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ABSTRACT
Aspect-oriented approaches are available for various phases
of software development such as requirements analysis, de-
sign, and implementation. Yet, moving from one phase to
the next with aspects remains a challenge seldom studied.
In this paper, we present an iterative, concern-driven soft-
ware engineering approachbased on a tool-supported, semi-
automatic transformation of scenario-based, aspect-oriented
requirements models into aspect-oriented business process
design models. This approach is realized by a mapping from
Aspect-oriented Use Case Maps (AoUCM) to Adore busi-
ness process models, allowing for the continued encapsula-
tion of requirements-level concerns in design-level artifacts.
Problems detected during the design phase can be rectified
in the requirements models via several feedback loops that
support iterative model development. We discuss the trans-
formation process and illustrate, as proof-of-concept, our
contribution on the PicWeb case study, a SOA–based imple-
mentation of business processes for pictures management.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifi-
cation—languages, methodologies, tools; D.2.11 [Software
Architectures]

General Terms
Design, Management, Experimentation, Languages.
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1. INTRODUCTION
Over the last decade, many aspect-oriented software de-

velopment (AOSD) techniques [3] have been proposed. Less
attention has been paid to automatically linking together
these approaches across life-cycle phases, even though AOSD
claims improved productivity when crosscutting concerns
are encapsulated across these phases. We investigate if the
same concerns can be kept at the different levels of abstrac-
tion for requirements and design models in an AOSD process
in the context of Service–Oriented Architectures (SOA).

During the last few years, SOA has been seen as a major
philosophy and solution for the organization of IT systems
to manage complexity and foster agility and innovation. An-
alysts [17] foresee a clear competitive advantage in adopting
architecture-based solutions for IT products. SOA promotes
a vision where functionality is grouped around business pro-
cesses and packaged as interoperable services [10]. The de-
velopment of business processes involves (i) the definition
of business workflows while (ii) taking into account non-
functional requirements such as conformity to strict legal
constraints in terms of data privacy and security.

To address key non-functional requirements, the business
process designer has to design workflows in their contextual
environment, thus spending time on non-business oriented
tasks. Several adaptations may occur on the same workflow
due to the many different concerns such as cost, efficiency,
and security. Furthermore, the end user has to ensure that
the workflows conform to the initial and adapted require-
ments. Based on these observations, there is a need for
helping users move from requirements to the design of ac-
curate workflows while taking into account several possibly
crosscutting concerns. Changes at requirements or design
levels must be supported to apply adaptations in a safe way.

Clearly, tools are needed to ease the derivation of business



processes from requirements and ensure traceability between
these two levels. Moreover, separation of concerns is needed
at all levels of the software development process to tackle
the complexity of defining business workflows. We propose
an aspect-oriented approach encompassing general purpose
requirements models and business process design models as
a first step towards a larger, iterative, end-to-end concern–
driven software engineering process that ensures the encap-
sulation of (crosscutting) concerns through all software de-
velopment phases.

We implement this vision with a tool-supported, auto-
matic transformation of aspect-oriented requirements mod-
els expressed with the Aspect-oriented User Requirements
Notation (AoURN) [14] into aspect-oriented business pro-
cess models expressed with Adore [12]. Sect. 2 introduces
AoURN, Adore, and the PicWeb case study, which will be
used to demonstrate the feasibility of our proposed approach
throughout this paper. Sects. 3 and 4 discuss the transfor-
mation process and various feedback loops that support our
iterative, concern–driven approach. While Sect. 3 focuses
on requirements models with little or no data-related infor-
mation, Sect. 4 investigates the benefits of introducing more
detailed data-related information in requirements models to
strengthen the iterations between requirements and design
models. We continue with a discussion of related work in
Sect. 5 and our conclusions and future work in Sect. 6.

2. THE PICWEB CASE STUDY
PicWeb is a subpart of a larger legacy system called jSe-

duite [13]. jSeduite is a SOA–based information system
designed to fit academic institution needs. It supports in-
formation broadcasting from academic partners (e.g., trans-
port network and school restaurant) to several devices (e.g.,
user’s smart-phone, PDA, desktop, and public screen). This
system builds upon SOA and is used as a validation plat-
form by the Faros project1. The system has been deployed
in three institutions, where it is used daily. Further informa-
tion about the implementation and partners can be found
on the project web site2.

Inspired by Web 2.0 folksonomies, PicWeb relies in part
on community–driven partners such as Flickr (Yahoo!) or
Picasa (Google) to store and retrieve available pictures.
PicWeb allows a set of pictures with a given tag and up
to a given threshold number to be retrieved from existing
partner services. The implementation follows SOA method-
ological guidelines [19], positioning PicWeb as a typical use
of SOA for experimental purposes. This typical SOA system
is used as our running example.

2.1 PicWeb AoURN Requirements Model
The Aspect-oriented User Requirements Notation (Ao-

URN) [14] supports the elicitation, analysis, specification,
and validation of requirements in an aspect-oriented model-
ing framework for early requirements with the help of goal
and scenario models. AoURN extends standard URN [7]
with aspect-oriented concepts and notations. AoURN is
composed of Aspect-oriented Use Case Maps (AoUCM), for
scenario models, and of Aspect-oriented Goal-oriented Re-

1
http://www.lifl.fr/faros

2
http://www.jseduite.org

 

Figure 1: AoUCM: Root Map – Get Pictures

 

Figure 2: AoUCM: Plug-in Map – Truncate

quirement Language (AoGRL) for goal models. jUCMNav3

is an Eclipse tool for URN/AoURN modeling and analysis.
An AoUCM model consist of a path that begins at a start

point (  , e.g., get pictures in Fig. 1) and ends with an end

point (  , e.g., displayed). A path may contain responsibilities
(  , e.g., getPicturesWithTag), identifying the steps in a sce-
nario, and notational symbols for alternative (  ) and con-
current (  ) branches. Path elements may be assigned to
a component (  , e.g., PicWeb). Actor components (  , e.g.,
User) are special kinds of components that are used to model
entities that are interacting with the system. Stubs (  , e.g.,
truncate) are containers for sub-models called plug-in maps,
thus allowing for hierarchical structuring of AoUCM models.

For example in Figs. 1 and 2, the Get Pictures scenario
for the PicWeb application starts with the User entering a
tag and threshold number. The application then uses Flickr

to retrieve pictures with this tag and the Truncate business
process limits the pictures to a maximum threshold number
if the threshold is exceeded. The scenario concludes with
the User browsing the pictures.

AoURN allows the definition of name/value pairs called
metadata (e.g., ≪service≫) for any AoURN modeling ele-
ment. In connection with OCL constraints that can be de-
fined and verified for AoURN models by jUCMNav, meta-
data thus provides an extension mechanism that permits
the definition of profiles for AoURN. For more details about
URN and AoURN, visit the URN Virtual Library4.

Crosscutting Concerns in AoURN.
AoURN introduces concerns as first-class modeling ele-

ments, regardless of whether they are crosscutting or not.
Typical concerns in the context of AoURN are stakehold-
ers’ intentions, non-functional requirements, and use cases.
AoURN groups together all relevant properties of a concern
such as goals, behavior, and structure, as well as pointcut
expressions needed to apply new goal and scenario elements
or to modify existing elements in the AoURN model.

The AoUCM models in Figs. 1 and 2 describe the Get

Pictures and Truncate concerns, which together belong to the
PicWeb concern. For the PicWeb application, the Caching,
Randomizer service, Payment service, and Picasa service con-

3
http://softwareengineering.ca/jucmnav

4
http://www.usecasemaps.org/pub



 

 

Figure 3: AoUCM: Aspect Map – Picasa Service

cerns (Fig. 3) are applied to the PicWeb concern with the
help of aspect-oriented techniques.

The aspectual properties for the Picasa concern are shown
on an aspect map (top of Fig. 3). In parallel to the Flickr ser-
vice, pictures are retrieved from the Picasa service and then
merged with Flickr’s pictures. On a separate map (bottom of
Fig. 3), the pointcut map defines where the Picasa concern is
to be applied, allowing the pointcut expression and the as-
pectual properties to be individually reused. Grey start/end
points on the pointcut map are not part of the pointcut ex-
pression but rather denote its beginning/end. The pointcut
of the Picasa concern therefore matches against the getPic-

turesWithTag responsibility of the Flickr component.

A pointcut stub ( PP  ) links the aspect map with the pointcut
map. The causal relationship of the pointcut stub and the
aspectual properties visually defines the composition rule for
the aspect, indicating how the aspect is inserted in the base
model (e.g., before, after, optionally, in parallel or anything
else that can be expressed with the standard UCM nota-
tion). In Fig. 3, the usage of the AND-fork and AND-join
around the pointcut stub indicates parallel composition of
the Flickr and Picasa services. As AoURN uses standard URN
diagrams to describe pointcut expressions and composition
rules, it is only limited by the expressive power of URN itself
as opposed to a particular composition language. For more
information about AoURN’s matching and composition al-
gorithms, the interested reader is referred to [14].

Finally, aspects may depend on or conflict with each other.
AoURN models dependencies and conflicts among concerns
and their resolutions with the Concern Interaction Graph
(CIG) [14]. Precedence rules can resolve many aspect in-
teractions. The CIG is a specialized URN goal model that
defines such precedence rules, which then govern the order
in which concerns are applied to an AoURN model.

The CIG for the PicWeb application in Fig. 4 states that
the Randomizer and Caching concerns depend (  ) on the
PicWeb concern. This is because the pointcut expressions of
the Randomizer and Caching concerns match against elements
in the PicWeb concern. Furthermore, the Picasa, Caching, and
Payment concerns conflict (  ) with each other because of
a shared join point. The direction of the arrows between
the conflicting concerns indicates the precedence rule that
resolves the conflict, i.e., Caching is applied before Picasa,
which is applied before Payment to the AoURN model.

As AoURN goal models (in AoGRL) are out of scope for
Adore, this paper focuses on AoUCM [15] scenario models

 

Figure 4: Concern Interaction Graph

and the CIG that contain all relevant information for the
transformation of AoURN to Adore models.

Benefits of AoURN.
With the help of AoURN, each concern of the PicWeb ap-

plication can be modeled from two points of view. AoURN
goal models describe the reasons for including a concern in
the application and the impact of the concern on high-level
goals of all stakeholders. AoUCM, on the other hand, de-
scribes the scenarios of the concern as well as the actors
and structural system entities that work together to realize
the scenarios. While the goal models are not used for the
transformation into Adore models, they provide an often
neglected but important view for establishing traceability
of system features to stakeholder intentions. AoUCM mod-
els abstracts from data and message details while describing
workflows (i.e., the causal relationships of system function-
ality) and the required abilities of structural system entities.
This high level of abstraction is very appropriate for early
requirements models where such details are not yet known.

Finally, goal analysis techniques allow for trade-off analy-
sis, answering questions such as why a certain concern was
chosen over another concern and which alternatives were
considered. The analysis techniques for AoUCM models,
on the other hand, ensure that scenarios can be regression–
tested at a high level of abstraction based on the definition of
pre- and post-conditions. This analysis builds on AoURN’s
simple, global data model, which is used to formalize condi-
tions for choice points in the AoUCM model. For example,
the conditions of the two branches of the OR-fork in Fig. 2
require the definition of two Integer variables nrPhotos and
threshold (these information are hidden in the graphical rep-
resentation to lighten it). The top branch’s condition is
nrPhotos > threshold, while the lower branch’s condition is
nrPhotos <= threshold.

2.2 PicWeb ADORE Business Processes
The Adore meta–model is defined as “A meta–moDel

suppOrting oRchestration Evolution”. Using Adore, one
can model complete business processes as an orchestration
of services. Using the same formalism, an incomplete pro-
cess can also be modeled, called a process fragment. Adore

supports the integration of fragments into processes through
the usage of several composition algorithms [12].

Adore’s expressiveness is inspired by BPEL5. The differ-
ent types of activities that can be defined in Adore include
(i) service invocation (denoted by invoke), (ii) variable as-
signment (assign), (iii) fault reporting (throw), (iv) mes-
sage reception (receive), (v) response sending (reply), and
(vi) the null activity, which is used for synchronization pur-

5BPEL is defined as “a model and a grammar for describ-
ing the behavior of a business process based on interactions
between the process and its partners” [18].



composition picweb::getPictures { apply picasaService => act2; }

Figure 5: Adore: picasaService Fragment & Associated Composition Directive

Figure 6: Adore: getPicture Business Process

poses (nop). In an Adore process model, each process starts
with a receive activity and ends with reply or throw ac-
tivities. Consequently, the Adore meta–model contains all
the atomic activities defined in the BPEL normative docu-
ment except the wait (stopwatch activity) and the rethrow
(assimilated as a simple throw) activities.

As the Adore meta–model does not define composite ac-
tivities, BPEL composite constructions are reified using dif-
ferent relations available in the meta–model. For example,
a sequence of activities is defined by a waitFor relation and
if/then/else flows are modeled using guard relations. Unlike
BPEL, which uses composite activities to implement loops,
Adore uses iteration policies. As loop handling in Adore is
out of the scope of this paper, the interested reader can find
a full description of it in our previously published work [11].
A more complete description of the Adore modeling lan-
guage can also be found on its project web site6.

Relations to Aspect-oriented Programming (AOP).
According to the Ercim working group on software evolu-

tion [5], aspect–oriented approaches rely at a syntactic level
on four elementary notions: (i) join points, (ii), pointcuts
(iii), advice and finally (iv) aspects. Join points represent
the set of well-defined places in the program where addi-
tional behavior can be added. In the context of Adore,
we use activities for this notion. Pointcuts are usually de-
fined as a set of join points. In Adore, one can identify sets

6
http://www.adore-design.org

of activities as pointcuts using explicit declarations (exten-
sional definition, e.g., use {a0, a1} activities as pointcuts) or
computed declarations (intensional definition, e.g., all activi-
ties calling the service srv). Advice describes the additional
business logic to be added in the initial system. Adore

represents systems as a set of business processes. We reify
advices in an endogenous way as business processes called
fragments. Finally, aspects are defined as a set of pointcuts
and advices. Adore uses composition directives to bind
fragments to sets of activities.

Modeling PicWeb with ADORE.
Using Adore, the PicWeb system is realized using both

orchestrations and fragments. On the one hand, main pro-
cesses such as getPictures are designed as an orchestration of
services (Fig. 6). In this process, the system receives a tag

and a threshold in activity act1. The tag is then passed to
the flickr partner through a service invocation (act2). The
retrieved set of pictures is truncated according to the user–
given threshold (act3), and then replied to the user (act4).
The truncate process is depicted in Fig. 7. It illustrates the
graphical syntax associated with guard relations. In this
process, the activity that effectively truncates the set of pic-
tures (act3) is called only if the boolean condition is true (i.e.,
the number of retrieved pictures nrPhotos is greater than the
user given threshold).

On the other hand, process extensions such as picasaService

are realized as a fragment (Fig. 5). In parallel to the normal
behavior (hook activity, act1), the Picasa service is invoked
(act2), and the retrieved pictures are merged with the legacy
ones using a dedicated service (act3). The integration of this
fragment into the previously defined orchestration to com-
pute the final behavior (o′) is done through the application of
a weave function (ω): ω(picasaService, getP ictures) ; o′.

Benefits of ADORE.
Adore’s strengths rely on the two following principles:

(i) conflict detection rules and (ii) shared join point han-
dling. The Adore formalism is built upon first–order logic,
and consistency rules (e.g., no concurrent access, no dead
path) are defined using the expressiveness of logical formu-
las. The underlying logical engine executes such predicates
and identifies model inconsistencies through predicate satis-
faction. Adore’s shared join point handling philosophy does



Figure 7: Adore: truncate Business Process

not rely on a–priori aspect ordering like existing AOP meth-
ods or frameworks [16]. We propose a default merge func-
tion µ : Fragments⋆ → Fragment, which commutatively
merges fragments applied on a shared join point (according
to graph union principles and hook unification). The de-
signer is informed of such a decision, and can choose to keep
the merged artifact or use fragment weaving to order aspects
following usual AOP mechanisms. Adore’s orchestrations
may then be transformed into standard BPEL processes7.

3. TOWARDS AN ITERATIVE PROCESS
The goal of this paper is to link an aspect-oriented re-

quirement approach (AoURN) with an aspect-oriented de-
sign approach (Adore). Inspired by agile methodologies,
we consider that the design phase impacts the requirements.
Consequently, we propose an iterative process were both re-
quirements and design artifacts interact together to build
the final system. We illustrate this vision in Fig. 8.

Figure 8: An Incremental (“Agile”) Process

Such an iterative process assumes the sharing of informa-
tion between the two layers. We denote information pro-
jected from the requirements model into the design model
((1) in Fig. 8) using the [R → D] notation. Information
fed back from the design model into the requirements (2)
is denoted using the [D → R] notation. As we defend an
aspect-oriented approach at both levels, concerns discovered
and modeled during the requirements phase can be traced
more effectively to the design model regardless of whether
the concerns are crosscutting or not.

7This transformation needs to introduce technical details
such as data structure descriptions of service URLs.

3.1 Generating Designs from Requirements
The first step in the process is to generate design artifacts

based on the structural and behavioral information available
in the requirements model. An automated transformation
of requirements models into design models reduces (or even
eliminates) the amount of work done in the requirements
phase that needs to be redone in the design phase while at
the same time improving the consistency between the two
layers.

⇒ [R → D]1 Design artifacts are generated from require-
ments (e.g., services, concerns), improving the con-
sistency between the two layers and allowing require-
ments engineers and designers to use their own form-
alisms.

Changes at the requirements level are validated at this
level, before being propagated to the design level. More-
over, due to the automatic, correctness-preserving transfor-
mation, we ensure that the generated design model conforms
to these requirements. Hence, software engineers can take
advantage of the analysis capabilities of requirements no-
tations. The feedback from the analyses serves to improve
both the requirements and the generated design models.

⇒ [R → D]2 Analyses realized at the requirements level
ensure properties in the design model (e.g., business
rules may be expressed in the requirements formalism,
and requirements models may be checked against these
rules to prevent business–driven inconsistencies to be
projected into the design layer).

Implementation.
We implement such a generative approach for AoUCM

and Adore models. For a given requirements model r, we
define a model transformation τ to produce the associated
design model d = τ (r).

A consistent transformation of AoUCM scenario models
into Adore process models requires a mapping to be defined
from the AoUCM meta–model to the Adore meta–model.
Both, AoUCM and Adore, have rather straightforward cor-
respondences between their meta–models and their concrete
syntaxes. Therefore, and for understandability, the map-
ping (Tab. 1) in this paper will focus on the concrete syntax
views while giving only brief pointers to those readers inter-
ested in the meta–model of AoURN [7, 15] and Adore (see
web site). A more complete description of the transforma-
tion process and the associated algorithm is available in the
appendix.

Constraints. It is to be expected that not all AoUCM
concepts can be easily mapped to Adore concepts and vice
versa, since the two notations operate at very different lev-
els of abstraction. Furthermore, constraints imposed by
one notation now have to be considered for both notations.
E.g., AoUCM models do not need to be well-nested whereas
Adore requires all models to be well-nested. This differ-
ence leads to a set of assumptions that constrain AoUCM
models to an Adore-specific profile for which a successful
transformation into Adore can be guaranteed.

PicWeb Case Study.
The transformation from the AoUCM PicWeb model to

the Adore PicWeb model is for the most part quite intu-



AoUCM Adore

Start Point (  ) [StartPoint] orchestration ; receive,

fragment ; predecessors

End Point (  ) [EndPoint] orchestration ; reply,

fragment ; successors

Responsibility (  )
[Responsibility, RespRef]

≪business process≫

; assign, ≪service≫

; invoke

OR-fork including its

outgoing branches (  )
[OrFork, NodeConnection]

boolean assign activity,

guard relations

OR-join including its

incoming branches (  )
[OrJoin, NodeConnection]

exclusive waitFor relations

entering an activity

AND-fork including its

outgoing branches (  )
[AndFork, NodeConnection]

waitFor relations exiting an

activity

AND-join including its

incoming branches (  )
[AndJoin, NodeConnection]

non–exclusive waitFor

relations entering an

activity

Static Stub (  ) [Stub] see the appendix

Pointcut Stub ( PP  ) [Stub] hook activity

Sequence (if not covered

earlier) [NodeConnection]

waitFor relation between

two activities

Table 1: Transformation of Path Elements

itive. Components tagged with ≪business process≫ are trans-
formed into Adore modules. The start and end points in
Fig. 1 are converted into the receive and reply activities of the
orchestration in Fig. 6, respectively. While the responsibil-
ities in the Actor component User are ignored, the respon-
sibility in the Flickr ≪service≫ component and the truncate

stub are mapped into the service invocations act2 and act3,
respectively.

The content of the truncate stub in Fig. 2 is transformed
into its own orchestration. Start and end points are trans-
formed as described in the previous paragraph. The re-
sponsibility of the ≪business process≫ component Truncate is
mapped to a local assignment (i.e., act3) instead of a service
invocation because the transformation process is currently
building the orchestration for the Truncate component in-
stead of a different component. The remaining elements to
be transformed are the OR-fork with its two branches and
the corresponding OR-join, resulting in the gt activity with
its guard relations and the exclusive waitFor relation links
entering the reply activity8.

For the Picasa service concern in Fig. 3, the start and end
points are converted into the predecessor node P and suc-
cessor node S of the fragment in Fig. 5, respectively. The
two branches of the AND-fork are transformed into the two
waitFor relation links exiting the predecessor node P. The
pointcut stub turns into the hook activity and the responsi-
bilities of the ≪service≫ components again are transformed
into service invocation activities, i.e., act2 and act3. Finally,
the AND-join is reflected by the non-exclusive waitFor rela-
tion links entering act3.

8Note that the XOR semantics of the guard relation in
Adore matches nicely the XOR semantics of an AoUCM
OR-fork and that the exclusive waitFor relation also is com-
patible with the semantics of an AoUCM OR-join.

Benefits.
Using this transformation, designers retrieve immediately

process skeletons, automatically generated from the require-
ments ([R → D]1). According to [R → D]2, the generated
models are free of business inconsistencies. Consequently,
designers can focus on the design of their SOA–based sys-
tem without losing time and effort on requirements artifacts.

3.2 Transformation of Composition Rules
Thanks to the [R → D]1 point, concerns expressed at the

requirements level will be mapped into associated artifacts in
the design model. Choices made at the requirements level
(such as concern composition and ordering) are kept and
automatically projected into the design model.

⇒ [R → D]3: Concern composition and ordering defined
in the requirements model are automatically reused in
the design model.

According to its different goals, the design layer must han-
dle more precise artifacts, as it aims to design an executable
system. Consistency rules defined at the design layer can
hence more easily identify interactions in the generated ar-
tifacts, such as unanticipated shared join points. Such in-
teractions can then be solved at the requirements level.

⇒ [D → R]1: The design layer identifies interactions
between several concerns around shared join points,
which may not be described in the requirements model.

Implementation.
The composition techniques for Adore models and Ao-

UCM models are substantially different. While AoUCM al-
lows regular expressions for the identification of join points,
Adore requires explicit bindings to be defined that identify
the join points as exact locations in the Adore model. For
this reason, the AoUCM pointcut expressions are not trans-
formed but rather the list of matched join points as it results
from the AoUCM matching and composition algorithms is
mapped onto Adore’s composition directives.

In addition, CIG precedence rules must be considered to
take care of concern conflicts identified at the requirements
level. While parsing the CIG model, the transformation al-
gorithm generates composition directives to weave fragments
into each other, and then instantiates the existing order of
the fragments ([R → D]3). Essentially, a fragment with
lower precedence that conflicts with another fragment must
be explicitly applied to the hook activitiy of the other frag-
ment. If Adore detects remaining shared join points, the
engine will trigger its default merge algorithm and inform
the user of such a merge ([D → R]1).

PicWeb Case Study.
All AoUCM pointcut maps are transformed indirectly into

Adore’s composition directives. For example, the pointcut
map (bottom map in Fig. 3) matches the getPicturesWithTag

responsibility of the Get Pictures concern, which is mapped
onto act2 of the getPictures orchestration. Hence, the picas-

aService fragment is applied to act2 of the getPictures orches-
tration as shown in Fig. 5.

The CIG (Fig. 4) specifies the conflicts of the concerns in
the PicWeb application. For example, the Payment concern
conflicts with the Picasa concern because both apply to the



getPicturesWithTag responsibility, i.e., the shared join point.
Furthermore, Payment has lower precedence as defined in the
CIG. Hence, the Payment fragment is applied to the Picasa

fragment with the composition directive “composition picas-
aService { apply Payment => act1; }”where act1 is Picasa’s
hook activity. The same reasoning applies to the Picasa frag-
ment: the composition directive derived from the pointcut
map in Fig. 3 and shown in Fig. 5 must be overwritten
because of the CIG preference rules. Hence, the Picasa frag-
ment is applied to the hook activity of the Caching fragment
which, in turn, is finally applied to the getPicturesWithTag

activity of the getPictures orchestration.

Benefits.
Based on the information described in the requirements,

the transformation algorithm generates all the process skele-
tons associated with PicWeb concerns that are composed
with each other as desired. Conflicting concerns identified
at the requirements level are properly ordered in the design
models ([R → D]3) and additional interactions are resolved
([D → R]1).

4. DATA–DRIVEN FEEDBACK AND REQ.
In Sect. 3, we mainly focus on design skeleton generation

and essentially describe [R → D] information. We focus in
this section on [D → R] information, that is, information
discovered at the design layer that may impact the require-
ments. In this section, we use requirements expressiveness
relative to data to strengthen the feedback a requirements
engineer can obtain from the design layer to address incon-
sistencies in the requirements model. These mechanisms rely
on data–driven analysis explained in this section.

4.1 Incomplete Requirements
The results of the transformation described in Sect. 3 are

Adore orchestrations and fragments as shown in Figs. 6
and 5 but without any parameters, inputs, and outputs. As
a consequence, all data–driven analysis capabilities of the
design layer cannot be applied.

When the requirements model handles data (such as con-
ditions expressed over exclusive paths), it is possible to also
project this information into the design model. Then, data–
driven analysis techniques can be applied to identify omis-
sions in the requirements from the data usage point of view.

⇒ [D → R]2 The design platform identifies inconsistent
data–flow introduced by omissions in the requirements
models (e.g., the requirements may assume the usage
of data that is never defined in the system). This in-
formation is fed back to the requirements layer for it-
erative refinement.

Implementation.
Some data-related information exists in AoUCM models.

Global variables are used in AoUCM models to formalize
conditions of choice points. Furthermore, at least inputs
from and outputs for Actor components are known even
early in the development process. This information can be
captured in the AoUCM model with the help of metadata
and then also transformed into the Adore model. Hence,
responsibilities of Actor components are tagged with meta-
data named ST in for inputs and ST out for outputs. The

values of the metadata describe the data including type in-
formation. The tagging with data-related information only
looks at each responsibility in isolation, specifying only what
is required by a responsibility and what is produced by a re-
sponsibility without specifying how the actual data flows
through the system. Hence, this is still very much in the
spirit of requirements models. Furthermore, if responsibili-
ties in Actor components can be tagged with data-related in-
formation, so can responsibilities of ≪business process≫ and
≪service≫ components, leading to even more information
that can be transformed into Adore models and verified by
its conflict detection rules. E.g., the getPicturesWithTag re-
sponsibility of the Flickr component in Fig. 1 is tagged with
the ≪tag:String≫ input and the ≪pictures:Picture[]≫ output.

The transformation process for ST in and ST out metadata
is straightforward. Inputs and outputs are simply added to
the local assignments and service invocations corresponding
to responsibilities. However, the resulting Adore model is
not consistent and requires further manipulations. A busi-
ness process modeled with Adore requires its internal vari-
able vx to be assigned before used. The Adore engine can
also detect unused variables (as a bad smell), i.e., variables
assigned during the execution of a process but never used af-
ter the assignment. We propose two refactoring techniques
to be used as default fixes when encountering such cases:

• Pull in: Let v be a variable used as input for a given
activity, but never assigned before. The simplest solu-
tion to take care of this data assignment is to assume
that it must have been received from the outside world.
As a consequence, v is automatically added as an out-
put of the initial receive activity.

• Push out: Let v′ be a variable used as output in an
activity, but never used afterwards. We assume this
data should be returned to the outside world, and add
v′ as an input of the final reply activity.

• Fragment specialization: In a fragment, external vari-
ables are defined through the hook activity. Hence,
unassigned variables are pulled in as hook input.

As these default fixes change business process interfaces,
another refactoring technique must be applied to deal with
interface–mismatch: an activity that invokes a refactored
process must use the enriched interface (new inputs or out-
puts parameters). The enrich refactoring rule adds these
new parameters inside such activities, and then propagates
their usage in the process.

Binding of Matched Metadata.
Some concerns may have to make use of data-related in-

formation provided by model elements outside the concern.
The Caching concern, for example, models a generic ≪key≫

and generic ≪data≫ in its AoUCM scenario model. Both
need to be mapped to concrete data of the concern to which
Caching is applied. In the case of PicWeb, these are the
≪pictures:Picture[]≫ and ≪tag:String≫ tags of the responsi-
bility getPicturesWithTag. The mapping is achieved with the
metadata named ST bind (≪data=pictures≫ and ≪key=tag≫

are associated with the pointcut stub). The transforma-
tion process then simply substitutes the generic data with
the concrete data in the fragment that corresponds to the
AoUCM concern.



PicWeb Case Study.
According to the requirements model defined in Fig. 2,

the truncate business process limits the number of received
pictures according to boolean conditions (nrPhotos > threshold

and nrPhotos ≤ threshold). Semantically, the nrPhotos vari-
able contains the cardinality of the picture set, but this
is only specified implicitly in the AoUCM model. When
transformed into Adore artifacts, the nrPhotos variable is
detected as unassigned, and then pulled in by the previously
described refactoring technique. As a consequence, the trun-

cate business process interface now defines that the process
must receive a set of pictures, a threshold, and the cardinal-
ity of the picture set. This, however, is redundant, since the
cardinality can be easily computed internally. This result
may therefore be used (according to [D → R]2) by require-
ments engineers to update the requirements models.

Benefits.
The transformation algorithm automatically generates ar-

tifacts expressed in the language daily used by the designer.
Therefore, designers can more readily identify inconsisten-
cies (such as receiving a set and its cardinality) based on
their experience. In this case, one may decide that this is-
sue is too technical and must therefore be handled at the
design level. Alternatively, a new responsibility may be de-
fined in the requirements model to address the problem and
maintain traceability between the models.

4.2 Design Choice Impacting Requirements
In Sect. 4.1, we considered omissions in the requirements

model that lead to inefficient models at the design layer.
This section discusses the existence of a design choice in the
generated model, i.e., a divergence between the generated
artifacts and the actually expected design model.

⇒ [D → R]3 Design choices (such as service definition)
may lead to the modification of the requirements mod-
els to remain consistent with the design model.

Implementation & PicWeb Case Study.
The implementation of this mechanism is based on the

one described in the previous section, i.e., the existence of
data–driven concerns in the requirements models.

The Payment fragment (Fig. 9(a)) of the PicWeb system
allows one to restrict the availability of a given service if the
number of executed calls is greater than a daily limit9. A
designer will identify three points in the Payment fragment
where the [D → R]3 information is useful:

• act2: This activity is named returnNoPhotos, but never
interacts with the pictures variable. It, however, is nec-
essary to assign the empty list to pictures while exe-
cuting this activity because the pictures variable is a
required result of this fragment.

• act1: This activity uses two variables to check if the
service should really be called: nrRequests and request-

Limit. According to the refactoring rules, these vari-
ables are pulled–in into the hook (act3), as they are
not defined anywhere else.

9The Flickr service enforces such a restriction.

– From a design point of view, the requestLimit vari-
able should be retrieved from a dedicated service
defined in the SOA. As such a limit restriction is
common in the SOA world10, it should be handled
in the requirements.

– The nrRequest variable implicitly introduces the
existence of a counter that needs to be incre-
mented after each call and reset at the beginning
of a usage period (considering the limit restriction
as a requirements–driven concern, it is an omis-
sion in the requirements to not count the calls).

As a consequence, the three choices made at the design
level by SOA experts impact the requirements model: re-
sponsibilities must be added to enrich the models with these
new entities as highlighted in Fig. 9(b). The transformation
is then re–played to obtain an updated Adore model.

Benefits.
Designers only focus on their field of expertise and can

identify problems in the system (such as omissions) without
having to build a design model from scratch. The work effort
is reduced, and the interventions are more accurate and pre-
cise. The requirements engineer, on the other hand, benefits
from an updated requirements model that can be verified
against the stakeholders’ goal models and re-evaluated by
requirements analysis techniques to ensure that the changes
do not conflict with the intended results.

4.3 Verification of User Interactions
In AoUCMmodels, detailed user interactions are captured

by ST in and ST out metadata associated with responsibili-
ties of Actor components11. E.g., the responsibility enterTa-

gAndThreshold in Fig. 1 is tagged with ≪tag:String≫ and
≪threshold:Integer≫ inputs, while the responsibility browsePic-

tures is tagged with the ≪pictures:Picture[]≫ output. These
inputs/outputs are compared with the final business process
interfaces after the refactoring steps to ensure that informa-
tion is provided as specified by the interface.

⇒ [D → R]4 Enriched business process interfaces are ver-
ified against the specification of detailed user interac-
tions in the requirements model for further consistency
between the two abstraction levels.

Benefits.
If there is a mismatch (e.g., the User only enters a tag but

not a threshold), then this gives an indication that there
is a mistake in the requirements model or that additional
activities need to be added to the design model to cover the
required information.

5. RELATED WORK
At the beginning of the development process, AoURN has

already been used in the context of business process mod-
eling, monitoring, and improvement. Pourshahid et al. [20]
use AoURN goal models augmented with Key Performance
Indicators (KPI) to assess the state of business processes and
adapt them, if necessary, with the help of business process

10E.g., cloud–driven services such as GoogleApp Engine allow
a number of free calls before charging a pay–per–call fee.

11E.g., the User in the PicWeb application.



(a) Generated Design Artifact (with design weaknesses)

PicWeb <<business process>>

Counter <<service>>

continue

getReset <<service:String>> <<nrRequests:Integer>>

pay

Flickr request
P

[> 50000 requests]

[<= 50000 requests]

getLimit <<service:String>>
<<requestLimit:Integer>>

increment <<service:String>>

returnNoPhotos <<pictures:Picture[ ]>>

PicWeb <<business process>>

Counter <<service>>

continue

getReset <<service:String>> <<nrRequests:Integer>>

pay

Flickr request
PP

[> 50000 requests]

[<= 50000 requests]

getLimit <<service:String>>
<<requestLimit:Integer>>

increment <<service:String>>

returnNoPhotos <<pictures:Picture[ ]>>

 

(b) Enhanced Requirements Artifact (weaknesses addressed)

Figure 9: Illustrating Design Choices – ([D → R]3) Information

redesign patterns expressed as AoURN concerns. AoURN’s
goal and scenario models describe the behavioral, structural,
and intentional dimensions of each pattern.

Jacobson and Ng [8] propose an aspect-oriented software
development process based on use cases. Aspect techniques
allow use cases to be encapsulated throughout the software
development process. While the authors define the kind
of requirements and design models required for modeling
use cases in an aspect-oriented and traceable way, they are
not focusing on automatic transformations between require-
ments models and design models.

Chitchyan et al. [2] and Sánchez et al. [21] both propose
approaches where aspect-oriented requirements are mapped
to aspect-oriented architectures, using different languages.
However, this is done in a forward engineering context, whereas
our process is iterative and enables requirements to benefit
from design-level analysis. In addition, their mappings and
transformations do not appear to be automatable.

In [9], the authors propose Ram, an aspect-oriented mod-
eling approach that provides multi-view modeling, covering
structural, state-based, and scenario-based models. Adore

and AoURN focus on the behavioral point of view based on
scenarios and workflows with only limited structural mod-
eling. However, the consistency of AoURN requirements
and Adore design models can be greatly improved when
they are combined with more detailed structural informa-
tion as provided by Ram. A detailed structural view is also
useful when extracting service interfaces from orchestration
and fragment definitions and when applying composition al-
gorithms such as Kompose [6] to obtain the service mod-
els (e.g., with the help of Uml class diagrams). AoURN,
on the other hand, offers intentional models that describe
stakeholder goals as a complementary view of the reasons
for system choices and decisions.

At the end of the development process, several approaches
fill the gap between orchestrations and AOP (e.g., [1, 4, 22]).
These approaches rely on the BPEL language and impose
dedicated execution engines to interpret the aspects. Adore

preaches technological independence and exposes itself as a
meta–model to support composition [11]. Instead of inter-
preting aspectized BPEL code, Adore focuses on the design
of workflows by composition and weaving of fragments.

6. CONCLUSIONS & PERSPECTIVES
In this paper, we address the interactions of requirements

and design phases during an iterative aspect-oriented soft-

ware development (AOSD) process in the SOA context. We
propose an automatic transformation to help requirements
engineers and designers convert requirements artifacts into
design models. We also identify several classes of informa-
tion (i.e., [R → D]i and [D → R]i) that enhance a de-
sign model based on the requirements model and vice versa.
This, together with the transformation, ensures the consis-
tency of models, reduces the amount of work done in one
model that needs to be repeated in the other, and makes
analysis results from one notation available to the other.
The proposed approach was successfully applied as a proof-
of-concept case study to the PicWeb application using the
AoURN and Adore technologies. Our research yields sev-
eral lessons learned as discussed in the following paragraphs.

Experimental Validation. The described results rely
on the PicWeb case study, as our goal was to initiate a bidi-
rectional mapping between requirements analysis and design
phase. However, more experiments need to be done to (i)
formally assess the benefits (e.g. using quality metrics) and
(ii) identify empirical limitations (e.g. requirements concern
split into multiple design ones). It is nevertheless interest-
ing to notice that the PicWeb case study is a typical SOA
system and does not highlight any fundamental weakness in
the approach.

Mapping of Concerns. In our experiments, it was
possible to map concerns defined in the requirements sce-
nario models one-to-one onto concerns in the design models,
simplifying traceability and indicating that an end-to-end
AOSD process is feasible in the SOA context. The simi-
larity of AoUCM and Adore models plays a large role in
this concern mapping. Concerns related to AoURN’s goal
models, on the other hand, are not mapped directly onto
concerns in Adore but rather indirectly through AoURN’s
intrinsic relationships between goal and scenario concerns.
Keeping concerns across development phases was not nearly
as challenging as identifying those semantic concepts in both
notations for which transformation rules can be established.

Loss of Expressiveness. The current transformation
rules restrict the notations to a common, conceptual subset,
thus constraining the AoUCM notation to a profile. It re-
mains to be seen whether this loss of expressiveness at the
requirements level is a real hindrance in practice, i.e., some
concerns will be more difficult to model with a restricted
AoUCM notation. Alternatively, further AoUCM elements
could be supported by more advanced transformation rules.
However, any additions to the Adore notation have to be
carefully weighed against Adore’s need to keep its meta–



model as reduced as possible to be in a position to prove
its composition mechanisms. More complex AoUCM work-
flow concepts such as dynamic stubs, synchronizing stubs,
and blocking stubs [7] could potentially be expressed as pat-
terns of existing concepts in Adore. Other concepts such as
timers [7] could be mapped to Adore fragments and then
composed with processes.

Lightweight Modeling of Detailed Data. The light-
weight addition of detailed data in the requirements model
allowed for a much more effective use of Adore’s data–
driven analysis capabilities. Furthermore, Adore’s refactor-
ing techniques“fill in”the overall data-flow of a system based
on simple, local definitions of required inputs and delivered
outputs that can even be determined during the require-
ments phase. More research is needed to ascertain how far
tool-generated data-flow can go in the design of SOA–based
systems. More advanced refactoring techniques could po-
tentially resolve even more complicated data-flow situations
and relieve the designer from another burdensome task.

To Unify or Not To Unify. During this research, we
had the choice to apply Adore’s data–driven analysis capa-
bilities directly to AoUCM models. Essentially, this would
have amounted to unifying the AoUCM and Adore nota-
tions. Instead, we opted to define a transformation pro-
cess to retain greater flexibility in applying each notation’s
unique capabilities, i.e., AoUCM’s connection to goal mod-
els and trade-off analysis as well as Adore’s composition
mechanisms and connection to BPEL implementations.

Even if the PicWeb example is rather small, it is part of
an existing SOA–based system that is in use daily, which
makes it pertinent in the context of SOA experimentation.
The PicWeb model covers all notational elements supported
by the transformation, and all major composition rules are
used for its crosscutting concerns. In addition, we have ev-
idence from much larger case studies [12, 14] that AoURN
and Adore scale well to larger systems. In terms of the
PicWeb models being specified by experts, we argue that
this is actually necessary to establish the most appropriate
transformation rules. However, more experiments are nec-
essary to investigate how the proposed approach fares with
less-experienced modelers.

Tool support for our approach is provided by jUCMNav
and Adore. All models of the case study have been de-
fined with the tools. The actual transformation has not
yet been integrated with the jUCMNav tool but this is a
rather manageable future task compared to the complexity
of other transformations that already exist in the jUCMNav
tool (e.g., to Message Sequence Charts). Facilities already
exist in jUCMNav to check for well-nestedness and OCL
constraints, allowing an AoURN profile for Adore to be
enforced. The refactoring techniques from Sect. 4.1 are part
of the Adore kernel12.

We also plan to combine the results of this work with that
of Pourshahid et al. [20] and on-going work on the genera-
tion of BPEL code from Adore to establish an end-to-end
modeling environment for SOA–based systems that enables
runtime monitoring and adaptation of business processes.
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Appendix: Transformation Process
The proposed approach is supported by Adore and jUCM-
Nav. This appendix describes in pseudo–code the transfor-
mation systematically used to handle the case study. The
implementation is not yet publicly available, as we should
assess the transformation on larger examples first.

To determine the scope of the tranformation of AoUCM
models into Adore models, a AoUCM model is tagged with
metadata. A component may either be tagged with ≪business

process≫ or ≪service≫ (i.e., values of metadata named ST type).
≪business process≫ components are modules to be built for
the system. More than one may exist in the model and each
distinct path through one of them corresponds to a specific
orchestration or fragment in Adore. ≪service≫ components
represent already existing, external services (e.g., Flickr).
Again, several such components may exist and each path
through a component results in service invocation(s) of the
external service in the Adore model.

The transformation traverses the AoUCM model begin-
ning at the start points of the concerns’ root maps (regard-
less of whether the concern is crosscutting or not). Root
maps are at the highest level in the map hierarchy - they
may contain stubs but root maps are not plugged into any
stub. A concern’s root map is hence at the highest level
in the map hierarchy of the concern. Each root map of a
non-crosscutting concern is transformed into an Adore or-
chestration, while those of a crosscutting concern are trans-
formed into Adore fragments. During the traversal of the
AoUCM model, each path element is transformed into its
Adore equivalent and added to the orchestration/fragment.
Note that only a subset of AoUCM path elements is sup-
ported by the transformation process as corresponding con-
cepts are not always readily available in Adore.

AoUCM Profile for ADORE.
The presented approach imposes several constraints on

the AoUCM model. First, AoUCM models must be well-

nested13. Consequently, a root map can only have one start
point and one end point. Plug-in maps, however, may have
multiple start/end points as long as all of them are used by
the plug-in map’s stubs.

Second, all path elements except stubs must be bound to a
component to ensure that all behavior is assigned to a mod-
ule in Adore. Third, components tagged with ≪service≫

must contain only responsibilities as external service compo-
nents are black-box in a SOA context. Fourth, the AoUCM
model must not contain path elements that are not sup-
ported in Tab. 1. Fifth, a static stub must have its plug-in
map defined. Note that OCL rules can be defined and auto-
matically checked by the jUCMNav tool for all constraints
in this paragraph.

Transforming Path Elements.
The transformation assumes that the input AoUCMmodel

conforms to the Adore profile. The procedure transformMap

is called for each root map in the AoUCM model, regard-
less of whether it belongs to a crosscutting concern or not.
Each root map belongs to exactly one concern. While the
AoUCM model is traversed to transform each path element
into Adore elements, transformMap is called recursively to
deal with lower level maps (see bolded highlights in Fig. 10).
For any root map r, transformMap(null, am, r, null, true) is called
and the transformed Adore model am is returned. The pa-
rameters of transformMap describe the following:

context (the first parameter) describes for which compo-
nent an Adore model is created. When null, the context is
determined by transformMap (lines 2-3) using the component
tagged with ≪business process≫. If there is no such compo-
nent on a root map, then a generic context is used for the
Adore model. If there are more than one such component,
then the first one is used. This is an arbitrary choice to keep
the transformation process simple. The context parameter
may be not null when transformMap is called recursively as it
may already have been determined.

am (the second parameter) defines the Adore model to
which the results of the transformation are added. A new
Adore fragment or orchestration is created by the process
(lines 4-6). If the map belongs to a crosscutting concern,
then an Adore fragment is created, otherwise an Adore

orchestration is created. The union of all Adore fragments
or orchestrations generated for each root map constitutes the
final Adore model for the whole AoUCM model. As plug-
in maps may be shared (i.e., plugged into many stubs) and
transformMap is called recursively, an attempt may be made
to transform an already transformed map again. In this
case, the already existing Adore orchestration or fragment
is used and the recursion ends (lines 7-8).

The name of an Adore orchestration consists of two parts
(i.e., <ServiceProvider>::<ProvidedService>). The first is
determined by the context whereas the second is determined
by the name of the map (the third parameter). The name
of an Adore fragment consists only of the provided service
and is therefore determined by the map alone.

p (the fourth parameter) indicates the current path ele-
ments that are to be transformed into Adore (lines 9-11). If
it is null, then it is initialized to the map’s start point (note

13I.e., OR-forks and OR-join only appear in pairs, an OR-
fork must be followed by an OR-join. Similarly, an AND-
fork must be followed by an AND-join.



Figure 10: Transforming AoUCM Models into Adore Models

that there can only be one start point for a map because
AoUCM models need to be well-nested).

flag (the fifth parameter) indicates whether the whole
map (flag = true) or only the portion of the map inside
the context starting from p (flag = false) is to be trans-
formed. transformMap passes this parameter into transformEle-

ment, which passes it into getNextPathElements (lines 43-45)
where the flag is finally considered.

transformElement performs the actual transformation of Ao-
UCM path elements into Adore model elements while tra-
versing the AoUCM model. transformElement has to deal with
four possible cases. Lines 25-28 cover the case with a compo-
nent tagged with ≪service≫ (i.e., service invocation). Lines
29-30 ignore non-tagged components and Actor components.
Lines 31-42 cover the cases for elements except stubs. If the
component of the current element is the same as the context,
then the transformation rules from Tab. 1 apply (line 33). If
it is not the same as the context, then a service invocation is
added and transformMap is called recursively (line 40) to deal
with the portion of the path inside the other component for
which a new Adore orchestration is created. Note how the
flag is set to false and the element’s component is set as the

context. Line 41 ensures that the portion of the path inside
the other component, which is dealt with recursively, is not
traversed a second time.

Finally, lines 18-24 deal with static stubs, which require
an examination of a stub’s plug-in map. If the plug-in map
does not contain a component that is the same as the context
but another component tagged with≪business process≫, then
a service invocation summarizing the plug-in map is added
to the Adore model and transformMap is called recursively
(line 21) to create a new Adore orchestration for the plug-
in map. Otherwise, the plug-in map is an extension of the
current context and the traversal continues with the same
context with the path on the plug-in map as if it were on
the parent map (line 23).

Lines 43-45 transform the path elements following the cur-
rent path element in the model. If the flag is set to false,
only those next path elements are considered that are in the
context. If there are more than one next path element (e.g.,
for OR-forks), an array of path elements is returned by get-

NextPathElements. If there are no next path elements, then
an empty array is returned, which stops the recursions.


