Example: Transforming SEDUITE

We consider here the transformation of both

UserInfo and SchoolInfo mashups to generate

InformationProvider orchestration. We focus

here on UserInfo, as SchoolInfo is still optimum from our

point of view.

First of all, we unfold (T0) SchoolInfo inside the

mashup, and obtain FIG 5 mashup. We apply the sequence

Figure 5. Unfold(UserInfo)

recognition to trigger the invocation grouping technique T1,

3(A→ B)−1
≡ (A← B)

4s ∈ Sources⇒ indegree(s) = 0

and identify three matching points: (i) “get timetable and

then filter data” sequences, (ii) “get weather” redundant in-

vocations and (iii) redundant usage of the ’+’ concatena-

tion function. The following list details the optimization

step:

1. Redundant TimeTable invocations are replaced by a

single one. As Filter is a known function extract-

ing information conforming to parameters we automat-

ically merge them using the union (represented as ∪
symbol) of previous parameters.

2. Weather service is a legacy one. It only accepts a single

parameter, so there is no composition rule to apply.

3. The concatenation sequence is replaced by a single

concatenation of previous parameters where redundant

parameters are retracted.

The resulting mashup UserInfo′ is shown in FIG 6.

We can now analyze the two mashups together using T2.

Figure 6. UserInfo′ ≡ Optimize(UserInfo)

The path recognition technique identifies the timetable se-

quence as a business subprocess shared by SchoolInfo and

UserInfo′. After asking final user, it is transformed into a

different orchestration shared by others.

We can now transform the mashup set into orchestra-

tion. The first identified graph sources are UserInfo and

SchoolInfo nodes. As they belong to the same busi-

ness silo (from user knowledge), they are generated as

two operations getSchoolInfo and getUserInfo of

an orchestration named InformationProvider. An-

other orchestration called FilteredTimeTable is gen-

erated following previous paragraph directive. Orchestra-

tions partners and operation parameters are deduced from

incident data-path in original mashups. FIG 7 shows the

output of the transformation process using UML class dia-

grams ans stereotypes formalism.



Figure 7. Transformation output

5. Implementation & Validation

We developed a first prototype of our approach using

the ECORE [15] framework and the KERMETA langage

[18]. The ECORE framework enables the creation of the

two meta-models and of their related models. Models are

stored as XMI files and can be manipulated by a wide range

of model-transformation tools and languages. We use the

reflexive ECORE’s editor to build the data-flow models.

Transformations are designed as a two steps process: first, a

Builder object runs over the input model and builds the re-

lated output objects. Then, a Linker object goes through the

input models and links together output objects. Each step of

the method proposed here (reasoning and then WSOA gen-

eration) is implemented as a transformation following this

method.

The FAROS
5 French national research project deals with

SOA reliability. From a business domain model it allows

the expression of contracts and reach several execution plat-

forms as target. Considering the information diffusion as a

business domain and SEDUITE as a validating application,

the transformation proposed here is a subset of FAROS work

and is naturally validated as a part of the project.

6. Related Work

Several visual notations have been proposed to specify

workflow models with different expressive power, syntax

and semantics. Usual data-flow languages express complex

structures. These languages like VAL, LUSTRE [8] or SIG-

NAL [4] claims to represent a data-flow from A to Z. Our

approach only uses data-flow expressiveness to design ar-

chitecture and then reach legacy systems. Moreover, as it is

a young experiments, we only address a reduced set of data-

flow capabilities. We do not manage loops, XOR splits, error

handling, . . . Contrarily to [12], we do not extends a service

5http://www.lifl.fr/faros

model to represent mashups but express a fully dedicated

business meta-model, following model-driven approach.

We propose an automatic transformation to reach legacy

systems. In our implementation, mapping between high-

level model and legacy system entities is based on name

matching. This approach is quite naive but satisfying for

experimental purpose. To reach legacy systems, a binding

model can be defined to fill the gap between models and ex-

istent entities. The transformation process will then embed

this model (expressed as a configuration file for example)

and perform an efficient binding.

Function properties inference to automatically perform

optimization is based on “good properties” of composi-

tional algebra [19], but such properties are not reified in the

given source meta-model. To ensure automatic composi-

tion, a property model must be defined, and a composition

algebra could manage the effective composition.

Grid Computing community also expresses complex ap-

plication as data-flow. They use domain-specific languages

and execution engine (like SCUFL code interpreted using

MOTEUR engine [16]) to express data-intensive application.

Contrarily to our approach, dedicated grid infrastructure is

a need for those algorithms which are often defined as mas-

sively parallel algorithm. Optimization techniques of grid

workflows is a very productive research field [7].

Several studies address software evolutions, especially

WSOA evolutions [17]. We consider the proposition de-

scribed here as a good complement of these approaches. As

expressing a data-flow is the natural dialect for designer, our

model-driven approach captures a business domain. So, it

could be possible to define evolutions at business level and

then reach evolutions platforms using similar techniques.

7. Conclusions & Perspectives

Mashups systems are now a common tool to graphically

design a web application as a simple data-flow process.

Mashups hide most of the low-level complexity of web ser-

vice development: the Service Oriented paradigm does not

provide the relevant abstraction level. However the gener-

ation of a WSOA from a data-flow system is needed and

currently still a hand-craft and error prone task.

The contribution of this paper is to perform a transfor-

mation between data-flow and service-oriented legacy ar-

chitectures using model-driven engineering techniques. We

provide two meta-models to capture both mashups systems

and WSOA systems and a set of model transformations to

enable the translation between those two meta-models. We

provide a prototype of this transformation developed using

the ECORE framework and the KERMETA language. We

also apply this transformation to handle a WSOA designed

for a school information broadcast system named SEDUITE.

Immediate perspectives of this work are to improve the



reasoning model. As reasoning mechanisms presented here

relies on logical programming techniques and definitions,

the object oriented approach used by KERMETA is not op-

timal to express this kind of endomorphism. A usual work-

around is to use dedicated tools (like PROLOG language)

to implement this part of the transformation. Implementing

the mapping between these tools must be done in a dedi-

cated way and is still an ongoing work.

As a possible future work, we plan to apply this approach

to larger data-flow systems such as systems deployed on

cluster and grids. It would enable the automated generation

of a set of jobs, which could be directly used on a grid.

References

[1] Refactoring: improving the design of existing code.

Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1999.

[2] R. B. Allen and D. Garlan. A formal approach to software ar-

chitectures. In IFIP Congress, Vol. 1, pages 134–141, 1992.

[3] F. Belleau, M.-A. A. Nolin, N. Tourigny, P. Rigault, and

J. Morissette. Bio2rdf: Towards a mashup to build bioin-

formatics knowledge systems. Journal of biomedical infor-

matics, March 2008.

[4] A. Benveniste, P. L. Guernic, and C. Jacquemot. Syn-

chronous programming with events and relations: the sig-

nal language and its semantics. Sci. Comput. Program.,

16(2):103–149, 1991.

[5] B. Bioernstad and C. Pautasso. Let it flow: Building

mashups with data processing pipelines. In Mashups’07 In-

ternational Workshop on Web APIs and Services Mashups at

ICSOC’07, Vienna, Austria, 23/09/2007 2007.

[6] C. Bizer, R. Cyganiak, and T. Gauss. The rdf book mashup:

From web apis to a web of data. In S. Auer, C. Bizer,

T. Heath, and G. A. Grimnes, editors, SFSW, volume 248

of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[7] T. Glatard, J. Montagnat, D. Emsellem, and D. Lingrand.

A Service-Oriented Architecture enabling dynamic services

grouping for optimizing distributed workflows execution.

Future Generation Computer Systems, 24(7):720–730, July

2008.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.

The synchronous data-flow programming language LUS-

TRE. Proceedings of the IEEE, 79(9):1305–1320, Septem-

ber 1991.

[9] C. Joffroy, A.-M. Pinna-Déry, P. Renevier, and M. Riveill.

Architecture model for personalizing interactive service-

oriented application. In 11th IASTED International Confer-

ence on Software Engineering and Applications (SEA’07),

pages 379–384, Cambridge, Massachusetts, USA, Nov.

2007. IASTED, ACTA Press.

[10] D. Jordan, J. Evedmon, A. Alves, A. Arkin, S. Askary,

C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland,

A. Guı́zar, N. Kartha, K. Liu, R. Khalaf, D. Konig,

M. Marin, V. Mehta, S. Thatte, D. Van der Rijn, P. Yend-

luri, and A. Yiu. Web services business process execution

language version 2.0. Technical report, OASIS, 2007.

[11] S. Kent. Model Driven Engineering. Integratted Formal

Methods. Third International Conference, IFM, pages 15–

18, 2002.

[12] X. Liu, Y. Hui, W. Sun, and H. Liang. Towards service com-

position based on mashup. In Services, 2007 IEEE Congress

on, pages 332–339, 2007.

[13] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and

R. Metz. Reference Model for Service Oriented Architecture

1.0. Technical Report wd-soa-rm-cd1, OASIS, Feb. 2006.

[14] J. R. McGraw. The val language: Description and analysis.

ACM Trans. Program. Lang. Syst., 4(1):44–82, 1982.

[15] E. Merks, R. Eliersick, T. Grose, F. Budinsky, and D. Stein-

berg. The Eclipse Modeling Framework. Addison Wesley,

2003.

[16] J. Montagnat, D. Jouvenot, C. Pera, Á. Frohner, P. Kunszt,

B. Koblitz, N. Santos, and C. Loomis. Bridging clinical

information systems and grid middleware: a Medical Data

Manager. In HealthGrid conference (HealthGrid’06), pages

14–24, Valencia, Spain, June 2006. IOS Press.

[17] S. Mosser, M. Blay-Fornarino, and M. Riveill. Web Services

Orchestration Evolution : A Merge Process For Behavioral

Evolution. In 2nd European Conference on Software Ar-

chitecture (ECSA’08), Paphos, Cyprus, Sept. 2008. Springer

LNCS.

[18] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving exe-

cutability into object-oriented meta-languages. In Proc. of

MODELS/UML’2005, LNCS, Jamaica, 2005. Springer.

[19] C. Nemo, T. Glatard, M. Blay-Fornarino, and J. Montagnat.

Merging overlapping orchestrations: an application to the

bronze standard medical application. In International Con-

ference on Services Computing (SCC 2007) AR=20, pages

364–371, Salt Lake City, Utah, USA, July 2007. IEEE Com-

puter Engineering.

[20] M. P. Papazoglou and W. J. V. D. Heuvel. Service oriented

design and development methodology. Int. J. Web Eng. Tech-

nol., 2(4):412–442, 2006.

[21] C. Pautasso, T. Heinis, and G. Alonso. Jopera: Autonomic

service orchestration. IEEE Data Engineering Bulletin, 29,

September 2006 2006.

[22] C. Peltz. Web services orchestration and choreography.

Computer, 36(10):46–52, 2003.

[23] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P.

van der Aalst. Workflow data patterns: Identification, repre-

sentation and tool support. In L. M. L. Delcambre, C. Kop,

H. C. Mayr, J. Mylopoulos, and O. Pastor, editors, ER, vol-

ume 3716 of Lecture Notes in Computer Science, pages 353–

368. Springer, 2005.

[24] J. Tatemura, A. Sawires, O. Po, S. Chen, K. Candan,

D. Agrawal, and M. Goveas. Mashup Feeds:: continuous

queries over web services. In Proceedings of the 2007 ACM

SIGMOD international conference on Management of data,

pages 1128–1130. ACM Press New York, NY, USA, 2007.

[25] W3C. Web service glossary. Technical report, W3C, 2004.

[26] J. Wong and J. I. Hong. Making mashups with marmite:

towards end-user programming for the web. In CHI ’07:

Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 1435–1444, New York, NY, USA,

2007. ACM Press.


