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ON THE CONTRIBUTION OF THE HORIZONTAL SEA-BED

DISPLACEMENTS INTO THE TSUNAMI GENERATION PROCESS

DENYS DUTYKH∗, DIMITRIOS MITSOTAKIS, LEONID B. CHUBAROV, AND YURIY I. SHOKIN

Abstract. The main reason for the generation of tsunamis is the deformation of the bot-

tom of the ocean caused by an underwater earthquake. Usually, only the vertical bottom

motion is taken into account while the horizontal co-seismic displacements are neglected in

the absence of landslides. In the present study we propose a novel methodology for recon-

structing all components of the bottom coseismic displacements field. Then, the sea-bed

motion is transmitted onto the free surface using a three-dimensional Weakly Nonlinear

(WN) approach. We pay special attention to the evolution of kinetic and potential ener-

gies of the resulting wave while the contribution of the horizontal displacements into wave

energy balance is also quantified. Approaches proposed in this study are illustrated on

the July 17, 2006 Java tsunami and some more recent events.
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1. Introduction

During the years 2004 to 2006 several interesting tsunami events took place in the Indian
Ocean. In December 26, 2004, the Great Sumatra-Andaman earthquake (Mw = 9.1, cf.
C. Ammon et al. (2005), [AJT+05]) generated the devastating Indian Ocean tsunami
refered to in the literature as the Tsunami Boxing Day 2004 (cf. C. Synolakis & E. Bernard
(2006), [SB06]). The local tsunami runups from this event exceeded the height of 34 m at

Key words and phrases. tsunami waves; water waves; coseismic displacements; wave energy; finite fault

inversion.
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Lhoknga in the western Aceh Province. This and other observations led many researchers
to ask whether this tsunami was unusualy large for this specific earthquake size. Later
it was shown by E.L. Geist et al. (2006) [GBAT06] that the Great Sumatra-Andaman
earthquake is very similar in terms of local tsunami magnitude to past events of the same
size. For example, the 1964 Great Alaska earthquake (Mw = 9.2, cf. H. Kanamori (1970)
[Kan70]) demonstrates a similar scaling.

On March 28, 2005 another earthquake occured approximately 110 km to the SE from
the Great Sumatra-Andaman earthquake’s epicenter. The magnitude of this earthquake
was estimated to be Mw = 8.6 ∼ 8.7 (cf. [LKA+05, Bil05, WIS05]). This event triggered
a massive evacuation in the surrounding Indian Ocean countries. However, the March 28,
2005 Northern Sumatra earthquake failed to generate a significant tsunami event. The
survey teams reported maximum tsunami runup of 4 m. [GBAT06]. This event can be
compared with the 1957 Aleutian earthquake (Mw = 8.6, cf. J.M. Johnson and K. Satake
(1993) [JS93]) which produced a maximum tsunami runup of 15 m (see J.F. Lander (1996)
[Lan96]). The deficiency of the March 2005 tsunami is related to the slip concentration in
the down-dip part of the rupture zone and to the fact that a substantial part of the vertical
displacement occurred in shallow waters or on the substance of the ground [GBAT06].

On the other hand, the smaller July 16, 2006 Java earthquake (Mw = 7.8, cf. C.J. Am-
mon et al. (2006), [AKLV06]) generated an unexpectedly destructive tsunami wave which
affected over 300 km of south Java coastline and killed more than 600 people, [FKM+07].
Field measurements of runup distributions range uniformly from 5 to 7 m in most inundated
areas. However, unexpectedly high runup values were reported at Nusakambangan Island
exceeding the value of 20 m. This tsunami focusing effect could be seemingly ascribed to
local site effects and/or to a local submarine landslide/slump. July 16, 2006 Java tsunami
can be compared to a similar event occured on June 2, 1994 at the East Java (Mw = 7.6)
(see Y. Tsuji et al. (1995), [TIM+95]). This 1994 Java tsunami produced more than 200
casualties with local runup at Rajekwesi slightly exceeding 13 m.

All these examples of recent and historical tsunami events show that there is a big variety
of the local tsunami heights and runup values with respect to the earthquake magnitude
Mw. It is obvious that the seismic moment M0 of underwater shallow earthquakes is
adequate to estimate far-field tsunami amplitudes (see also [OS03a]). However, tsunami
wave energy reflects better the local tsunami severity, while the specific runup distribution
depends on bathymetric propagation paths and other site-specific effects. One of the central
challenges in the tsunami science is to rapidly assess a local tsunami severity from very
first rough earthquake estimations. In the current state of our knowledge false alarms for
local tsunamis appear to be unavoidable. The tsunami generation modeling attempts to
improve our understanding of tsunami behaviour in the vicinity of the genesis region.

Tsunami generation modeling was initiated in the early sixties by the prominent work
of K. Kajiura, [Kaj63], who proposed the use of the static vertical sea bed displacement
for the initial condition of the free surface elevation. Classically, the celebrated Okada,
[Oka85, Oka92], and sometimes Mansinha & Smylie1 [MS67, MS71] or Gusiakov,[Gus78],

1In fact, Mansinha & Smylie solution is a particular case of the more general Okada solution.
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solutions are used to compute the coseismic sea bed displacements. This approach is still
widely used by the tsunami wave modeling community. However, some progress has been
recently made in this direction,[OTM01, DD07b, Dut07, DD09b, RLF+08, SF09, DPD11].

There is a consensus on the importance of the horizontal motion in landslide generated
tsunamis, [Har92, War01, BSD+03, OS03b]. However, for tsunami waves caused by under-
water earthquakes, the horizontal displacements are often disregarded by the tsunami wave
modeling community. We can quote here a few publications devoted to tsunami waves such
as one by D. Stevenson (2005), [Ste05]:

“Although horizontal displacements are often larger, they are unimportant
for tsunami generation except to the extent that the sloping ocean floor also
forces a vertical displacement of the water column.”

Or another one by G.A. Ichinose et al. (2000) [ISAL00]:

“The initial lake level values were specified by assuming that the lake surface
instantaneously conformed to the vertical displacement of the lake bottom
while horizontal velocities were set to zero. The effect of horizontal defor-
mation on the initial condition is neglected here and left for future work.”

The authors of this article also tended to neglect the horizontal displacements field in pre-
vious tsunami generation studies, [Dut07, Mit09]. Perhaps, this situation can be ascribed
to the work of E. Berg (1970), [Ber70], who showed in the case of the 1964 Alaska’s earth-
quake (Mw = 9.2) that the input into the potential energy from the horizontal motion is
less than 1.5% of that from the vertical movement.

The attitude to horizontal displacements changed after the prominent work by Y. Tan-
ioka and K. Satake (1996), [TS96]. According to their computations for the 1994 Java
earthquake, the inclusion of horizontal displacements contribution results in 43% increase
in maximum initial vertical ground displacement and an increase in the wave amplitudes
at the shoreline by 30%. The predicted tsunami runup increases by a factor of two. These
striking results incited researchers to reconsider the role of the horizontal sea bed motion.
Hereafter, various tsunami generation techniques which involve only the vertical displace-
ment field are referred to as the incomplete scenario. On the contrary, the complete tsunami
generation takes also into account the horizontal displacements field.

The approach proposed by Tanioka & Satake (1996) is based on a simple physical con-
sideration: horizontal displacements of a sloping bottom will produce some amount of the
vertical motion depending on the slope magnitude. Assuming that the slope is small, this
idea can be expressed mathematically by applying once the first order Taylor expansion:

uh := u1hx + u2hy,

where u1,2 are the horizontal components of the displacements field and h(x, y) is the
bathymetry function. The indices x and y denote the spatial partial derivatives. Tanioka
& Satake (1996) referred to the quantity uh as the vertical displacement of water due to the
horizontal movement of the slope. Then, the quantity uh is simply added as a correction to
the vertical displacements component u3(x, y). More recently, an original approach based
on the impulse-momentum principle, [VS82], has been proposed in [SFZ+08]. Their genesis
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theory is based on the idea of the momentum exchange between the slipped continental
slope and the water column. For more details we refer to the original publication [SFZ+08].
The present study is closer to the ideas of Tanioka & Satake (1996). Namely, we reconstruct
in more details the dynamics of bottom displacements in vertical and horizontal directions,
including their evolution in time. We underline that most of tsunami generation studies,
including [TS96], assume the bottom deformation process to be instantaneous, that in most
of the cases provides a fairly good approximation. Then, the bottom motion generates
some perturbations on the free surface of the water layer. This perturbation form long
waves, propagating across the oceans under the gravity force and commonly referred to
as tsunami waves due to their destructive potential fully realized only in coastal regions,
[Kaj63, VDP02, DD07a, SB06].

In the current study we shed some light into the energy transfer process from an under-
water earthquake to the implied tsunami wave (in the spirit of the study by D. Dutykh
& F. Dias (2009), [DD09a]), while taking into account and quantifying the horizontal dis-
placements contribution into tsunami energy balance. We focus only on the generation
stage since the propagation phase and runup techniques are well understood nowadays
at least in the context of Nonlinear Shallow Water equations, [Ima96, DKK08, KCY07,
DPD11, DKM11].

The present study is organized as follows. In Section 2 we present mathematical models
used in this study. Specifically, in Sections 2.1 and2.2 a description of the bottom motion
and the fluid layer solution is presented respectively. Some rationale on tsunami wave
energy computations is discussed in Section 2.2.1. Numerical results are presented in
Section 3. Finally, some important conclusions of this study are outlined in Section 4. In
the Appendix of this paper we present the results concerning the tsumami generation of
two recent events.

2. Mathematical models

Tsunami waves are caused by a huge and rapid motion of the seafloor due to an under-
water earthquake over broad areas in comparison to water depth. There are some other
mechanisms of tsunami genesis such as underwater landslides, for example. However, in
this study we focus on the purely seismic mechanism which occurs most frequently in
nature.

Hydrodynamics and seismology are only weakly coupled in the tsunami generation prob-
lem. Namely, the released seismic energy is partially transmitted to the ocean through the
sea bed deformation while the ocean has obviously no influence onto the rupturing process.
Consequently, our problem is reduced to two relatively distinct questions:

(1) Reconstruct the sea bed deformation h = h(~x, t) caused by the seismic event under
consideration

(2) Compute the resulting free surface motion

The answers to these questions are analyzed in Sections 2.1 and 2.2 respectively.
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2.1. Dynamic bottom displacements reconstruction. Traditionally, the free surface
initial condition for various tsunami propagation codes (see [TG97, Ima96, IYO06]) is
assumed to be identical to the static vertical deformation of the ocean bottom, [Kaj70].
This assumption is classically justified by the three following reasons:

(1) Tsunamis are long waves. In this regime the vertical acceleration is neglected with
respect to the gravity force

(2) The sea bed deformation is assumed to be instantaneous. It is based on the com-
parison of gravity wave speed (200 m/s for water depth of 4 km) and the seismic
wave celerity (≈ 3600 m/s)

(3) The effect of horizontal bottom motion is negligible for tsunami generation since
the bathymetry has in general mild slope (≈ 10%), [Ber70]

It is worth to note that nonhydrostatic effects as well as finite time source duration have
been modeled in several recent studies [TT01, DD07b, FG07, KDD07, DD09b, FM09].
Some attempts have also been made to take into account the horizontal displacements
contribution, [TS96, GBAT06, SFZ+08].

In the present study we relax all three classical assumptions. The bottom deformation
is reconstructed using the finite fault solution as it was suggested in our previous study
[DMGD11]. However, we extend the previous construction to take into account the horizon-
tal displacements contribution as well. The finite fault solution is based on the multi-fault
representation of the rupture, [BLM00, JWH02]. The rupture complexity is reconstructed
using a joint inversion of the static and seismic data. Fault’s surface is parametrized by
multiple segments with variable local slip, rake angle, rise time and rupture velocity. The
inversion is performed in an appropriate wavelet transform space. The objective function
is a weighted sum of L1, L2 norms and some correlative functions. With this approach
seismologists are able to recover rupture slip details, [BLM00, JWH02]. This available
seismic information is exploited hereafter to compute the sea bed displacements produced
by an underwater earthquake with better geophysical resolution. Several other multiple
segments sources have been used in [Gei02, WL06, MAP+08].

Remark 1. In a few studies an attempt has been made to reconstruct the seismic source
from tsunami tide gauge records, [PTP01, PM03, FS06]. This approach seems to be very
promising and in future a joint combination of seismic and hydrodynamic inversions should
be used for the successful reconstruction of appropriate initial conditions.

Let us describe the way of how the sea bed displacements are reconstructed. In this
reconstruction procedure we follow the great lines of our previous study [DMGD11], while
adding new ingredients concerning the horizontal displacements field reconstruction. We
illustrate the proposed approach in the case of the July 17, 2006 Java tsunami for which
the finite fault solution is available, cf. [Ji06, Ozg06]. It was a relatively slow earthquake
and thus, atypical. However, we assume that the slow rupturing process was well resolved
by the finite fault inversion algorithm.

The fault is considered to be the rectangle with vertices located at (109.20508◦ (Lon),
−10.37387◦ (Lat), 6.24795 km (Depth)), (106.50434◦, −9.45925◦, 6.24795 km), (106.72382◦,
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Figure 1. Surface projection of the fault’s plane and the ETOPO1 bathy-
metric map of the region under consideration. The symbol ⋆ indicates the
hypocenter’s location at (107.345◦,−9.295◦). The local Cartesian coordinate
system is centered at the point (108◦,−10◦). This region is located between
(106◦,−8◦) and (110◦,−12◦). The colorbar indicates the water depth in me-
ters below the still water level (z = 0). In the region under consideration
the depth varies from 20 to 7100 meters.

−8.82807◦, 19.79951 km), (109.42455◦, −9.74269◦, 19.79951 km) (see Figure 1). The fault’s
plane is conventionally divided into Nx = 21 subfaults along strike and Ny = 7 subfaults
down the dip angle, leading to the total number of Nx × Ny = 147 equal segments. Pa-
rameters such as the subfault location (xc, yc), the depth di, the slip ui and the rake angle
φi for each segment can be found in [Ji06] (see also Appendix II, [DMGD11]). The elastic
constants and parameters such as dip and slip angles, which are common to all subfaults,
are given in Table 1. We underline that the slip angle is measured conventionally in the
counter-clockwise direction from the North. The relations between the elastic wave celeri-
ties cp, cs and Lamé coefficients λ, µ used in Okada’s solution are classical and can also be
found in Appendix III, [DMGD11].

One of the main ingredients in our construction is the so-called Okada solution, [Oka85,
Oka92], which is used in the case of an active fault of small or intermediate size. The
success of this solution may be ascribed to the closed-form analytical expressions which
can be effectively used for various modeling purposes involving co-seismic deformation.

Remark 2. The celebrated Okada solution, [Oka85, Oka92], is based on two main ingre-
dients — the dislocation theory of Volterra [Vol07] and Mindlin’s fundamental solution for
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P -wave celerity cp, m/s 6000

S-wave celerity cs, m/s 3400

Crust density ρ, kg/m3 2700

Dip angle, δ 10.35◦

Slip angle (CW from N) 288.94◦

Table 1. Geophysical parameters used to model elastic properties of the
subduction zone in the region of Java.

an elastic half-space, [Min36]. Particular cases of this solution were known before Okada’s
work, for example the well-known Mansinha & Smylie’s solution, [MS67, MS71]. Usually
all these particular cases differ by the choice of the dislocation and the Burger’s vector
orientation, [Pre65]. We recall the basic assumptions behind this solution:

• Fault is immersed into the linear homogeneous and isotropic half-space
• Fault is a Volterra’s type dislocation
• Dislocation has a rectangular shape

For more information on Okada’s solution we refer to [DD07b, DD07a, Dut07] and the
references therein.

The trace of the Okada’s solution at the sea bottom (substituting z = 0 in the geophysical

coordinate system) for each subfault will be denoted O
(j)
i (~x; δ, λ, µ, . . .), where δ is the dip

angle, λ, µ are the Lamé coefficients and dots denote the dependence of the function

O
(j)
i (~x) on other 8 parameters, cf. [DD07b]. The index i takes values from 1 to Nx × Ny

and denotes the corresponding subfault segment, while the superscript j is equal to 1 or
2 for the horizontal displacements and to 3 for the vertical component. Hereafter we will

adopt the short-hand notation O
(j)
i (~x) for the jth displacement component of the Okada’s

solution for the ith segment having in mind its dependence on various parameters.
Taking into account the dynamic characteristics of the rupturing process, we make some

further assumptions on the time dependence of the displacement fields. The finite fault
solution provides us with two additional parameters concerning the rupture dynamics —
the rupture velocity vr and the rise time tr which are equal to 1.1 km/s and 8 s for July 17,
2006 Java event respectively. The epicenter is located at the point ~xe = (107.345◦,−9.295◦),
cf. [Ji06]. Given the origin ~xe, the rupture velocity vr and ith subfault location ~xi, we define
the subfault activation times ti needed for the rupture to achieve the corresponding segment
i by the formulas:

ti =
||~xe − ~xi||

vr
, i = 1, . . . , Nx ×Ny.

We will also follow the pioneering idea of J. Hammack, [Ham72, Ham73], developed later
in [TT01, THT02, DD07b, DDK06, KDD07], where the maximum bottom deformation is
achieved during some finite time (the so-called rise time) according to an appropriately
chosen dynamic scenario. Various scenarios used in practice (instantaneous, linear, trigono-
metric, exponential, etc) can be found in [Ham72, Ham73, DDK06, DD07b]. In this study
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Figure 2. Trigonometric and exponential dynamic scenarios for tr = 1 s
(see J. Hammack (1973), [Ham73]).

we adopt the trigonometric scenario which is given by the following formula:

T (t) = H(t− tr) +
1

2
H(t)H(tr − t)

(
1− cos(πt/tr)

)
, (2.1)

where H(t) is the Heaviside step function. This scenario has the advantage to have also the
first derivative continuous at the activation time t = 0. However, for comparative purposes
sometimes we will use also the so-called exponential scenario:

Te(t) = H(t)
(
1− e−αt

)
, α :=

log(3)

tr
.

For illustrative purposes both dynamic scenarios are represented in Figure 2.
We sum up together all the ingredients proposed above to reconstruct dynamic displace-

ments field ~u = (u1, u2, u3) at the sea bottom:

uj(~x, t) =

Nx×Ny∑

i=1

T (t− ti)O
(j)
i (~x).

Remark 3. We would like to underline here the asymptotic behaviour of the sea bed dis-
placements. By definition of the trigonometric scenario (2.1) we have lim

t→+∞
T (t) = 1.

Consequently, the sea bed deformation will attain fast its state which consists of the linear
superposition of subfaults contributions:

uj(~x, t) =

Nx×Ny∑

i=1

O
(j)
i (~x).

Finally, we can predict the sea bed motion by taking into account horizontal and vertical
displacements:

h(~x, t) = h0(~x− ~u1,2(~x, t))− u3(~x, t), (2.2)
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where h0(~x) is a function which interpolates2 the static bathymetry profile given e.g. by
the ETOPO1 database (see Figures 1 and 4).

Remark 4. In some studies where horizontal displacements were taken into account (cf.
[TS96, BCHK06, SFZ+08, BCD+09]), the first order Taylor expansion was permanently
applied to the bathymetry representation formula (2.2) to give:

h(~x, t) ≈ h0(~x)− ~u1,2(~x, t) · ∇~xh0(~x)− u3(~x, t) (2.3)

We prefer not to follow this approximation and to use the exact formula (2.2) since it
is valid for all slopes (see Figure 4 for Java bathymetry). Another difficulty lies in the
estimation of the bathymetry gradient ∇~xh0(x) required by Taylor’s formula (2.3). The
application of any finite differences scheme to the measured h0(~x) leads to an ill-posed
problem. Consequently, one needs to apply extensive smoothing procedures to the raw data
h0(~x) which induces an additional loss in accuracy.

In the present study we do not completely avoid the computation of the static bathymetry
gradient ∇~xh0(~x) since the kinematic bottom boundary condition (2.7) involves the time
derivative of the bathymetry function:

∂th = −∇~xh0(~x) · ∂t~u1,2(~x, t)− ∂tu3(~x, t).

However, the last formula is exact and it is obtained by a straightforward application of the
chain differentiation rule.

Another possibility could be to consider static horizontal displacements ~u1,2(~x) thus keep-
ing dynamics only in the vertical component u3(~x, t). However, we do not choose this
option in this work.

In the next section we will present our approach in coupling this dynamic deformation
with the hydrodynamic problem to predict waves induced on the free surface of the ocean.

2.2. The water wave problem with moving bottom. We consider the incompressible
flow of an ideal fluid with constant density ρ in the domain Ω ⊆ R

2. The horizontal
independent variables will be denoted by ~x = (x, y) and the vertical one by z. The origin
of the Cartesian coordinate system is traditionally chosen such that the surface z = 0
corresponds to the still water level. The fluid domain is bounded below by the bottom
z = −h(~x, t) and above by the free surface z = η(~x, t). Usually we assume that the total
depth H(~x, t) := h(~x, t) + η(~x, t) remains positive H(~x, t) ≥ h0 > 0 under the system
dynamics ∀t ∈ [0, T ]. The sketch of the physical domain is shown in Figure 3.

Remark 5. Classically in water wave modeling, we make the assumption that the free
surface is a graph z = η(~x, t) of a single-valued function. It means in practice that we
exclude some interesting phenomena, (e.g. wave breaking phenomena) which are out of the
scope of this modeling paradigm.

2In our numerical simulations presented below we use the MATLAB TriScatteredInterp class to

interpolate the static bathymetry values given by ETOPO1 database.
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The governing equations of the classical water wave problem are the following, [Lam32,
Sto58, Mei94, Whi99]:

∆φ = ∇2φ+ ∂2
zzφ = 0, (~x, z) ∈ Ω× [−h, η], (2.4)

∂tη +∇φ · ∇η − ∂zφ = 0, z = η(~x, t), (2.5)

∂tφ+ 1
2
|∇φ|2 + 1

2
(∂zφ)

2 + gη = 0, z = η(~x, t), (2.6)

∂th +∇φ · ∇h + ∂zφ = 0, z = −h(~x, t), (2.7)

where φ is the velocity potential, g the acceleration due to gravity force and ∇ = (∂x, ∂y)
denotes the gradient operator in horizontal Cartesian coordinates. The fluid incompressibil-
ity and flow irrotationality assumptions lead to the Laplace equation (2.4) for the velocity
potential φ(~x, z, t).

The main difficulty of the water wave problem lies on the boundary conditions. Equations
(2.5) and (2.7) express the free surface and bottom impermeability, while the Bernoulli
condition (2.6) expresses the free surface isobarity respectively.

Function h(~x, t) represents the ocean’s bathymetry (depth below the still water level,
see Figure 3) and is assumed to be known. The dependence on time is included in order to
take into account the bottom motion during an underwater earthquake [DD07a, DD07b,
DDK06, KDD07, Dut07].
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For the exposition below we will need also to compute unitary exterior normals to the
fluid domain. The normals at the free surface Sf and at the bottom Sb are given by the
following expressions respectively:

n̂f =
1

√

1 + |∇η|2

∣
∣
∣
∣

−∇η
1

, n̂b =
1

√

1 + |∇h|2

∣
∣
∣
∣

−∇h
−1

.

In 1968 V. Zakharov proposed a different formulation of the water wave problem based
on the trace of the velocity potential at the free surface [Zak68]:

ϕ(~x, t) := φ(~x, η(~x, t), t).

This variable plays a role of the generalized momentum in the Hamiltonian description of
water waves [Zak68, DB06]. The second canonical variable is the free surface elevation η.

Another important ingredient is the normal velocity at the free surface vn which is
defined as:

vn(~x, t) :=
√

1 + |∇η|2
∂φ

∂n̂f

∣
∣
∣
∣
z=η

= (∂zφ−∇φ · ∇η)|z=η . (2.8)

Kinematic and dynamic boundary conditions (2.5), (2.6) at the free surface can be rewritten
in terms of ϕ, vn and η [CSS92, CS93, FCKG05]:

∂tη −Dη(ϕ) = 0,

∂tϕ+ 1
2
|∇ϕ|2 + gη − 1

2(1+|∇η|2)

[
Dη(ϕ) +∇ϕ · ∇η

]2
= 0.

(2.9)

Here we introduced the so-called Dirichlet-to-Neumann operator (D2N) [CM85, CS93]
which maps the velocity potential at the free surface ϕ to the normal velocity vn:

Dη : ϕ 7→ vn =
√

1 + |∇η|2 ∂φ

∂n̂f

∣
∣
∣
z=η

∣
∣
∣
∣
∣
∣
∣
∣

∇2φ+ ∂2
zzφ = 0, (~x, z) ∈ Ω× [−h, η],
φ = ϕ, z = η,

√

1 + |∇h|2
∂φ

∂n̂b

= ∂th, z = −h.

The name of this operator comes from the fact that it makes a correspondance between

Dirichlet data ϕ and Neumann data
√

1 + |∇η|2
∂φ

∂n̂f

∣
∣
∣
∣
z=η

at the free surface.

So, the water wave problem can be reduced to a system of two PDEs (2.9) governing
the evolution of the canonical variables η and ϕ. For the tsunami generation problem we
approximate and we compute efficiently the D2N map Dη(ϕ) using the Weakly Nonlinear
(WN) model described in [DMGD11]. This relies on the approximate solution of the 3D
Laplace equation in a perturbed strip-like domain using the Fourier transform (ϕ̂ := F [ϕ],
η = F−1[η̂]):

D̂η(ϕ) = ϕ̂|~k| tanh(|~k|H) + f̂ sech(|~k|H)−F
[

F−1
[
i~kϕ̂

]
· F−1

[
i~kη̂

]]

,

where ~k is the wavenumber and f is the bathymetry forcing term

f(~x, t) := −∂th− ∇φ|z=−h · ∇h.
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Several details on the time integration procedure can be also found in [DMGD11]. The
resulting method is only weakly nonlinear and analogous at some point to the first order
approximation model proposed in [GN07].

Recently, it was shown that a tsunami generation process is essentially linear, [KDD07,
SF09]. However, our WN approach will take into account some nonlinear effects when they
become important, for example when rapid changes in the bathymetry are present. This is
possible when the generation region involves a wide range of depths from deep to shallow
regions (see Figures 1 and 4).

2.2.1. Tsunami wave energy. In this study we are more particularly interested in the evo-
lution of the generated wave energy [DD09a]. In the case of free surface incompressible
flows, the kinetic and potential energies, denoted by K and Π respectively, are completely
determined by the velocity field and the free surface elevation:

K(t) :=
ρ

2

η∫

−h

∫∫

Ω

|∇φ|2 d~x dz, Π(t) :=
ρg

2

∫∫

Ω

η2 d~x.

The definition of the kinetic energy K(t) involves an integral over the three dimensional
physical domain Ω× [−h, η]. We can reduce the integral dimension using the fact that the
velocity potential φ is a harmonic function:

|∇φ|2 = ∇ · (φ∇φ)− φ ∆φ
︸︷︷︸

=0

≡ ∇ · (φ∇φ).

Consequently, the kinetic energy can be rewritten as follows:

K(t) =
ρ

2

∫∫

Sf+Sb

φ∇φ · n̂ dσ =
ρ

2

∫∫

Ω

ϕDη(ϕ) d~x

︸ ︷︷ ︸

(I)

+
ρ

2

∫∫

Ω

φ̌∂th d~x

︸ ︷︷ ︸

(II)

,

where φ̌ denotes the trace of the velocity potential at the bottom φ|z=−h (see D. Clamond
& D. Dutykh (2012), [CD12]). In order to obtain the last equality we used the free surface
and the bottom kinematic boundary conditions (2.6), (2.7). The first integral (I) is classical
and represents the change of kinetic energy under the free surface motion while the second
one (II) is the forcing term due to the bottom deformation. The total energy3 is defined
as the sum of kinetic and potential ones:

E(t) := K(t) + Π(t) =
ρ

2

∫∫

Ω

ϕDη(ϕ) d~x+
ρ

2

∫∫

Ω

φ̌∂th d~x+
ρg

2

∫∫

Ω

η2 d~x.

Below we will compute the evolution of the kinetic, potential and total energies beneath
moving bottom.

3We note that the total energy is not conserved during the tsunami generation phase due to the forcing

term (II) coming from the bottom kinematic boundary condition.
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Figure 4. Side view of the bathymetry, cf. also Figure 1.

3. Numerical results

The proposed approach will be directly illustrated on the Java 2006 event. The July 17,
2006 Java earthquake involved thrust faulting in the Java’s trench and generated a tsunami
wave that inundated the southern coast of Java, [AKLV06, FKM+07]. The estimates of
the size of the earthquake, [AKLV06], indicate a seismic moment of 6.7 × 1020 N · m,
which corresponds to the magnitude Mw = 7.8. Later this estimation was refined to
Mw = 7.7, [Ji06]. Like other events in this region, Java’s event had an unusually low
rupture speed of 1.0 – 1.5 km/s (we take the value of 1.1 km/s according to the finite fault
solution [Ji06]), and occurred near the up-dip edge of the subduction zone thrust fault.
According to C. Ammon et al, [AKLV06], most aftershocks involved normal faulting. The
rupture propagated approximately 200 km along the trench with an overall duration of
approximately 185 s. The fault’s surface projection along with ocean ETOPO1 bathymetric
map are shown in Figures 1 and 4. We note that Indian Ocean’s depth of the region
considered in this study varies between 7186 and 20 meters in the shallowest regions which
may imply local importance of nonlinear effects.

Remark 6. We have to mention that the finite fault inversion for this earthquake was also
performed by the Caltech team, [Ozg06]. The main differences with the USGS inversion
consist on the employed dataset. To our knowledge, A. Ozgun Konca and his collaborators
include also displacements measured with GPS-based techniques. Consequently, they came
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Ocean water density, ρ, kg/m3 1027.0

Gravity acceleration, g, m/s2 9.81

Epicenter location (Lon, Lat) (107.345◦, -9.295◦)

Rupture velocity, vr, km/s 1.1

Rise time, t0, s 8.0

Number of Fourier modes in x 256

Number of Fourier modes in y 256

Table 2. Values of physical and numerical parameters used in simulations.

to the conclusion that the July 17, Southern Java earthquake magnitude was Mw = 7.9.
The energy of a tsunami wave generated according to this solution will be discussed below.

The numerical solutions presented below are given by the Weakly Nonlinear (WN) model.
A uniform grid of 256 × 256 points4 is used in all computations below. The time step ∆t
is chosen adaptively according to the RK(4,5) method proposed in [DP80]. The problem
is integrated numerically during T = 255 s which is a sufficient time interval for the
bottom to take its final shape (< 220 s) and of the resulting tsunami wave to enter into
the propagation stage. The values of various physical and numerical parameters used in
simulations are given in Table 2.

We begin our numerical investigations by quantifying the contribution of horizontal dis-
placements into the sea bed deformation process. For this purpose we consider the differ-
ence dh(~x) between the deformed bottom under the action of only horizontal displacements
in their steady state (t → +∞) and the initial configuration:

dh(~x) :=
h0

(
~x− ~u1,2(~x, t)|t→+∞

)
− h0(~x)

max
~x,t→+∞

|u3(~x, t)|
.

In Figure 5 we present the quantitative effect of horizontal displacements relative to the
maximum vertical displacement max

~x
|u3(~x, t = +∞)|. The computations we performed

show that the maximum amplitude of the bottom variation due to the action of horizontal
displacements reaches 21% of the maximum amplitude of the vertical displacement. In
practice it means that locally (depending on the bathymetry shape and the slip distribu-
tion) we cannot completely neglect the effect of horizontal motion.

The next step consists in quantifying the impact of horizontal displacements onto free
surface motion. We put six numerical wave gauges at the following locations: (a) (107.2◦,
−9.388◦), (b) (107.4◦, −9.205◦), (c) (107.6◦, −9.648◦), (d) (107.7◦, −9.411◦), (e) (108.3◦,
−10.02◦), (f) (108.2◦, −9.75◦). The locations of the wave gauges are represented on Figure
6 along with the static sea bed displacement. Wave gauges are intentionally put in places
where the largest waves are expected. Synthetic wave gauge records are presented in Figure
7. We consider the following four scenarios:

4Since we use a pseudo-spectral method, the convergence is expected to be exponential and this number

of harmonics should be sufficient to capture all scales important for phenomena that we consider here.
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Figure 5. Contribution of the horizontal displacements field into the sea
bed deformation expressed in percentage of the maximum vertical displace-
ment. The grey color corresponds to negligible values while white and black
zones show the most important contributions. The colorbar shows the per-
centage of the signed difference going from -21% to +7%.

• trigonometric, complete (blue solid line)
• trigonometric, incomplete (black dashed line)
• exponential, complete (blue dash-dotted line)
• exponential, incomplete (black dotted line)

The importance of the nonlinear effects have already been addressed in several previous
studies, [KDD07, SF09]. In the framework of the Weakly Nonlinear approach we studied
this question in a recent companion paper [DMGD11] using only the vertical deforma-
tion. A fairly good agreement has been observed with the Cauchy-Poisson (linear, fully
dispersive) formulation in accordance with preceding results, cf. [KDD07, SF09]. Conse-
quently, in the present study we decided to focus on the further comparison between com-
plete/incomplete approaches and exponential/trigonometric scenarios, [Ham73, DDK06,
Mit09]. These results are discussed hereafter.

We note that the trigonometric scenario leads in general to slightly larger amplitudes
than the exponential bottom motion. It is not surprising since the exponential scenario
prescribes smoother and less rapid change in the bottom for the same rise time parameter
value (see Figure 2). Later we will consider the trigonometric scenario unless otherwise
noted.

Then, it can be seen that in most cases horizontal displacements lead to an increase in
the wave amplitude but not always as it can be observed in Figure 7(f) (the last wave



16 D. DUTYKH, D. MITSOTAKIS, L. B. CHUBAROV, AND YU. I. SHOKIN

Figure 6. Location of the six numerical wave gauges (indicated by the
symbol ⋄) superposed with the steady state coseismic bottom displacement
(only the vertical component in meters is represented here).

gauge located at (108.2◦,−9.75◦)). We investigated more thoroughly this question. Fig-
ure 8 shows the relative difference between free surface elevations computed according to
complete ηc(~x, te) and incomplete ηi(~x, te) scenarios. More precisely, we plot the following
quantity (for the trigonometric scenario):

d(~x) :=
ηc(~x, te)− ηi(~x, te)

max
~x

|ηi(~x, te)|
, te = 220 s.

Time te = 220 s has been chosen because at that moment the bottom has been stabilized
and the waves enter into the free propagation regime. In Figure 8 the grey color corresponds
to the zero value of the difference d(~x), while the white color shows regions where the wave
is amplified by horizontal displacements by approximately 10%. On the contrary, black
zones show an attenuation effect of horizontal sea bed motion (about −5%). Recall that
all values are given in terms of the maximum amplitude max

~x
|ηi(~x, te)| percentage of the

incomplete generation approach. Some connection with the results presented in Figure 5
can be noticed.

Finally, we study the evolution of kinetic, potential and total energies during the tsunami
generation process described in Section 2.2.1. Specifically we are interested in quantifying
the contribution of horizontal displacements into tsunami energy balance. Figure 9 shows
the evolution of potential (9(a)) and kinetic (9(b)) energies for four cases already mentioned
above. Here again blue lines refer to complete generation scenarios while black lines –
to vertical displacements only. Consecutive peaks in the kinetic energy come from the
activation of new fault segments in accordance with the rupture propagation along the fault.
The energy curves vary in an analogous way with the tide gauges records (see Figure 7).
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(e) Gauge at (108.3◦,−10.02◦)
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(f) Gauge at (108.2◦,−9.75◦)

Figure 7. Free surface elevations computed numerically at six wave gauges
located approximately in local extrema of the static bottom displacement.
The vertical axis is represented in meters and time is given in seconds. The
black lines correspond to the wave generated only by the vertical displace-
ments (incomplete generation) while blue lines take also into account the
horizontal displacements contribution (complete scenario).
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Figure 8. Relative difference between the free surface elevation at te = 220
seconds computed according to the complete ηc(~x, te) (with horizontal dis-
placements) and incomplete ηi(~x, te) (only vertical component) tsunami gen-
eration scenarios. The bottom moves according to the trigonometric scenario
(2.1). The vertical scale is given in percents of the maximum amplitude of
the incomplete scenario — max

~x
ηi(~x, te).
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Figure 9. Energy evolution during our simulations in the complete (blue
solid line) and incomplete (black dotted line) scenarios. Note that scales are
different on the left and right images. The time t is given in seconds.
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Figure 10. Energy evolution during our simulations in the complete (blue
solid line) and incomplete (black dotted line) scenarios using the finite fault
inversion by Caltech Tectonics Observatory [Ozg06]. Note that the scales
are different on the left and right images. The time t is given in seconds.

Namely, the trigonometric scenario leads to slightly higher energies than the exponential
one. However, once the bottom motion stops, this difference becomes negligible. The
inclusion of horizontal displacements has a much more visible effect with higher energies.

We performed also the same simulation but using the finite fault solution obtained by
the Caltech team, [Ozg06], and the trigonometric scenario. The results concerning the
kinetic and potential energies are presented in Figure 10. It is interesting to note that the
potential energy evolution in the Caltech scenario appears to be smoother especially after
t = 150 s. However, the peaks corresponding to subfaults activation times are equally
present in kinetic energies. The magnitudes of kinetic and potential energies predicted
according to the Caltech inversion are approximatively 10 times higher than corresponding
USGS results.

We have to underline that inversions performed by the two different finite fault algo-
rithms lead to very different results. Our method is operational with both of them. It
is particularly interesting to compare the total energies evolution predicted by USGS and
Caltech inversions. These results are presented in Figure 11. The Caltech version of the
rupturing process generates a tsunami wave with much higher energy (computed after the
end of the bottom motion when a tsunami enters in the propagation regime):

• USGS, complete trigonometric: Ec = 2.16× 1012 J,
• USGS, complete exponential: Ec = 2.11× 1012 J,
• USGS, incomplete trigonometric: Ei = 1.95× 1012 J,
• USGS, incomplete exponential: Ei = 1.90× 1012 J,
• Caltech, complete trigonometric: Ec = 2.28× 1013 J,
• Caltech, incomplete trigonometric: Ec = 1.83× 1013 J.
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Figure 11. The total energy evolution predicted according to two different
versions of the finite fault inversion. Note the different vertical scales on left
(4.5× 1012) and right (2.5× 1013) images. The time t is given in seconds.

This result is not surprising since according to the USGS solution the Java 2006 event
magnitude is Mw = 7.7 and according to the Caltech team, Mw = 7.9, which means a huge
difference since the scale is logarithmic.

Remark 7. We would like to note an interesting property. For linear waves it can be
rigorously shown the exact equipartition property between the kinetic and potential ener-
gies [Whi99]. When the nonlinearities are included, this equidistribution property is only
approximate. One can observe that at the final time in our simulations the kinetic and po-
tential energies are already of the same order of magnitude regardless the employed bottom
motion (see Figures 9 & 10). Moreover, both curves K(t) and Π(t) continue to tend to the
equilibrium state according to the theoretical predictions of the water wave theory, [Whi99].

Despite some local attenuation effects of horizontal displacements on the free surface
elevation, the complete generation scenario produces a tsunami wave with more important
energy content. More precisely, our computations show that the horizontal displacements
contribute about 10% into the total tsunami energy balance in the USGS scenario (this
value is consistent with our previous results concerning the differences in wave amplitudes
in Figure 8). This result is even more flagrant for the Caltech version which ascribes 24%
of the energy to horizontal displacements. The free surface amplitudes in this case should
differ as well by the same order of magnitude. As we already noted, the difference between
trigonometric and exponential scenarios is negligible.

Up to now the contribution of horizontal displacements has been quantified in terms
of the bottom deformation (Figure 5), free surface elevation at a particular moment of
time (t = 220 s, cf. Figure 8) and finally in terms of the wave energy (Figures 9 –
11). However, the wave energy cannot be directly measured in practice. Consequently,
we continue to quantify the differences between complete and incomplete approaches in
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Figure 12. Relative difference between free surface elevations computed
according to the complete and incomplete scenarios. For more details see
equation (3.1). The horizontal axis is given in seconds, while the vertical
scale is a percentage. The blue solid line (—) corresponds to the measure
d2(t). The black dashed line (−−−) represents d∞(t).

terms of the waveforms. Namely, we compute also the following relative measures of the
waveforms difference which act on the whole computed free surface:

d2(t) :=
||ηc(~x, t)− ηi(~x, t)||L2(R2)

||ηi(~x, t)||L2(R2)

, d∞(t) :=
||ηc(~x, t)− ηi(~x, t)||L∞(R2)

||ηi(~x, t)||L∞(R2)

. (3.1)

The simulation results are presented on Figure 12. One can see that both measures grow up
to 15% and then oscillate around this level, at least during the simulation time. This result
is in agreement with previous measurements of the horizontal displacements contribution
based on the wave energy and the bottom deformation which were of the order of 10%. We
note also that the curve d2(t) has a more regular behaviour than d∞(t) since it is based on
integral characteristics of the difference while the latter focusses on the characteristics of
the extreme values.

It is also interesting to compare the tsunami energy with the energy of the underlying
seismic event. The USGS Energy and Broadband solution indicates that the radiated
seismic energy of the Java 2006 earthquake is equal to 3.2 × 1014 J. Hence, according to
our computations with the USGS complete generation approach and the trigonometric
scenario, about 0.68% of the seismic energy was transmitted to the tsunami wave (this
portion raises to 7.14% for the Caltech version). The ratio of the total tsunami and
seismic radiated energies can be used as a measure of the tsunami generation efficiency
of a specific earthquake. The seismic radiated energy may not be the most appropriate
parameter to use, but it has an advantage to be relatively robust and easily observable in
contrast to the more relevant seismic fracture energy, [VK04, KR06].
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This parameter can also be estimated for the Great Sumatra-Andaman earthquake of
December 26, 2004. The total energy of the Great Indian Ocean tsunami 2004 was es-
timated by T. Lay et al. (2005), [LKA+05], to be equal to 4.2 × 1015 J. According to
the same USGS Energy and Broadband solution the radiated seismic energy was equal to
1.1×1017 J. Thus, the tsunamigenic efficiency of the Great Sumatra-Andaman earthquake
is 3.81% which is bigger than that of Java 2006 event but remains in the same order of
magnitude around 1%. It is possible that we do not still take into account all important
factors in Java 2006 tsunami genesis. More examples of transmission of seismic energy to
tsunami energy can be found e.g. in [LvBH+06].

4. Discussion and conclusions

In the present study the process of tsunami generation is further investigated. The
current tsunamigenesis model relies on a combination of the finite fault solution,[JWH02],
and a recently proposed Weakly Nonlinear (WN) solver for the water wave problem with
moving bottom, [DMGD11]. Consequently, in our model we incorporate recent advances
in seismology and computational hydrodynamics.

This study is focused on the role of the horizontal displacements in the real world tsunami
genesis process. By our intuition we know that a horizontal motion of the flat bottom will
not cause any significant disturbance on the free surface. However, the real bathymetry
is far from being flat. The question which arises naturally is how to quantify the effect of
horizontal co-seismic displacements during real world events.

The primary goal of this study was to propose relatively simple, efficient and accurate
procedures to model tsunami generation process in realistic environments. Special emphasis
was payed to the role of horizontal displacements which should be also taken into account.
Thus, the dynamics of horizontal co-seismic displacements were reconstructed and their
effect on free surface motion was quantified. The evolution of kinetic and potential energies
were also investigated in our study. In the case of July 17, 2006 Java event our simulations
indicate that 10% of the energy input can be seemingly ascribed to effects of the horizontal
bottom motion. This portion increases considerably if we switch to the scenario proposed
by Caltech Tectonics Observatory [Ozg06].

The results presented in this study do not still explain the reasons for the extreme runup
values caused by July 17, 2006 Java tsunami, [FKM+07]. At least we hope that the pro-
posed methodology illustrated on this important real world event will be proved helpful in
future studies. In our opinion a successful theory should incorporate also other generation
mechanisms such as local landslides/slumps which are subject to large uncertainties at the
current stage of our understanding. Until now there are no detailed images of the seabed
which could support or disprove this assumption. In this study we succeeded to quantify
the significance of horizontal displacements for the tsunami generation.

Appendix A. Applications to some recent tsunami events

In this Appendix we apply the techniques described in this manuscript to two recent
significant events. We compute the energy transmission from the corresponding seismic
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Figure 13. Total tsunami energy and seismic moment rate function for the
Mentawai 2010 event. The time t is given in seconds.

event to the resulting tsunami wave with and without horizontal displacements. Through-
out this Appendix we use the trigonometric scenario and the finite fault solutions produced
by USGS.

Remark 8. In later versions of the finite fault solution the activation and rise time, as
well as the seismic moment are specified for each sub-fault. Consequently, below we use
this information to produce more accurate bottom dynamics. It allows us to compute also
the seismic moment rate function5.

A.1. Mentawai 2010 tsunami. In October 25, 2010 a small portion of the subduction
zone seaward of the Mentawai islands was ruptured by an earthquake of magnitude Mw =
7.7, [LAK+11]. This earthquake generated a tsunami wave with runup values ranging from
3 to 9 meters (with even larger values at some places). On Pagai islands this tsunami
caused more than 400 victims. This earthquake is characterized by 10◦ dip angle, a slow
rupture velocity (≈ 1.5 km/s) which propagated during about 100 s over 100 km long
source region. For our simulation we used the finite fault solution produced by USGS
[Hay10]. On Figure 13 we show the evolution of the total tsunami energy to be compared
with the seismic moment release rate function.

Our computations give the following estimations:

• Complete scenario: Ec = 1.11× 1012 J,
• Incomplete scenario: Ei = 1.06× 1012 J.

Consequently, for this event only 4.5% of the total energy is due to horizontal displacements.
According to the USGS energy and broadband solution the radiated seismic energy is Es =
1.4 × 1015 J. The tsunami energy constitutes 0.08% of the radiated seismic energy. This

5The total released seismic moment is given by the integral of this function over the rupture duration

(time).
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Figure 14. Total tsunami energy and seismic moment rate function for the
Great East Japan Earthquake. The time t is given in seconds.

surprising result can be explained by the fact that a big portion of co-seismic displacements
occured on the land which did not fortunately contribute to the tsunami generation process.

A.2. March 11, 2011 Japan earthquake and tsunami. This tsunami event was caused
by an undersea megathrust earthquake of magnitude Mw = 9.0 off the coast of Japan. Offi-
cially this earthquake was named the Great East Japan Earthquake. The Japanese National
Police Agency has confirmed more than 13,000 deaths caused both by the earthquake and
especially by the tsunami. Entire towns were devastated. The local infrastructure includ-
ing the Fukushima Nuclear Power Plant were heavily affected with consequences which are
widely known.

We use again the finite fault inversion performed at the USGS [Hay11]. The tsunami
total energy evolution along with the moment rate function are represented on Figure 14.
At the end of the simulation we obtain the following result:

• Complete scenario: Ec = 1.64× 1015 J,
• Incomplete scenario: Ei = 1.50× 1015 J.

Henceforth, the contribution of horizontal displacements is estimated to be 9.2%. The
radiated seismic energy is Es = 1.9× 1017 J according to the USGS energy and broadband
solution. The total tsunami wave energy represents only 0.87% of the radiated seismic
energy. This value is much lower than the corresponding value for the Great Sumatra-
Andaman earthquake of December 26, 2004.
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