
HAL Id: hal-00531039
https://hal.science/hal-00531039v1

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Oriented Architecture Definition Using
Composition of Business-Driven Fragments

Sébastien Mosser, Mireille Blay-Fornarino, Michel Riveill

To cite this version:
Sébastien Mosser, Mireille Blay-Fornarino, Michel Riveill. Service Oriented Architecture Definition
Using Composition of Business-Driven Fragments. Models and Evolution(MODSE’09), MODELS’09
workshop, Oct 2009, Denver, Colorado, United States. pp.1-10. �hal-00531039�

https://hal.science/hal-00531039v1
https://hal.archives-ouvertes.fr

Service Oriented Architecture Definition Using
Composition of Business–Driven Fragments

Sébastien Mosser, Mireille Blay–Fornarino, and Michel Riveill

University of Nice – Sophia Antipolis
Cnrs, I3s Laboratory, Modalis & Rainbow Teams

Sophia Antipolis, France
{mosser,blay,riveill}@polytech.unice.fr

Abstract. Services Oriented Architecture are built through the compo-
sition of services (e.g. Web Services) to define complex business process
(e.g. Orchestrations). Well known methodologies focus on identifying ser-
vices and orchestrations at design time. However the orchestration design
phase is still a heavy burden, as it induces to deal with both technical
and business domain concerns. This article proposes to use an evolution
framework (Adore) to capitalize architects knowledge and best practices
into “evolutions”. Architects can build business-driven orchestrations by
composing reusable “evolutions” following a design–by–composition ap-
proach. We apply this approach to build a legacy Soa called Seduite
(validation platform for the French national research project Faros).

1 Introduction

Web Services and Orchestrations [1] provide a way to implement scalable Soa
(Services Oriented Architecture, [2]) under the Wsoa acronym (Web Services
Oriented Architecture). Architects define Web Services to publish elementary
services. Complex business processes are defined through orchestrations which
assemble elementary functionalities into a control–flow. TheW3c defines orches-
trations as “the pattern of interactions that a Web Service agent must follow in
order to achieve its goal” [3]. Orchestrations are the keystones of a Wsoa, as
they represent the business-driven processes. Existing methodologies (e.g. Soma
[4]) focus on process identification. When using these methods, architects iden-
tify business services and orchestrations at the model level. Existing high–level
formalisms and languages are used to express these processes (e.g. Bpmn [5],
Bpel [6]). But the process definition must be written from scratch as code. A
business–driven step-wise development implies to know what happened in previ-
ous steps before modifying the legacy software in a coherent way: when defining
different solutions corresponding to different customers of a same business do-
main, each architect will then use its own approach to define solutions which are
then difficult to compare and even more to make evolve.

The contribution of this paper is to show how a business architect can design
a Wsoa by composing reusable process fragments. It proposes a business point
of view of the software evolution problematic, focusing on high level evolution

expression. Performing an evolution in our context means enhancing an existing
business process, adapting it to fit customers expectations. We are positioning
our work at design time: an architects wants to design a business–process, so
he/she will retrieve a design model of an existing business–process and adapt it
to his/her customer needs.

Where Aspect Oriented Programming (Aop, see sec. 5) targets on reusable
aspect identification and weaving, this work focuses on the composition of evo-
lution at the model level and is presented as a complementary approach. We
use as running example (described in sec. 2) a reference Wsoa called Seduite.
Section 3 describes the Adore evolution framework and its benefits for Seduite
case study. Section 4 exposes validation of this work on the whole legacy system,
and section 5 discusses related work. Finally, section 6 concludes this paper by
showing some exciting perspectives of this work.

2 Running Example: the SEDUITE system

Seduite is an information system designed to fit academic institution needs.
It supports information broadcasting from academic partners (e.g. transport
network, school restaurant) to several devices (e.g. user’s smart-phone, PDA,
desktop, public screen). This system is built upon a Wsoa and used as a val-
idation platform by the Faros project1. The implementation follows Wsoa
methodological guidelines [7], positioning experimentations as a typical usage of
a Wsoa. The system is deployed inside two institutions. Further information
about implementation and partners can be found on the project web site2.

The Seduite system defines two kinds of business processes: (i) sources of
information to retrieve information from partners and (ii) providers to assemble
sources invocations according to broadcast policies. Designing such processes is a
business–driven task, as they must fit with school users needs. We identify inside
the Seduite system a set of chronic situations where the business architect reuse
a set of good practices inside system’s orchestrations. We present in this section
a relevant subset of chronic evolutions identified inside Seduite.

When working on sources of information, we identified four chronic evolu-
tions: (i) cache to implement cache mechanism when a source can slow down
a process (e.g. external partner, temporary server crash) (ii) shuffle to shuffle
a set of explicitly unordered information (e.g. a set of scrapped pictures), (iii)
toInfo to transform an arbitrary data into one of type Information using an
Xsl meta–transformation and (iv) truncate to restrict the cardinality of an
information set to a given size. When defining (or enhancing an existing one)
a provider, we identify three evolutions: (i) addSource to add a new source of
information, (ii) dry to dry up a source when time is over and (iii) multiCalls
to allow a source to be called several times (e.g. a device broadcasting weather
data for several cities instead of a single one).

1 http://www.lifl.fr/faros
2 http://www.jseduite.org

Performing these evolutions inside the system relies on the architect knowl-
edge of those patterns. Even if those chronic evolutions are well documented,
it is unrealistic to believe that everybody will follows the guidelines (Seduite
is developed by ten different stake-holders, on three different continents). It
rapidly results into an unmaintainable system where in front of identical sit-
uations, each architects leaves its own footprint on the architecture to propose
an equivalent solution.

3 Composition of Orchestration Fragments

Adore (Activity moDel supOrting oRchestration Evolution) is a platform de-
signed to support orchestration evolutions. A dedicated meta–model supports
the definition of orchestrations and orchestration fragments at a higher abstract
level than usual formalism (e.g. Bpel). The representation used by Adore sup-
ports the definition of a composition algorithm able to weave fragments into base
orchestrations.

Orchestrations defined as Bpel code (based on the Adore language restric-
tion explained in next section) can be transformed into their representations
conforming to the Adore meta–model. The reciprocal transformation gener-
ates Bpel entities from an Adore representation (using a technique similar to
topological sort) to reach legacy servers infrastructure.

3.1 The ADORE Meta–Model

In Adore, an orchestration of services is defined as a partially ordered set of
activities. The different types of activities that can be defined in Adore are a
subset of the types of activities defined in the Bpel industrial specifications.
These include (i) service invocation (denoted by invoke), (ii) variable assign-
ment (assign), (iii) fault reporting (throw), (iv) message reception (receive),
(v) response sending (reply), and (vi) the null activity, which is used for syn-
chronization purpose (nop). In an Adore process model, each process starts
with a receive activity and ends with a reply activity.

An activity is identified by an unique identifier. Activities can use zero or
more inputs and outputs. Unlike Uml activity diagrams, in which an activity
can have a nested structure, an Adore activity is always primitive. A more
complete description of the Adore meta–model can be found on the project
web site3. Figure 1 represents this meta–model as an Uml class diagram.

We also define a graphical syntax to represent Adore orchestrations. A box
represents an activity inside the orchestration, and an arrow between two boxes
means that the targeted activity of the arrow is allowed to start at the end of
the source one. A label on an arrow represent a condition. Figure 2 represent
a simple provider (which aggregates internal news and restaurant menu) using
both formalisms (graphical and tuples).

3 http://www.adore-design.org

Fig. 1: Adore meta–model (formal & simplified class–diagram)

(a) Adore graphical notation for p

p ≡ ({a1, a20, a21, a3, a4},
{a1 ≺ a20, a1 ≺ a21, . . . , a3 ≺ a4}, ∅)

a1 ≡ (a1, receive, ∅, ∅)
a20 ≡ (a20, invoke(internalNews, getAll),

∅, news)
a21 ≡ (a21, invoke(menu, getTodays),

∅,menu)

a3 ≡ (a3, assign(concatenate),

{news,menu}, {result})
a4 ≡ (a4, reply, {result}, ∅)

Fig. 2: Adore example: p, a Seduite provider

3.2 Expressing Business–Driven Fragments Using ADORE

Defining an evolution in this context means to define a process fragment which
enhances the behavior of an existing process activity. The fragment can interact
with the (eventually unknown) targeted activity ta in several ways, using three
special activities: (i) the hook activity reifies ta in the evolution context (provid-
ing an access to input and output variables), (ii) an activity P representing all
immediate predecessors of ta and (iii) an activity S representing all immediate
successors of ta. Fig. 3 represents two evolutions using our graphical syntax: (i)
the AddCache evolution used inside Seduite to avoid slow response time and
(ii) the Dry evolution used to dry up a source after a given hour (e.g. lunch
menu is useless after lunch time).

(a) Ec:AddCache best-practice (b) Ed: Dry best-practice

Fig. 3: Expressing best-practices as Adore evolutions

To integrate an evolution into an existing process we unify hook, P and S
activities with ta and its related activities. The unification is defined as a set of
substitution σ [8] which perform modifications on the legacy process. A conflict
detection algorithm can detect incoherent structure inside the builded process
(e.g. concurrent write accesses to a shared variable) and ask for complementary
knowledge to solve conflict. The resulting process is then transformed into a
concrete Bpel process and then deployed inside an application server.

3.3 Evolution Composition Algorithm

When an architect wants to apply a set of evolutions E ≡ {e1, . . . en} on a given
targeted activities (e.g. an information source should be cached, truncated and
shuffled), evolutions must be composed before being integrated into the targeted
process. As a full description of this algorihtm is out of the scope of this paper (see
[9]), we propose an informal and textual description: to perform the composition
of behavioral evolutions, the algorithm starts to unify all hook, P and S activities
inside E elements. Then, it propagates guards relations (conditional executions
of activities) on the builded evolution. It results in a single and new evolution
e ≡ Merge(E). Fig. 4 illustrates the merge of the two previously described
evolutions. The conflict detection mechanisms is executed over this process to
detect incoherent structures. The resulting process can be integrated into an
existing orchestration using the previously described technique.

Fig. 4: E′ ≡ Merge({Ed, Ec})

4 Validation & Implementation

This section presents some experiments using the approach and then describes
the implementation of the platform. As Seduite is a new platform with a

medium complexity size, we plan to perform further validations on a more com-
plex system. Grid computing community is a good field of experience as it inten-
sively relies on domain–dedicated data–flow to express intensive computations.

SEDUITE Case Study Results: We use this approach to model the two
complete Seduite systems. In this paper, we focus on Polytech’Sophia sys-
tem4. Polytech’Sophia Seduite software is composed by 15 elementary Web
Services implemented in Java (representing more than 8KLoC5), six Bpel or-
chestrations (almost 2KLoC and 14KLoC of Wsdl and Xsd artefacts) and two
providers (more than 2KLoC and 11KLoC of artefacts).

Table 1 shows the usage of the identified source evolutions into Seduite
orchestration. For each orchestration, it indicates which evolution were applied,
and the cardinality of the activity set A⋆ before (resp. after) the merge process.
The ∆f column represents the growth factor of the activity set. The average
∆f is 1, 61, with a maximum of 2 for the FeedReader orchestration. This result
shows that up to 50% of a process can be defined as the composition of evolution
in this context.

– Evolutions |A⋆|
Orchestration AddCache Shuffle toInfo truncate. before after ∆f

BusLocalizer × 5 6 1.2
RssFeedReader × × 4 8 2
ImageScraper × × × 5 8 1.6
RestaurantMenu × × 6 10 1.7
PictureAlbums × × × × 9 15 1.7

TvShows × 4 5 1.3
Weather × × 5 9 1.8

Table 1: Evolution usage in Seduite orchestrations

Table 2 shows the usage of evolutions to define a given provider: SchoolProvider.
This provider is the more complex defined inside Seduite as the information set
retrieved by this provider is broadcasted to a public screen in the main hall (so
it handles an important set of sources). It aggregates ten different sources, each
of them was added using a specialization of the AddSource evolution. For ten
sources, only three do not use evolutions to enrich their information handling
logic6. The seven others use one or two evolutions to customize the information

4 As it is more complex than the other one.
5 1KLoC ≡ 1000 lines of relevant code.
6 These sources (InternalNews, StudentConvocation& Weather) broadcast dedicated
information. As a consequence, they are defined as internal and dedicated services,
so they do not need any others adaptation

retrieval process, which show the coverage of the method. The final provider
is composed of 60 activities, where 58 (≈ 96%) are automatically added and
ordered.

Source AddCache DryUp MultiCalls Shuffle

Absences ×
BreakingNews ×
BusLocalizer ×
Calendar × ×

ImageScraper × ×
InternalNews

Menu ×
StudentConvocation

TvShows × ×
Weather

Table 2: SchoolProvider & Evolutions

Implementation Seduite reference implementation7 uses Jax-Ws Web Ser-
vices as elementary bricks and Bpel 2.0 orchestrations to define complex busi-
ness processes. The Adore meta–model is implemented following the Model
Driven Engineering (Mde) paradigm, using Eclipse Emf [10] as technologi-
cal layer. A bridge between Adore and an industrial Bpel meta–model (Wtp
project) is defined through a model transformation written using the Kermeta
language [11]. As merge algorithms are defined in an inductive way and rely on
logical properties, we use the Prolog language to implement and validate them.
Porting these algorithms into an object oriented language as Java or Kermeta
(to bundle them in an evolution dedicated graphical modeling tool) is an ongoing
work.

5 Related Work

Douence defines Aspect Oriented Programming (Aop) in [12] as “a set of lan-
guage mechanisms which enable the introduction of non anticipated functional-
ities in a base application”. The Ao4Bpel engine [13] brings aspect–oriented
functionalities to an existing orchestration server. An aspect is supposed to be
automatically woven on a given code without any additional information. When
multiples aspects must be woven at the same place (so called shared join points
[14]) existing solutions work at the code level (e.g. adding an order between two

7 http://www.jseduite.org

aspects). Interactions between aspects (i.e. conflicts in Adore terms) should
then be managed at the level of the aspect definition, directly inside the ad-
vice code. Development by evolution composition is different, as we focus on the
composition problem when a set of evolution must be applied at the same point.
The composition algorithm is based on composition of a set of evolutions and
doesn’t depend of any order. Conflict detection steps ensure that the evolutions
can be composed and that the build orchestration is valid.

Our work can also be compared with AOP works on mixins and traits [15].
However when these approaches rely on a composition based on multiple inher-
itance and code injection, evolution composition is based on the composition of
graphs of activities and can generate new activities and relations.

Previously described approaches are code–driven. To help business experts
and let them define business processes, higher level mechanisms and formal-
ism were described and normalized. The business process community made sev-
eral attempts to handle evolution and variability of these processes, like generic
workflows [16] or process families [17]. These techniques put the focus on the
representation of such concerns, without addressing the composition of business
processes problematic. This issued is solved in Adore through the composition
algorithm.

6 Conclusions

In this article, we explain how an evolution framework called Adore can be
used to capitalize architects knowledge. This knowledge is reified as evolutions
and then composed to build new architectures. The methodology is illustrated
on a medium-complexity existing software called Seduite. This software is a
validation platform of the Faros research project (French national consortium)
which aims to build reliable Soa through the composition of evolutions. Further
validation of the methodology will be done on grid–computing data–flow for
medical imaging.

Composition algorithm always focus on enriching an existing orchestration.
We never address the evolution retract problem in an incremental approach.
As far as we are in Adore implementation, retracting an evolution means re–
computing the global result from scratch instead of reasoning on the delta intro-
duced by this evolution retract. An immediate perspective is to enrich evolution
algorithms to take care of these kinds of considerations.

For now, the proposed methodology is designed for software architects. But
when a business domain is restricted to its pure essence (Cim following Mde vo-
cabulary), it should be manipulated by users who are not computer scientists but
business experts. A long term perspective is to capture the information broad-
casting domain into a dedicated meta–model and then write model transforma-
tion that reaches the proposed methodology at the Pim level. This abstraction
will allow Seduite end user (e.g. schools’ headmaster) to build their own ded-
icated providers without knowing anything about the underlying system: they
will just express their sources set and handling policies at Cim level, and the

composition algorithm will do the composition at Pim level before generating
ready–to–deploy Bpel orchestrations.

Acknowledgments This project is partially funded by the French Research
Agency (Anr) through the Faros project. The Adore framework is one of
the platforms targeted by Faros. The Seduite software (through its reference
implementation) is used as one of the validation platform.

References

1. Peltz, C.: Web services orchestration and choreography. Computer 36(10) (2003)
2. MacKenzie, M., Laskey, K., McCabe, F., Brown, P.r., Metz, R.: Reference Model

for Service Oriented Architecture 1.0. Technical report, OASIS (February 2006)
3. W3C: Web service glossary. Technical report, W3C (2004)
4. Arsanjani, A., et al: SOMA: a Method for Developing Service-Oriented Solutions.

IBM Syst. J. 47(3) (2008) 377–396
5. White, S.A.: Business Process Modeling Notation (BPMN). IBM Corp. (2006)
6. OASIS: WS Business Process Execution Language v2.0. Technical report (2007)
7. Papazoglou, M.P., Heuvel, W.J.V.D.: Service Oriented Design and Development

Methodology. Int. J. Web Eng. Technol. 2(4) (2006) 412–442
8. Stickel, M.E.: A Unification Algorithm for Associative-Commutative Functions. J.

ACM 28(3) (1981) 423–434
9. Mosser, S., Blay-Fornarino, M., Riveill, M.: Web Services Orchestration Evolution

: a Merge Process for Behavioral Evolution. In: 2nd European Conference on
Software Architecture (ECSA’08), Springer LNCS (2008)

10. Merks, E., Eliersick, R., Grose, T., Budinsky, F., Steinberg, D.: The Eclipse Mod-
eling Framework. Addison Wesley (2003)

11. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In: Proc. of MODELS/UML’2005. LNCS, Jamaica,
Springer (2005)

12. Douence, R.: A restricted definition of AOP. In Gybels, K., Hanenberg, S., Her-
rmann, S., Wloka, J., eds.: European Interactive Workshop on Aspects in Software
(EIWAS). (September 2004)

13. Charfi, A., Mezini, M.: Aspect-oriented web service composition with ao4bpel. In:
ECOWS. Volume 3250 of LNCS., Springer (2004) 168–182

14. Nagy, I., Bergmans, L.M.J., sit, M.A.: Composing aspects at shared join points. In
Hirschfeld, R., Kowalczyk, R., Polze, A., Weske, M., eds.: Proceedings of Interna-
tional Conference NetObjectDays, NODe2005, Erfurt, Germany. Volume P-69 of
Lecture Notes in Informatics., Bonn, Germany, Gesellschaft fuer Informatik (GI)
(September 2005) 19–38

15. Scharli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable Units of
Behavior. In: ECOOP 2003 – Object-Oriented Programming. Volume 2743/2003
of Lecture Notes in Computer Science., OGI School of Science & Engineering ,
Oregon Health and Science University, Springer (November 2003) 327–339

16. van der Aalst, W.M.P.: Generic workflow models: How to handle dynamic change
and capture management information? In: CoopIS, IEEE Computer Society (1999)

17. Schnieders, A., Puhlmann, F.: Variability mechanisms in e-business process fam-
ilies. In Witold Abramowicz, H.C.M., ed.: 9th International Conference on Busi-
ness Information Systems (BIS 2006), May 31 - June 2, 2006, Klagenfurt, Austria,
Springer-Verlag (2006) 583–601

