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We describe possible conditions for stationnary inhomogeneous flow behaviour (sheared and
blocked bands) in a continuous mechanical model of a soft visco-elasto-plastic material such as
a foam or a concentrated emulsion under controled shear rate conditions. Usually, the occurence
of shear bands in a complex fluid is understood as resulting from a structural evolution of the ma-
terial under shear, which leads from a theoretical perspective to a non-monotonic stationnary flow
curve. Our mechanical model predicts a non-monotonic flow curve, but a priori without any intrin-
sic physical evolution via a parameter coupled to the flow such as concentration of entanglements.
Nevertheless, we predict the appearence of shear bands. In our case, the non-monotonic flow curve
and the appearence of shear bands result specifically from the tensorial character of the underlying
model (2D or 3D). For a Couette flow, a 3D tensorial formalism allows us to introduce an additional
relaxtion freedom for the system in the third direction, which affects the material fluidity.

PACS numbers: 47.57.Bc Foams and emulsions 83.10.Gr Constitutive relations - 83.80.Iz Emulsions and

foams in Rheology - 83.50.AxSteady shear flows, viscometric flow

I. INTRODUCTION

It may seem paradoxical that a single material, when
submitted to an uniform shear stress σxy, between two
parallel plates or two coaxial cylinders, may be observed
simultaneously in two distinct states in different regions
of the flow. This observation has nevertheless become
common since the early 1990s in a variety of complex
fluids : so-called ’shear bands’ appear and are stable [5,
10, 34], or sometimes fluctuate [1, 26, 39, 40]. Each band
flows with a different shear rate. These bands are most
of the time parallel with the plates [5].

The current understanding of these observations relies
in general on two essential ingredients : (1) a structural
evolution of the material under shear, and (2) a stress
response which decreases as a function of the shear rate
within a particular range. This decrease is the mechani-
cal signature of the structural evolution and is the source
of the mechanical instability that triggers the appearance
of bands [27].

In polymer melts or entangled polymer solutions [42]
and in entangled giant micelle solutions [27], the flow
elongates the objects, which alters the apparent viscosity

of the material (beware of wall slip [17]). The fact that
this viscosity goes down is principally due to the average
orientation of the objects in the shear flow.
In lyotropic lamellar phases, the transition can be as-

sociated with the reorganisation of the films in onion-like
multilamellar vesicle systems [11, 12, 39, 40].
In micellar cubic crystals the transition consists in an

ordering of the initial polycristal with specific planes be-
coming aligned with the plates [13, 14].
In the last two cases, no microscopic interpretation

of the decrease in effective viscosity occuring during the
transition is available.
In granular materials, surface flow is a particular case

of shear bands. The lower band is in this case blocked
(zero shear). No complete structural description is avail-
able. Nevertheless, it is admitted that the dilatance phe-
nomenon, corresponding to the necessity for the grains to
part a little bit in order to move past each other [36], gen-
erates a difference in volume fraction between the flowing
region and the blocked one. This lower volume fraction
tends to facilitate the flow in the flowing region even more
as compared to the blocked region. When it is present,
gravity is of course essential: it allows to determine the
concentration profile [25].
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In foams and emulsions, the situation is less clear.
Shear bands were observed [9] But the role of solid walls
in these effects is still controversial [20, 23, 24]. For
these materials also, no complete structural description
accounts for flow localization in a satisfactory manner.
As for granular materials, dilatancy, which corresponds
to a local change in water concentration φ, certainly plays
an important role by easing the relative motion of bub-
bles. The structural disorder is also invoked as a param-
eter coupled to the flow [22]. In both cases, the local
fluidity (ratio of the shear rate and the shear stress) is
enhanced.
The model that we suggest does not incorporate any

such ingredient. We write down the tensorial, three-
dimensional equations of elasticity in the linear and non-
linear regimes [3]. We show that it is sufficient to gen-
erate shear bands (a two-dimensional model is in fact
also sufficient [35]). However, we know that a local plas-
tic event results in an elastic redistribution of stress in
the neighbourhood [15, 28]. In simple shear geometry,
it favours flow localization [21, 32, 33]. In a statisti-
cal manner, it then raises the material fluidity in the
neighbourhood [7] and generates a non-local material
rheology. This non-local character had been observed
in concentrated emulsions flowing in microfluidic chan-
nels [16]. These non-local effects are intrinsically present
in our modelling since the underlying elastic propaga-
tors [7, 21, 32, 33] result directly from the elastic contin-
uum medium equations that we use.
Under such conditions, how can the local material flu-

idity evolve in our model? As we shall see, it results from
the fact that we take into account the tensorial character
of the stress and the three dimensions of the material: in
the example of a Couette flow, a local evolution of the
material conformation in the direction perpendicular to
the shear plane leads, from a 2D perspective, to a local
fluidification.

A. A continuum medium model of foams and

emulsions

In this paper, we describe the results obtained through
the spatial simulation of a mechanical model of foams
and concentrated emulsions. This model is contructed
rigorously following the principles of continuum media
mechanics [6]. Its main originality consists in writing the
plastic and elastic laws in a very general form, and to
combine these laws to the conservation relations. Thus,
the plasticity formulation obeys such constraints as po-
sistivity of dissipation. The elasticity is written in a form
valid up to large deformations, which are easily reached
in such systems before plastic rearangments.
Thus, we introduce a framework in which constitutive

laws and specific assumptions can be introduced and dis-
cussed afterwards.
Our main result: shear bands can emerge in a struc-

turally homogeneous material under shear, only due to

inhomogeneous distributions of the internal constraints
present from the beguinning in the material. We demon-
strate this for a physically very natural form of the elastic
and plastic laws.
We restrain ourselves in this work to a strictly mechan-

ical and thermodynamical formulation. The important
problems related to the coupling between the rheological
behaviour and the structure of the material are not dis-
cussed. This coupling is experimentally well documented
in various complex fluids systems in which shear bands
are de facto associated with structural transitions [27].
We ask a more restricted question: could stationary shear
bands in foams and emulsions be accounted for using
only inhomogeneous stress distributions present initially
in the material?

B. Stationary flow curve and inhomogeneous flow

In our context, the main interest in studying a spa-
tial model is to explore the conditions of appearance of
inhomogeneous flow in the stationnary regime. It is im-
portant to understand that our local rheological model
(constitutive law) must obey specific conditions for shear
bands to appear and coexist. Indeed, in this situation,
the same material submitted to the same shear stress
σxy must be simultaneously in two different deformation
states. A mathematical condition for this to be possi-
ble is the existence of an unstable zone in the local flow
curve of the material [4, 34, 41], which corresponds to
the non-linearity of the constitutive law.
In the case of foams, nevertheless, such an unstable

portion in the flow curve itself does not exist: how can
shear bands with different shear rates coexist?
Foams and emulsions are instances of yield stress flu-

ids, so that there exists a minimal stress σxy (that we de-
note by σy) below which no stationary flow occurs. Now
when we shear the material, imposing the shear rate, the
material has to flow, even for very small γ̇. The intrin-
sic flow curve thus possesses an extrapolation in stress
when γ̇ → 0. Let’s denote it by σd. Note that σy and
σd pertain to the local rheology curve, not to the effec-
tive stationary curve as can be measured for example in
a rheometer. In this discussion the flow is homogeneous.
But the relative values of σd and σy , pertaining to the lo-
cal flow curve, will give us hints about possible conditions
for shear banding.
Let us now consider the result of a measurement made

on a sample of this material, sheared in a Couette cell
under imposed shear rate. If σd > σy, all parts of the
sample will flow, even at low shear rates, since the cor-
responding stress is necessarily everywhere greater than
the yield stress. As mentionned before, since the flow
curve has no intrinsic instability for higher γ̇ values, no
mechanism is available for shear banding.
The situation is different if σd < σy . If we put on the

same graph the yield stress σy and the intrinsic station-
ary flow curve (figure 1), it is immediately apparent that
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this configuration allows for the coexistence of zones un-
derging shear at rates γ̇ ≥ γ̇c, and of blocked zones at
zero shear remaining in the elastic regime. The mech-
anism is essentially the same as in the classical case of
instability in the flow curve (see figure 1). Of course,
as soon as γ̇ > γ̇c all regions flow, since γ̇ > γ̇c implies
that some regions flow faster than γ̇c. The stress in these
regions, as given by the flow curve, has to be above the
yield stress σy. And since the stress is the same in the
entire material, all regions support a stress greater than
σy and no region can be blocked.

C. Extra dynamic variables?

But is the situation where σd 6= σy actually possible?
The answer is known to be yes. The usual explanation of
such a flow curve is to invoque an internal extra variable
(of a structural nature in general) which is coupled to
the flow. As an example, in a simplified vision, this extra
parameter can be in one of two states: flowing and non-
flowing. Thus the stationnary curve extrapolating to σd

at low γ̇, and the yield stress value σy correspond in
reality to two different materials. One of the interests
of our work is to elaborate a situation where σd 6= σy is
possible without any extra structural parameter. As we
will see, if one writes a fully tensorial formulation for the
constitutive equation, the shear flow curve σxy(γ̇) can be
of the σd < σy sort. The extra components of the stress
σxx and σzz will qualitatively play the same role as an
extra structural variable in changing the local nature of
the material. Their initial distribution in the material
will thus be of primary importance in predicting shear
bands.

Despite some similarities, the analogy with systems
characterised by unstable flow curves has some limita-
tions. In the case of yield stress fluids, there is no un-
stable range in γ̇, which would impose phase separation
between two phases at different flow rates. Shear bands
are possible but not necessary. Also, no lever rule-like
criterion can exist to select the relative fraction of the
different bands, as have been argued in some fluid sys-
tems [31, 34]. It is the material history which will lead
to a particular flow profile. We will see that the initial
distribution of stress in the material will determine the
band structure.

The paper is organised as follows. We first describe
our continuous model, specifying both its local rheolog-
ical behaviour and the complete set of partial differen-
tial equation in 3D+time. We then proceed to analyse
the rheological law in more detail, to show how it can
predict, under some particular intitial conditions, shear
bands (blocked bands in this case). We then present the
results of spatial simulations which confirm the band ex-
istence as predicted by the rheological law. We analyse
the band structure dependence on the different rheologi-
cal parameters of the system.

γ̇A γ̇loc

A3
γ̇cγ̇loc

A2
γ̇B = γ̇loc

B

P A
2 P A

3

P B

σB

σc

σA
3

σA
2

σA

P A

FIG. 1: Typical form of a stationnary flow curve giving the
dependence of the shear stress on the local shear rate. σy

is the yield stress as measured under imposed stress, and γ̇c
the corresponding shear rate. A macroscopic shear rate γ̇A

smaller than γ̇c will not necessarily lead to a homogeneous
velocity profile PA, with the expected stress σA: the flow can
separate into a blocked region and a flowing region (profiles
PA
2 or PA

3 ). The local shear rate is then faster (γ̇loc
A2 > γ̇A and

γ̇loc
A3 > γ̇A), which corresponds to a higher stress (σA

2 > σA

and σA
3 > σA). Besides, for an average shear rate γ̇B greater

than γ̇c, the flow is homogeneous again, which corresponds to
the expected stress σB (greater than σy).

II. CONSTRUCTING A CONTINUUM MODEL

Our local rheological model [3] is based on a general
nonlinear description of elasticity and plasticity. Indeeds
materials such as foams can locally undergo large elastic
deformations — located far from the linear regime cor-
responding to small deformations — before plastic flow
occur [8, 43].

A. General local rheological laws

The relevant framework to describe elastic stresses in a
flowing material is the Eulerian one, whether this mate-
rial possesses elastical properties or not. Indeed, during
the flow of a foam or an emulsion, even though elastic
stresses exist, any reminiscence of a reference state is lost
continuously due to plasticity. The Lagrangian descrip-
tion, which is based on maintaining the correspondance
with such an intial state of reference, is formally equiva-
lent, but less adapted conceptually and numerically.
Thus we attach the variables describing the material

to a spatial grid (x, y, z), and they correspond to an in-
stantaneous and local description in space.
In this framwork, only two variables are relevant in a

strictly mechanical context: the local velocity gradient
∇~v(x, y, z) and the local deformation state stored in the
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material [3], as described in continuum mechanics by the
Finger tensor B(x, y, z) [6].
In this section, we describe our local rheological model.

Note that in this local context, the global tensor ∇~v it-
self has to be considered as an independent local three-
dimensional tensorial variable, just as B, not as the spa-
tial gradient of a velocity field. Only when we will turn
to the description of a spatial system, see section IV, will
the vector field ~v(x, y, z) be introduced. Meanwhile, ten-
sors ∇~v and B will thus be the two variables of our local
tensorial model.
Elasticity depends on the deformation according to the

following relation, the most general one compatible with
the symmetry constraints in three dimensions [3]:

σ = a0 I + a1 B + a2B
2, (1)

where a0, a1 and a2 are scalar functions of the invariants
of the Finger tensor B.
Turning to plasticity, we only assume that every event

of plastic relaxation is aligned with the stored deforma-
tion. The plastic creep DB

p should thus be similarly
aligned. The most general form compatible with the sym-
metry constraints is then:

DB
p = b̄0 I + b̄1 B + b̄2 B

2, (2)

where b̄0, b̄1 and b̄2 are again scalar functions of the in-
variants of the Finger tensor B.
To complete the model, we gather together in a global

viscosity term all the dissipative phenomena which are
present even in the absence of any plastic event in the
foam. They occur for example at small scales: flows in
films squeezed between bubbles or in Plateau borders.
We simplify the description in selecting a Newtonian
average viscosity for these local dissipative phenomena.
The list of contributions to the stresses in the material is
thus closed. We have:

σ = a0 I + a1 B + a2 B
2 +

ηs
2
(∇~v +∇~vT). (3)

To take into account the incompressible character of
foams and emulsions, we add an extra kinematic con-
straint of strict volume conservation det(B) = 1. Refer-
ing to [3] for further details, we take it into account by
using only the deviatoric part of the stress:

σ̄ = dev(σ) = σ −
I

d
tr(σ). (4)

The same constraint on plasticity gives the general
form [3]:

DB
p = B ·dev(f(B)) = b1B ·dev(B)+b2 B ·dev(B2), (5)

where the scalar prefactors b1 and b2 are isotropic, and
thus depend on the invariants of tensor B.
In what follows, we will use a completely equivalent

form of tensor DB
p which manifests more clearly the posi-

tive character of the dissipation (see the discussion in [3]):

DB
p =

A(B)

τ
B · G(B) (6)

where A(B) is a scalar isotropic function of B, τ the
characteristic time of the dissipative processes; moreover:

G(B) =
dev [P(B) · dev(σ)]

tr [P(B) · dev(σ) · dev(σ)]
, (7)

with P is a function of the form P(B) = b(B)B−2 +
(1 − b(B))B2 [3], where b is an isotropic function. In
this expression, the total dissipation per unit volume is
A(B).
Eventually one gets the complete rheological model:

dB

dt
−∇~v · B −B · ∇~vT = −2DB

p , (8)

DB
p =

A(B)

τ
B · G(B), (9)

σ = a0 I + a1 B + a2 B
2 +

ηs
2
(∇~v +∇~vT). (10)

B. Complete spatial model

As for any local rheological model, the previous equa-
tions must be complemented by field equations which
express force balance and mass conservation:

∇ · σ̄ + ρ ~f = ρ
d~v

dt
+ ~∇ p, (11)

∂ρ

∂t
+∇ · (ρ ~v) =

dρ

dt
+ ρ tr

1

2
(∇~v +∇~vT) = 0, (12)

where ~f represents the external forces (per unit mass),
and ρ is density. The incompresibility constraint gives
here

∇ · ~v = tr
1

2
(∇~v +∇~vT) = 0. (13)

As a result, the density ρ is simply transported by the
flow: dρ/dt = 0. In the remaining of this work, we fur-
thermore assume that the density is homogeneous, hence
it remains constant.
Last assumption: we restrict ourselves to the Stokes

regime, where inertial terms are all negligible in the mass
conservation equation. Thus one obtains:

∇ · σ̄ = ~∇ p. (14)

The complete system of equations that we have to inte-
grate numerically is thus:

dB

dt
−∇~v · B −B · ∇~vT = −2DB

p , (15)

DB
p = A(B)B · G(B), (16)
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σ̄ = dev
{

a0 I + a1 B + a2 B
2 +

ηs
2
(∇~v +∇~vT)

}

, (17)

∇ · σ̄ = ~∇ p, (18)

tr
1

2
(∇~v +∇~vT) = 0. (19)

The initial conditions that must be specified to solve
the above system may merely consist in the values of
tensor B over the entire sample. Indeed, the value of
the velocity field can be derived therefrom using Stokes’
equation (15).

C. Selection of a particular form of elasticity and

plasticity

1. Elasticity: Mooney-Rivlin model

We have selected a usual form of incompressible elas-
ticity which has been demonstrated to describe to a
good approximation the nonlinear elastic behaviour of
foams [18, 19]: Mooney-Rivlin elasticity. The corre-
sponding elastic energy can be written [6]:

ρE(B) =
k1
2
(IB − 3) +

k2
2
(IIB − 3) (20)

where

IB = tr(B) (21)

IIB =
1

2
[tr2(B)− tr(B2)] = tr(B−1) (22)

Going back the coeficients of Eq. (1), this corresponds to
the following expressions:

a1 = k1 + k2 IB (23)

a2 = −k2 (24)

Following previous work refs. [18, 19], we express the val-
ues of k1 and k2 using an elastic modulus G and an in-
terpolation parameter a as follows:

k1 = aG (25)

k2 = (1− a)G. (26)

In the foam modelling litterature, a value a = 1
7
is some-

times recommended [18, 19]. Keeping in mind our per-
spective of discussing the conditions for the appearance
of shear bands depending on parameter values, in sec-
tions III and beyond, we prefer to keep the parame-
ter a free, although we remain in the framework of the
Moonley-Rivlin elasticity.

2. Plasticity: yield stress fluid

The particular form of plasticity explored in this work
is based on a nonlinear threshold-like behaviour. Locally,
the plastic reorganisation events only occur in the mate-
rial when the stored elastic deformation reaches a critical
value. We express this transition with a function Wy(B)
which vanishes linearly at the threshold:

Wy(B) = 0, (27)

with, in our case, Wy(B) = E(B) − K, where E is the
stored elastic energy, and K a constant. In simple shear
from a relaxed state, σy is the threshold stress: function
Wy vanishes.
From the point of view of the plastic deformation rate

tensor DB
p , we have the following expression 6, taking for

A(B):

A(B) = (E(B) −K)Θ(E(B)−K), (28)

where θ(x) = 1 when x ≥ 0 and θ(x) = 0 elsewhere.
We also set the following form for the polynom:

P(B) = bB−2 + (1− b)B2. (29)

with b between 0 and 1. Our final set of equations is thus:

dB

dt
−∇~v · B −B · ∇~vT = −2DB

p , (30)

DB
p =

E(B) −K

τ
Θ(E(B)−K)B · G(B), (31)

σ̄ = dev(σ) = dev {(aG + (1− a)G tr(B)) B

− (1− a)GB2

+
ηs
2
(∇~v +∇~vT)

}

, (32)

∇ · σ̄ = ~∇p. (33)

tr
1

2
(∇~v +∇~vT) = 0. (34)

3. Physical parameters and rheological model

A non-dimensional form of the previous system is usu-
ally used, in order to emphasize certain quantities which
are physically relevant. Stress σ is put in units of the
elastic modulus G, and time is replaced by the non di-
mensional variable T = γ̇ t. Equations (30) and (32) then
read:

dB

dT
−∇~v ·B −B · ∇~vT = −2WeDB

p , (35)
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σ̄ = dev

{

(a + (1− a) tr(B)) B

− (1− a)B2 +
1

α
(∇~v +∇~vT)

}

, (36)

with We = γ̇τ et α = 2G
η γ̇

. In equation (31), K is re-

placed by K = K/G. The parameters of our rheological
model are thus K, α, We, with the scalars a (Mooney-
Rivlin parameter) and b (defining the tensorial form of
the plasticity G(B)).

D. Simple shear flow

In the remaining of this work, we address specifically
the question of shear banding. For this purpose, we con-
sider only simple shear flows. The velocity is oriented
along axis x and varies along along axis y. The only
non-zero component of the velocity gradient ∇~v is then
∂vx/∂y. The entire system and flow are invariant along x
and z. Besides, the force balance given by Eq. (33) then
implies that σxy and σyy are homogeneous at all times.

III. HOMOGENEOUS FLOW BEHAVIOUR

A. Model analysis and shear banding criteria

As long as the flow in the material is homogeneous,
the local rheological model will describe it. We begin
by showing the corresponding typical flow curve (fig. 2).
Note that this flow curve is obtained under applied shear
rate conditions.
As can be observed, the conditions described in the

introduction for the appearance of shear bands are
fulfilled: stress σd is smaller than the static yield stress
σy. In the shear rate range between 0 and γ̇c, the system
has the possibility to split the average shear rate γ̇ in
different proportions of blocked and flowing bands.

Thus, in the homogeneous case, we can calculate from
the local rheological model, and for any values of the
parameters We, α, K, a, and b, the static and dynamic
thresholds, σy and σd, and the critical shear rate γ̇c. Fol-
lowing the line of reasoning developped in the introduc-
tion, we can then predict the range of imposed shear rates
[0, γ̇c] inside which shear bands are possible.
The value of σy can be obtained easily by simulating

the system in the elastic regime (DB
p = 0) up to the

threshold (Wy(B) = 0), which corresponds to a state
of the system characterized by eigenvalues βy

1 and βy
2 of

tensor B, a state for which σy can be calculated.
One could then obtain the different stationary state

values of the shear stress independently by continuing the
simulation beyond the threshold in the plastic regime for
each value of γ̇, waiting for the stationnary value of the
system (dB/dt ≈ 0). The dynamic threshold σd would

0
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FIG. 2: Top: typical stationary flow curve. Points corre-
sponding to σd, σy and γ̇c are reported on the curve. Bottom:
stress time evolution for different imposed shear rates below
or above γ̇c.

then correspond to the limit of σ12 for small γ̇. The
critical shear rate γ̇c would be obtained when the stress
applied to the system in the stationary state would pre-
cisely correspond to the plastic threshold: σstat

12 (γ̇c) = σy.
Such a procedure is natural, but requires successive sim-
ulations of the system for a large number of γ̇ values.
We have used a more direct approach [3] to obtain

σd and γ̇c (see Appendix). This method relies on the
description of the evolution of the system (as represented
in figure 16) in terms of independent eigenvalues β1 and
β2 of tensor B.
With the help of this procedure, the three observables

which are important for the prediction of shear bands, σy,
σd, and γ̇c, are obtained directely without the need for
simulating separately all the points along the stationary
flow curve.

B. Results

In this section, we want to describe, within the pa-
rameter space (K, α, We, a, b) the regions inside which
shear bands are possible. These domains will be repre-
sented through sections in four different planes: (α, We),
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FIG. 3: Possibility (value 1) or not (value 0) to have a blocked
band as a function of α between 1 and 3 and We between 0.5
and 5 (with K = 1, a = b = 0.5).

FIG. 4: Width of the blocked band as a function of α between
3 and 20 and We between 0.2 and 5 (with K = 1, a = b = 0.5).

(K,We), (a, b) and (α, K).
The five parameters have a rather straightforward

rheological interpretation, which are summarised in fig-
ure 15. Parameters α−1 and We are proportional to the
imposed shear rate, K to the yield stress. Moreover, each
α−1 and We is proportional to one of the viscosities of
the medium.
In figure 3, one can see that in the (α, We) plane, shear

bands are only possible for values of α large enough (be-
tween 3 and 10 depending onWe values). Indeed for large
values of α both shear rate and viscosity decrease. These
conditions are physically intuitive for the appearance of
shear bands, since they appear for small velocities and
their range will be all the more extended that the slope
at the origin of the flow curve is small. Moreover, bands
appear more easily for small values of We, for the same
reasons (small velocities).
In the (K, We) plane, bands should be predicted for

small values of We (again due to the small velocities),
and for large values of K. Indeed, in that case the static
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0.750.800.850.900.95
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FIG. 5: Possibility (value 1) or not (value 0) to have a blocked
band as a function of K between 0.4 and 1 and We between
1 and 5 (with α = 10, a = b = 0.5).

FIG. 6: Width of the blocked band as a function of K between
0.725 and 1 and We between 0.2 and 5 (with α = 10, a = b =
0.5).

threshold is large which favours bands since they are pos-
sible below this threshold (figure 5).
The interpretation is similar in the (α, K) plane, since

α is inversely proportional to the shear velocity (figure 7).
Finally, in the (a, b) plane, one is confronted with 3D

effects which are difficult to discuss in intuitive terms
(figure 11). The way the elasticity (parameter a) and
the plastic deformation rate (parameter b) are coupled
in a tensorial way affects the critical rate γ̇c and can be
enough to eliminate all possibilities of shear bands.

IV. STATIONARY FLOW REGIMES

The discussion in the previous paragraphe only pro-
vides necessary conditions for the appearance of shear
bands. In the 1D simulations that will be discussed in
the present Section [2], flow inhomogeneities will indeed
emerge.
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FIG. 7: Possibility (value 1) or not (value 0) to have a blocked
band as a function of α between 7 and 15 and K between 0.1
and 1 (with We = 1, a = b = 0.5).

FIG. 8: Width of the blocked band as a function of α between
7 and 15, andK between 0.3 and 1 (with We = 1, a = b = 0.5).

Now, the model that we simulate only contains mate-
rial parameters that homogeneous in the sample. Hence,
if the initial conditions of the flow are also homogeneous,
the entire evolution will remain homogeneous. Although
performing a 1D simulation as a set of partial differential
equations, we would obtain the exact same results as in
the previous Section.
In other words, since the parameters of the model do

not vary in space, shear bands can only appear if initial
conditions are, in one way or another, inhomogeneous.
Of course, as mentioned in the Introduction, inhomo-

geneities could appear in a natural way through an extra
state variable coupled to the flow, such as the concen-
tration. This variable could then vary in space and be
coupled to the flow. Concerning concentration (a con-
served variable), let us mention dilatancy phenomena,
imagined for foam [37, 44], observed experimentally [29]
and interpreted in a geometrical manner [30, 38]. Aligne-
ment (a non-conserved variable) is another possibility. It
has been invoked in the case of wormlike micelle or rigid
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FIG. 9: Possibility (value 1) or not (value 0) to have a blocked
band as a function of a between 0.1 and 0.9 and b between 0.1
and 0.9 (with α = 2.5, We = K = 1). Note that for α = 10,
all values of a and b lead to the possibility to have a blocked
band (value 1).

FIG. 10: Width of the blocked band as a function of a between
0.1 and 0.9, and b between 0.1 and 0.9 (with α = 10, We =
K = 1).

rod solutions [31].

Here, we focus on inhomogeneous static stress initial
conditions, without invoking additional variables, and we
will show that they can induce the appearance of persis-
tent inhomogeneities in the flow profile.

The reason for which these initial stress inhomo-
geneities can induce the appearance of blocked bands
can be qualitatively undestood by considering the flow
threshold K. Indeed, the stresses generated by the shear
combine with the initial stress distribution. Depending
on its orientation, the initial stress thus precipitates or
delays the triggering of the plastic flow.
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FIG. 12: Width of the blocked band as a function of b between
0.1 and 0.9, and α between 1 and 20 (with a = 1

7
, We = K =

1).

A. Initial inhomogeneous stress distribution

First, the existence of stress inhomogeneities stored in
the system before it is set into motion is physically well
motivated. For instance, introducing a foam sample into
an apparatus requires non-homogeneous flows. Inhomo-
geneous stresses will build up in the sample very likely,
except if particular care is taken, such as a slow, in situ
drying of an initially wet foam.

We will always assume that the initial state is at rest,
that is, that the elastic stresses are at equilibrium in the
sample. However, even when this equilibrium is imposed,
there exist a large set of initial spatial distributions of
stress. For example, if the system is invariant in the
xz plane of the shearing walls, some components of the
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FIG. 13: Width of the blocked band as a function of b between
0.1 and 0.9, and α between 1 and 20 (with a = 1

7
, We = K =

1).
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FIG. 14: Width of the blocked band as a function of ǫ (with
α = 16, We = K = 1, a = b = 0.5).

ηs

G, a

ηc, b

σy

FIG. 15: A simplified (scalar) picture of the main rheologi-
cal parameters. G represents the elastic modulus and a the
relative weight of the tensorial components of the elastic de-
formation, see Eqs. (25) and (26). The quantities σy and ηc
constitute a scalar representation of the creep defined by DB

p ,
and parameter b is the equivalent of a for creep, see equa-
tion (29). Finally, ηs is a viscosity that is independent of
creep. α = 2G

η γ̇
thus expresses the ratio between the elastic

stress and the viscous stress, and K = K/G the threshold in
units of the elastic modulus. As for We = γ̇τ , it expresses
the relation between the characteristic time of the imposed
shear rate γ̇ and that of the relaxation in the vicinity of the
threshold, τ (see Eq. 31).
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stress must be homogeneous. That is the case for σxy,
σyy and σyz. The other stress components, however, can
freely vary as a function of y as long as they remain
constant in each xz plane. It thus corresponds to a 1D
inhomogeneity in the direction of the velocity gradient.
In this paragraph, we examine a very simple case of

initial condition, where only the σxx component varies:

σxx = 1− 4ǫ |y(1− y)|, (37)

all other components being identically zero.
In practice, in order to prepare a sample in such a

state, one must compress the foam in a non-homogeneous
manner. Typically, a block of foam with a trapezoidal
shape is forced to take a rectangular shape.
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FIG. 16: Form of the stored elastic deformation in the course
of an experiment and in the stationary regime, for three dif-
ferent values of the shear rate γ̇. The axes are the first two
eigenvalues, β1 and β2, of tensor B.

B. Characterizing the inhomogeneous flows

A typical sequence of velocity profiles obtained in our
numerical simulations displays as follows. The velocity
profile is initially homogeneous. It remains homogeneous
as long as the entire sample is in the elastic regime. The
regions where the initial stress is the highest in the direc-
tion of the applied deformation reach the threshold first.
The average shear rate being constant, this onset of creep
leads both to a higher shear rate in the creeping regions
and to a lower one in the others. The high shear rate then
induces the saturation of the stress due to creep, and the
shear becomes blocked in the region below the threshold.
In the stationary regime, a blocked band coexists with a
sheared band at the same shear stress.
In the corresponding transient regime, non-trivial phe-

nomena may appear, especially at the boundary of the
blocked zone. Transient negative local shear rates are
observed due to stored elastic stresses.
Let us now address the characteristics of the stationary

velocity profile, again from the behaviour of the local
rheological model.
The first feature of interest is that in the flowing re-

gions, the velocity profile is linear, that is, the shear rate

is uniform. That can be understood in the following
manner. All the regions which, in the stationary state,
respond through a non-zero shear rate, correspond to a
point located on the stationary flow curve in the β1-β2 di-
agram of figure 16. Each point of this curve corresponds
to a different shear stress. Thus, since each layer of the
flow undergoes the same shear stress, they all actually
correspond to the same point on the curve and thus re-
spond through the same shear rate.
A second feature results from the fact that in space,

while σxy and σyy are continuous, σxx and σzz can per-
fectly be discontinuous. That is precisely the case at the
boundary between a shear and a blocked region. This is
the flow counterpart of the discontinuity in the β1-β2 di-
agram, between the points below the threshold and the
point with a stationary shear rate that corresponds to
the flowing region. Actually, the only coupling between
the different layers comes from the fact that (i) σxy and
σyy must be every where the same, and (ii) the integral
of γ̇ over the gap thickness is fixed by the imposed wall
velocity. As a consequence, in an inhomogeneous flow,
the organisation of the blocked and flowing layers is not
unique: any permutation of the layers is actually possi-
ble. Again, initial conditions decide upon the particular
structure adopted by the flow. Two initial conditions cor-
responding to permutated layers would lead to the same
permutation in the stationary flow structure.

C. Parameters affecting the existence of blocked

bands

1. 1D results

With these 1D simulations, we chose to explore the
same parameter range of the five parameters (α, K, We,
a, b) as for the rheological model. The results are pre-
sented in figures 4, 6, 8, 10 and 12. For each one of them,
the width of the blocked band is represented as a func-
tion of two parameters, the other three being fixed. From
a numerical point of view, let us remark that Figure 13,
obtained for a looser grid, does not display significant
differences: we have checked the grid used is fine enough
for all simulations presented here.
In the (α, We) plane, the bands appear and grow as

α is increased. And this happens earlier when We is
smaller. In the (K, We), bands appear when the value of
the threshold K is increased, again this happens earlier
when We is smaller. In the (K, α), the bands again
appear when the threshold is increased, and again when α
is larger. The arguments rationalizing these observations
are the same as in paragraph III B.

2. Comparison with the local rheological model

Comparing the figures of the previous paragraph and
those of paragraph III B, we observe that the regions in
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which blocked bands actually appeared in the 1D simu-
lations are strictly included, as expected, in the regions
authorized by the local rheological model.
However, the boundary of these regions do not coin-

cide. Actually, a perfect mapping would require a very
find adjustment of the profile of the initial conditions in
order to explore the authorized zone for the shear bands
up to its boundary. Figure 14 shows that modifying the
amplitude and modulation in the initial stress can even
lead to the disappearance of the blocked band.

V. CONCLUSION

As a conclusion, this model emphasizes the differ-
ence between the static and the dynamic flow thresh-
olds, which determines the appearance of shear bands,
for a material whose properties (as defined by rheologi-
cal parameters) remain homogeneous. It is actually the
tensorial character of the model which allows stress inho-
mogeneities, including in the initial conditions. Indeed,
when the plastic flow starts, the material is free to de-
form in the third dimension (vorticity direction) and thus
seems to evolve, when observed in 2D or 1D. This evolu-
tion can lead, locally, to a decrease of the shear stress to
values below the static threshold σy. For an incompress-
ible two-dimensional material, such behaviour would not
be possible since the two eigenvalues of the stored defor-
mation would be rigidly related.
Other materials which do not belong to the category

of yield stress fluids could be analysed in the same way.
For exampled, in entangled polymer solutions, transient
shear bands are observed [42]. The fast band eventually
spans the whole sample. The material has thus evolved
as compared to the initial state. Since the average con-
centration cannot change, the evolution leading to this
global fast band must affect the structure via a non-
conserved order parameter. Measuring the radius of gira-
tion in the direction of vorticity could indicate whether
ou analysis is relevant for this kind of fluid (taking a
threshold stress equal to zero).
As a summary, without invoking an extra variable cou-

pled to the flow, we show that a homogeneous 3D ma-

terial may seem inhomogeneous when observed in 2D or
1D.

Appendix A: Direct method for obtaining the

stationary state in the local rheological model

Let us start from the point (βy
1 , βy

2 ) and follow the
plasticity thresholdWy(B) = 0 until the stationarity con-
dition is fulfilled. This condition can be expressed using
the following observation: in the stationary regime, there
is no plastic flow in the vorticity direction [3]. In other
words, the third eigenvalue of tensor G(B) is zero:

g3(β1, β2) = G3(β1, β2, β3) = 0, (A1)
with β3 = 1

β1β2

. We thus directly obtain the dynamic

threshold (βd
1 , βd

2 ) of the system. We then follow the
same stationarity condition g3(β1, β2) = 0 until we reach
the desired shear stress σ12 = σy . We thus directly obtain
the stationary state (βcc

1 , βcc
2 ) that corresponds to the

critical shear rate γ̇c. In practice, we follow the threshold
curve using Ŵy(β1, β2) = Wy(β1, β2, β3) = 0 (with β3 =

1
β1β2

) by integrating the following differential system:

εWy

dβ1

dt
=

∂Ŵy

∂β2

=
∂Wy

∂β2

−
1

β1β2
2

∂Wy

∂β3

(A2)

−εWy

dβ2

dt
=

∂Ŵy

∂β1

=
∂Wy

∂β1

−
1

β2
1β2

∂Wy

∂β3

(A3)

where the sign of εWy
= ±1 is chosen in such a way as to

follow the curve Wy in the desired direction. Similarly,
we follow the curve of stationary states, g3(β1, β2) =
G3(β1, β2, β3) = 0 by integrating the following differential
system:

εg
dβ2

dt
=

∂g

∂β2

=
∂G3

∂β2

−
1

β1β2
2

∂G3

∂β3

(A4)

−εg
dβ2

dt
=

∂g3
∂β1

=
∂G3

∂β1

−
1

β2
1β2

∂G3

∂β3

(A5)

where the sign of εg = ±1 is chosen in such a way as to
follow the curve g3 = 0 in the desired direction.
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rheology of foams. part 2. continuous shear flow. J. Fluid.
Mech., 587:45–72, 2007.

[23] Gijs Katgert, Matthias E. Möbius, and Martin van
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