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Sensitivity analysis of hyperbolic optimal control problems

Adam Kowalewski · Irena Lasiecka ·
Jan Sokołowski

Abstract The aim of this paper is to perform sensitivity analysis of optimal control

problems defined for the wave equation. The small parameter describes the size of

an imperfection in the form of a small hole or cavity in the geometrical domain of

integration. The initial state equation in the singularly perturbed domain is replaced

by the equation in a smooth domain. The imperfection is replaced by its approx-

imation defined by a suitable Steklov’s type differential operator. For approximate

optimal control problems the well-posedness is shown. One term asymptotics of op-

timal control are derived and justified for the approximate model. The key role in the

arguments is played by the so called ”hidden regularity” of boundary traces generated

by hyperbolic solutions.

Keywords Sensitivity analysis · Optimal control problems · Hyperbolic boundary

value problems · Linear partial differential operators · Steklov-Poincaré operator ·
Kondratiev weighted spaces

1 Introduction

1.1 Modelling of imperfections

If a defect is included in the domain of integration of elliptic PDE, for example a

crack, the domain becomes nonsmooth, i.e., looses the property of being Lipschitz.
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In such case the theory of boundary value problems defined on nonsmooth domains

should be applied in order to show that the boundary value problem under consid-

eration is well-posed in the scale of Kondratiev weighted spaces. If the size of the

defect can be considered as a small parameter, the analysis can be performed on a

suitable smooth domain, but the asymptotics are derived according to the rules for

singularly perturbed geometrical domains. The other possibility is to use the regular

perturbations in line with homogenization techniques in optimal design: the real ma-

terial is the strong material, but instead of the holes the weak material is introduced.

The contrast parameter which stands for the properties of the weak material can be

considered as a tool to obtain the holes by a limit passage, if necessary. This approach

is useful for stationary problems, however it fails for evolution problems. This issue is

particularly pronounced in low regularity hyperbolic models such as wave equations.

The reason is simple, the asymptotic analysis performed for the stationary problems

gives useful information for low frequencies only, one can see this phenomenon when

dealing with the spectral problems.

On the other hand, the models which are useful for applications should be simple

and easy for computations. Therefore, we propose in this paper to conduct the analy-

sis of the influence of imperfections for a simple model, just by taking only one term

asymptotics of the energy functional obtained for a singular domain perturbations

with nucleation of a hole. The question is whether even in such a case the presence of

imperfections described in an approximate fashion destabilizes the control problems?

We will show that the answer is quite complicated and a suitable regularization of the

model is needed. The latter involves insertion of an additional small parameter in the

boundary conditions. This parameter will force Lopatinski condition to hold for a

Neumann problem which then will result in the so called ”hidden regularity” [15] on

the boundary. The idea of ”hidden regularity” regularization has been used in the past

successfully for boundary control problems -particularly in the context of numerical

approximations [5,6,19,13]. Regularizing parameter allows to obtain smooth on the

boundary approximations, which can be then taken to appropriate limits.

1.2 Optimal control problems for the wave equation

We consider an optimal control problem for the wave equation. The control in L2(Γ ×
(0,T )) is applied on a portion of lateral boundary of the cylinder Ωρ × (0,T ). We

assume that in the domain Ωρ a small defect is present, in the form of a void, its size

is measured by small parameter ρ → 0. We want to find how the defect influences the

optimal control. It seems that such analysis for the class of problems can be important

for applications, with respect, for instance, to nucleation of small cracks. The exact

analysis of the asymptotic behavior of optimal controls with respect to ρ → 0 is out

of reach for engineers and also quite involved. In particular, the required asymptotic

analysis of hyperbolic problems for high frequencies in singularly perturbed domains

is a mathematical topic still in its early stages of development. Therefore, we perform

only some approximate sensitivity analysis based on asymptotic analysis of elliptic

operators with respect to the parameter ρ . Unfortunately, such an analysis is far from

being precise, more precise analysis would be based on the so-called self-adjoint
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extensions of elliptic operators, which is the topic of further studies. However, even

in the case of simplified analysis, the result seems to be useful and simple since we

can replace the singular domain perturbations in Ωρ by the regular perturbations in

boundary conditions on the truncated domain ΩR. Here, we use the idea which can

be very useful in the domain decomposition technique for the numerical solution of

hyperbolic equations. We have also a precise result of sensitivity analysis, interesting

on its own i.e., one term asymptotic expansion of the optimal control is obtained with

respect to the parameter ρ for the control problem with constraints. The solutions

considered are of ”finite energy” controlled by physically significant L2(Σ) boundary

inputs.

From the PDE point of view, the main difficulty of the problem is due to intrinsic

low regularity of solutions to hyperbolic problems driven by L2 Neumann boundary

data . Of particular relevance is the regularity due to non-homogeneous boundary

data which undergo infinitesimal perturbations. Standard hyperbolic regularity, is of

no use in such analysis. What is essential instead, is the so-called ”hidden regularity

” property displayed by hyperbolic flows which satisfy the Lopatinski condition [38,

7,15,16,17]. However, the model under consideration is equipped with the Neumann

type of boundary conditions where hidden regularity does not hold [16,17] unless the

dimension of the domain is equal to one. Thus, the additional technical difficulty is

related to the Neumann control in L2(Γ × (0,T )) where Lopatinski condition fails.

This has implications on regularity theory which leads to the loss of 1/3 derivative

when analyzing the control-input map [16]. In order to deal with this difficulty, we

shall impose absorbing boundary conditions (typical boundary friction) which can

also be considered as a feedback stabilizer for the wave equation [12,19,13]. These

boundary conditions, while producing long time stabilizing effect allow also to prove

a weak version of ”hidden regularity” for finite energy solutions [5,6,15,13]. This lat-

ter property turns out critical for the analysis of sensitivity conducted in the present

work. We shall show that the resulting control problem is well-posed, with the unique

optimal control, and the first order perturbation of the optimal control with respect

to the parameter ρ is uniquely determined by the solution of the control problem

in the unperturbed domain. In other words, for a small defect in the domain of in-

tegration, its influence on the optimal control is determined by solving an auxiliary

optimal control problem in unperturbed domain. Such an information could be useful

for practical purposes, since the cost of numerical solution in singularly perturbed ge-

ometrical domain could be substantially higher, due to the singularities, compared to

the cost of numerics performed on smooth unperturbed domains. It should be noted

that the idea of ”hidden regularity” regularization, in the context of wave equation,

has been explored in the past. For instance, [5,6] appplies the same regularization to

approximation of Riccati operators arising in boundary control of wave equation with

Neumann boundary conditions. In fact, the entire theory of convergence of FEM ap-

proximations of Riccati solutions rests on a suitable prior ”hidden” regularization of

the problem. The passage with the limit on the parameter of regularization leads to the

ultimate convergence result for the original wave equation. The method of ”hidden”

regularization has been also used in domain decomposition procedures introduced

and described in [13].



4 Adam Kowalewski et al.

ρ

Ωρ

Γρ

ϑ

Γ = ∂Ω

Fig. 1 The domain Ωρ in two spatial dimensions.

2 Geometry of Ωρ

To fix the ideas, we consider the following model problem. Let Ω ⊂ R
n be a domain

with smooth boundary Γ and Bρ be a defect included in Ω , in the form of a void.

The case of a small crack can also be considered in our framework. The domain with

the defect is denoted by Ωρ (Fig.2). Usually, if the asymptotic analysis in singularly

perturbed domains is applied for the construction of an approximate problem of sim-

pler nature, some attributes of the defect like mass matrix, polarization matrix etc.

are necessary in order to replace the domain Ωρ , which is singularly perturbed, by a

punctured domain which remembers the presence of the defect by means of a singular

potential located at the center of the defect. Here we avoid this type of approxima-

tion, we apply only the non-local Steklov-Poincaré operator which results from the

asymptotic energy expansion for the Laplacian. This operator depends on the small

parameter ρ → 0, and we can use its expansion with respect to ρ in order to obtain the

constructive formulae from our sensitivity analysis. For simplicity we fix the spatial

dimension n = 2.

We denote by

Ωρ = Ω \Bρ ⊂ R
2,

∂Ωρ = Γ ∪Γρ ,
(1)

where: Ω is a domain on the plane R
2 with a smooth boundary ∂Ω and

Bρ = {x : |x−ϑ | < ρ} (2)

with a smooth boundary Γρ .

3 Domain decomposition Ω = BR ∪ΓR ∪ΩR

Another useful geometrical construction for our problem is based on the domain de-

composition technique. The idea is simple, we want to perform the asymptotic anal-

ysis with respect to singular perturbations of domains in subdomain BR with R > ρ
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Fig. 2 The domain ΩR.

fixed once forever. The goal is then to study the influence of the small parameter

ρ → 0 on the optimal control in disjoint subdomain ΩR. This decomposition allows us

to obtain a simple problem in ΩR, with regular perturbations of the boundary condi-

tions imposed on the interface ΓR between two subdomains. In this way we introduce

the new hyperbolic problem to be considered, defined in the cylinder ΩR×(0,T ), and

avoid in fact any interaction with the boundary layer created in BR by the presence of

the defect. However, we need the preliminary analysis of the defect on the Steklov-

Poincaré operator which lives on ΓR = ∂BR. This analysis is performed only for the

elliptic operator, and we use the result to construct the asymptotics for the elliptic

Steklov-Poincaré operator. We consider the geometry from the figure below. Let us

surround Γρ by the circle ΓR such that R > ρ > 0 (Fig.2). Consequently, we denote

ΩR = Ω \BR, (3)

where:

BR = {x : |x−ϑ | < R} (4)

and we assume that the centre ϑ := O is just the origin.

For further purposes we set the non-local Neumann boundary condition on ΓR:

−∂y

∂n
= Aρ(y) on ΓR, (5)

where: Aρ is a Steklov-Poincaré operator defined below in the domain C(R,ρ) = BR \
Bρ .The operator Aρ is a mapping of H1/2(ΓR) 7→ H−1/2(ΓR). We recall the definition

of the operator.

For given element v ∈ H1/2(ΓR) we solve the boundary value problem

−∆w = 0 in C(R,ρ),
∂w

∂ν
= 0 on Γρ , w = v on ΓR, (6)

and set

Aρ v =
∂w

∂ν
on ΓR , (7)
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where ν is the unit exterior normal vector on ∂C(R,ρ), note that the unit exterior

normal vector n on ΓR ⊂ ∂ΩR is n = −ν .

Notation: The following notation will be adopted.

We shall denote by |u|s,Ω ≡ |u|Hs(Ω) Sobolev’s norm of order s defined on a domain

Ω . Similarly, the inner products (u,v)Ω =
∫

Ω uvdx denote L2 products integrated

over Ω . (u,v)Γ denotes L2(Γ ) inner product. The same notation will be used for

ΓR.

Trace operators or restrictions to the boundary are denoted by γw ≡ w|Γ , and γRw ≡
w|ΓR

.

Time-space function spaces are denoted by C(X)≡C([0,T ];X), Lp(X)≡Lp(0,T ;X)
where X is a given Banach space.

Projection operators Pi : R
2 7→ R

1 are given by Pi(u1,u2) = ui, i = 1.2.

The Constant C or c denote generic constants that do not depend on solution or the

parameter ρ .

We begin with the following preliminary Lemma which is known to the special-

ists.

Lemma 1 For all ρ ≥ 0 the operator Aρ : L2(ΓR) 7→ L2(ΓR) is self-adjoint and it

is continuous H1/2(ΓR) 7→ H−1/2(ΓR). Moreover, for all u ∈ H1/2(ΓR) the following

bounds are uniform in ρ ∈ [0,1].

(Aρ u,u)L2(ΓR) = |A1/2
ρ u|2ΓR

∼ |u|2
H1/2(ΓR)

= |u|21/2,ΓR
,

c|u|2
H1/2(ΓR)

≤ |A1/2
ρ u|2ΓR

≤C|u|2
H1/2(ΓR)

.

Proof We denote by D : L2(ΓR) 7→ L2(ΩR) the Dirichlet map defined as

Dv ≡ w, w given by (6).

By using Green’s formula one finds that for all v,z ∈ H1/2(ΓR) one has

(Aρ v,z)ΩR
= (

∂

∂ν
Dv,Dz)ΓR

= (
∂

∂ν
Dv,Dz)ΓR∪Γρ

= (∆Dv,Dv)ΩR
+(∇Dv,∇Dz)ΩR

= (∇Dv,∇Dz)ΩR

which shows self-adjointness. In addition

(Aρ v,z)ΩR
≤ |Dv|1,ΩR

|Dz|1,ΩR
≤C|v|1/2,ΓR

|z|1/2,ΓR

and

(Aρ v,v)ΩR
= |∇Dv|2ΩR

∼ |v|21/2,ΓR
.

Since ∇Dv ∈ L2(Ω) implies that Dv ∈ H1(Ω) and Dv|ΓR
∈ H1/2(ΓR), we infer that

v∈H1/2(ΓR). The above concludes, via Closed Graph Theorem, the conclusion stated

in Lemma 1.

The domain decomposition technique allows for replacing the singular perturba-

tion in the form of the small hole Bρ in the domain Ωρ by a regular perturbation in the
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truncated domain ΩR on the boundary ΓR. However, for this purpose elliptic theory is

used only. This leads to a consideration of the asymptotic approximation which is of

the first order with respect to a small parameter ρ . More precisely, the energy in the

ring BR \Bρ for the Laplacian with non-homogeneous Dirichlet condition on ΓR and

the homogeneous Neumann condition on Γρ is considered as a function of ρ → 0.

The asymptotic approximation of the energy is equivalent to the asymptotic approx-

imation of the Steklov-Poincaré operator on ΓR. In addition, we determine below the

first term of order ρ2 which turns out to be a bounded non-local operator on L2(ΓR).
The boundary condition imposed on ΓR reflects the presence of the defect in the ring

BR \Bρ . In this way, the presence of a singular perturbation in Ωρ is modeled by a

regular perturbation of non-local boundary conditions on the boundary of truncated

domain. The precision of such approximation for the hyperbolic evolution problems

is still to be evaluated for some numerical examples.

Using the results of the Appendix we obtain the following expansion for the elliptic

Steklov-Poincaré operator Aρ in the norm L (H1/2(ΓR),H−1/2(ΓR)):

Aρ = A0 +ρ2B+O(ρ4) = A0 +ρ2B+Rρ . (8)

More specifically, A0 ∈ L (H1/2(ΓR) 7→ H−1/2(ΓR)), the remainder O(ρ4) is uni-

formly bounded on bounded sets in the space H1/2(ΓR) with values in H−1/2(ΓR)
and also can be considred as bounded from H1(ΓR) 7→ L2(ΓR). The operator B is

self-adjoint, from H1/2(ΓR) 7→ H−1/2(ΓR) and can be shown to be bounded operator

H1/2(ΓR) 7→ L2(ΓR). The bounds are uniform in ρ .

The first term A0 in the expansion of the operator Aρ is the Dirichlet to Neu-

mann operator or Steklov-Poincaré operator of the ball, hence it is simply given by

the standard Green formula for the ball BR. In other words, for a given function

w0 harmonic in BR, with the Dirichlet trace v ∈ H1/2(ΓR), the value of the operator

A0(v) ∈ H−1/2(ΓR) is just the Neumann trace of the harmonic function cf. (5).

The second term of the expansion in ρ2 can be represented in two spatial di-

mensions in the equivalent form of the product of the line integrals over the circle

ΓR = {x : |x−O| = R} with the centre at the origin O . 〈Bu,u〉 is just the sum of

squares of the line integrals, the trace on ΓR is integrated with polynomials of degree

one in both space variables. The operator B is self-adjoint since the bilinear form is

symmetric

〈Bu,u〉 = b(ΓR;u,u) = − 1

2πR6

[

(

∫

ΓR

ux1 ds

)2

+

(

∫

ΓR

ux2 ds

)2
]

. (9)

From the above representation, since the line integrals on ΓR are well defined for

functions in L2(ΓR), or even in L1(ΓR), it follows that the operator B can be extended

to the bounded operator on L2(ΓR),

B ∈ L (L2(ΓR) 7→ L2(ΓR)) (10)

since the symmetric bilinear form of the operator, given by the equality

〈Bu,v〉 = b(ΓR;u,v) =

− 1

2πR6

[(

∫

ΓR

ux1 ds

)(

∫

ΓR

vx1 ds

)

+

(

∫

ΓR

ux2 ds

)(

∫

ΓR

vx2 ds

)]
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is continuous for all u,v ∈ L2(ΓR). In fact, the bilinear form

L2(ΓR)×L2(ΓR) ∋ (u,v) 7→ b(ΓR;u,v) ∈ R

is continuous with respect to the weak convergence since it has a simple structure

b(ΓR;u,v) = l1(u)l1(v)+ l2(u)l2(v), u,v ∈ L1(ΓR)

with two linear forms v 7→ li(v), i = 1,2, given by the line integrals on ΓR. This gives

us the additional regularity when replacing the singular perturbation of geometrical

domain by the regular non-local perturbation B of the non-local boundary operator

Aρ . The numerical results are required, however, to confirm if this regular approxi-

mation of the hole is robust, and efficient e.g., for the low frequences, which seems

to be the case on the strength of theoretical considerations. The presence of ”hidden

regularity” regularization is known to produce strong stability properties for approx-

imations of boundary conditions [5,13].

3.1 Approximate model in ΩR

For the domain Ωρ with defect in the form of a hole Bρ , the wave equation should

be considered in the singularly perturbed domain with a small hole. Our aim is to

consider a model with the domain without any hole, but with some influence of the

defect modeled by means of the asymptotic analysis, cf. Appendix for the case of the

energy functional and of the asymptotic analysis for the Steklov-Poincaré operator.

The domain decomposition method consists in using the truncated domain ΩR which

contains no defect, however, the defect is modeled by a regular perturbation of the

boundary conditions by the non-local Steklov-Poincaré operator. By the asymptotic

analysis, the exact Steklov-Poincaré operator is approximated by its one term asymp-

totic approximation. Therefore, the approximate model in ΩR × (0,T ) leads to the

following hyperbolic equation with absorbing boundary conditions (where ε > 0 is a

fixed parameter corresponding to the regularization)

∂ 2y

∂ t2
−∆y = f in ΩR × (0,T ),

∂y

∂η
+ εyt = v on Γ × (0,T ) = Σ ,

∂y

∂η
+ εyt +Aρ(y) = 0 on ΓR × (0,T ) = ΣR,

y(x,0) = y0(x) in ΩR,

∂y(x,0)

∂ t
= y1(x) in ΩR .































































(11)

We are interested in optimizing finite energy solutions (y,yt) ∈ C(H1(ΩR)×
L2(ΩR)) by means of boundary control v ∈ L2(Σ). We shall show that for the as-

sociated optimal control problem, the solutions are stable with respect to the small
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parameter ρ → 0. In order to make the meaning of ”finite energy” solutions to (11)

precise, we shall define weak solutions via standard variational equality

d

dt
(yt ,φ)ΩR

+(∇y,∇φ)ΩR
+(εyt − v,φ)Γ

+(εyt ,φ)ΓR
+(A

1/2
ρ y,A

1/2
ρ )ΓR

= 0,∀φ ∈ H1(ΩR) (12)

with the initial conditions Y (0) = (y0,y1) ∈ H1(ΩR)×L2(ΩR).

Remark 1 The presence of the parameter ε > 0 in both boundary conditions provides

for ”hidden regularity” effect on boundary traces of solutions. It will be shown that

finite energy solutions satisfy yt |Γ∪ΓR
∈ L2(Σ ∪ ΣR). Thus, the boundary terms in-

volving time derivatives restricted to the boundary are well defined in the definition

of weak solution given in (12).

As already mentioned before, this type of ”hidden regularization” regularization has

been used in the context of FEM approximations of Riccati solutions [5,19] and in

the context of domain decomposition [13].

4 Neumann control problem in U = L2(Γ × (0,T )). Main Results

We consider the following optimal boundary control problem defined in domain ΩR.

Let U = L2(Γ × (0,T )) be the space of controls. The time horizon T is fixed and the

parameter of regularization ε > 0 .

With Y ≡ [y,yt ] ,a solution to (11) , and

H ≡ H1(Ω)×L2(Ω), R ∈ L (H)

the functional cost is given by

I(v) =
1

2
|R(Y (T ;v)−Yd)|2H +

α

2

T
∫

0

∫

Γ

|v|2dsdt. (13)

The following constraints are imposed on the controls v ∈Uad :

Uad = {v ∈ L2(Γ × (0,T )),0 ≤ v(x, t) ≤ 1}. (14)

Our first result pertains to existence and regularity of optimal pair (v0
ρ ,Y 0

ρ ) cor-

responding to optimal control problem consisting of minimizing the functional (13)

subject to (14) and equation (11).

Theorem 1 For all initial data Y (0) ∈ H, terminal data Yd ∈ H, right-hand side f ∈
L1(0,T ;L2(ΩR)), and all ρ > 0 there exists a unique optimal control v0

ρ ∈ L2(Σ)∩Uad

and such that optimal state Y 0
ρ ∈ C([0,T ];H). In addition, for ε > 0 ,the following

boundary regularity holds: d
dt

y0
ρ |∂ΩR

∈ L2(Σ ∪ΣR).
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Remark 2 We note that the boundary regularity of the velocity does not follow from

interior regularity. This is an independent trace regularity result which turns out to be

essential in characterizing optimal control.

When ε = 0 one can still deduce existence of optimal control and optimal trajectory,

however the boundary regularity of solutions fails . Since this regularity is critical for

further sensitivity analysis, we shall henceforth be assuming that ε > 0.

Our GOAL: is the asymptotic analysis of the optimal control when ρ → 0. In reference

to problem (11) ,the following result on the stability of optimal controls for ρ → 0

holds.

Theorem 2 Let us consider the minimization of the cost functional (13) evaluated for

the state equation (11) with f = 0 and initial-terminal data in H = H1(ΩR)×L2(ΩR),
subject to the control constraints (14). Then the unique optimal control u0

ρ admits for

ρ → 0 the one term asymptotics

uρ = u+ρ2q+o(ρ2) in L2(Γ × (0,T )),

where q is given by a unique solution of the auxiliary optimal control problem (cf.

Lemma 8) with the state equation (63), the cost functional (57), and the set of admis-

sible controls (61).

The remaining part of the paper is devoted to the proof of the main theorem.

5 Existence and Regularity theory

In this section we study forward regularity properties of solutions to the initial-

boundary value problem given in (11).

Theorem 3 Regularity theorem

Let

– f ∈ L1(0,T ;L2(ΩR)), v ∈ L2(0,T ;L2(Γ ))
– y0 ∈ H1(ΩR), y1 ∈ L2(ΩR).

Then, there exists a unique solution of the state equation in the truncated domain

y ∈C(0,T ;H1(ΩR))∩C1(0,T ;L2(ΩR))

and such that the following hidden regularity holds:

y|ΓR
∈ H1(ΣR)∩C(0,T ;H1/2(ΓR)).

y|Γ ∈ H1(Σ).

In addition, the following bound is available for all 0 ≤ t ≤ T :

|y(t)|21,ΩR
+ |yt(t)|20,ΩR

+2ε

∫ t

0
|yt |2Γ ds+2ε

∫ t

0
[|yt |2ΓR

+ |y|2
H1(ΓR∪Γ )]ds

≤C[|y(0)|21,ΩR
+ |yt(0)|20,ΩR

]+
c

ε
||v||2L2(Σ) ,

where the constants are uniform in ρ ≥ 0.
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Proof We shall approach the problem of existence of solutions to (30) - or equiv-

alently to its variational form defined in (12) - by using semigroup theory. In fact,

it is enough to show that the semigroup solutions generated by differential equation

(30) have desired boundary regularity. This allows to obtain variational formulation

by taking strong limits of strong semigroup solutions defined on H. To this aim we

define several operators. Let AN denotes the Laplacian with zero Neumann boundary

data on ∂ΩR. This is to say AN : D(AN) ⊂ L2(ΩR) 7→ L2(ΩR) is defined by

ANu = −∆u, u ∈ D(AN) ≡ {u ∈ H2(ΩR) :
∂

∂ν
u = 0 on Γ ∪ΓR}

Let N (resp. NR) denote the Neumann harmonic extension from Γ (resp. ΓR ) into

ΩR. This is to say N : L2(Γ ) 7→ L2(ΩR) is defined by w ≡ Nv iff ∆w = 0 in ΩR and
∂

∂ν
w = v on Γ , ∂

∂ν
w = 0 on ΓR.

Similarly, NR : L2(ΓR) 7→ L2(ΩR) is defined by w ≡ Nv iff ∆w = 0 in ΩR and
∂

∂ν
w = 0 on Γ , ∂

∂ν
= v on ΓR.

In defining Neumann harmonic extensions, without loss of generality we may

assume that zero eigenvalue is mode out . This has no effect on further analysis, since

eventually

|A1/2
N u|2ΩR

+ |A1/2
ρ u|2ΓR

∼ |u|2
H1(ΩR),

so the static elliptic operator controls full H1 norm.

The abstract second order form of the problem under consideration (see [19,21])

is the following:

ytt +ANy+ εANNN∗ANyt + εANNRN∗
RANyt +

ANNRAρ(y) = f +ANNv (15)

with the initial conditions y0 ∈ H1(ΩR),y1 ∈ L2(ΩR).
The above representation uses the following identifications :

N∗ANy = y|Γ , y ∈ H1(ΩR),

N∗
RANy = y|ΓR

, y ∈ H1(ΩR), (16)

which follow from the application of Green’s formula [21].

STEP 1. We shall prove that equation (11) with v = 0, f = 0 generates a strongly

continuous semigroup on H1(ΩR)×L2(ΩR). In order to accomplish this, we find it

convenient to topologize H with equivalent norm given by

|y|2H ≡ |A1/2
N y1|2ΩR

+ |A1/2

0 (y1)|2ΓR
+ |y2|2ΩR

,

|y|2Hρ
≡ |A1/2

N y1|2ΩR
+ |A1/2

ρ (y1)|2ΓR
+ |y2|2ΩR

.

In view of Lemma 1 these are equivalent norms to the standard H1(ΩR)×L2(ΩR)
norms. The inner product generated by H is the following

(y,w)Hρ ≡ (A
1/2
N y1,A

1/2
N w1)ΩR

+(A
1/2
ρ y1,A

1/2
ρ w1)ΓR

+(y2,w2)ΩR
.
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We introduce the operator Aρ : H 7→ H whose action is defined by

Aρ(y1,y2) ≡
(

0 I

−AN −ANNRAρ N∗
RAN −εANNRNRA∗

N − εANNN∗AN

)

.

It follows that for y = (y1,y2) ∈ D(Aρ), where D(Aρ) is the maximal domain,

we obtain:

(Aρ y,y)Hρ = −ε|N∗ANy2|2Γ − ε|N∗
RANy2|2ΓR

− (ANNAρ N∗
RANy1,y2)ΩR

−(ANy1,y2)+(A
1/2
ρ N∗

RANy1,A
1/2
ρ N∗

RANy2)ΩR
+(A

1/2
N y1,A

1/2
N y2)ΩR

= −ε|N∗ANy2|2Γ − 1

2
ε|N∗

RANy2|2ΓR
+Cε |y|2H , (17)

where we have used inner product defined on Hρ . This gives that Aρ is dissipative.

In order to prove the generation of the semigroup we need to establish maximal

dissipativity. This is done as follows :

Maximal dissipativity, by Minty’s Theorem, is equivalent to the range conditions,

i.e. solvability of

Aρ y− y = f ∈ H

for every f ∈ H. Writing in the coordinates

y2 − y1 = f1 ∈ H1(ΩR),

ANy1 +ANNRAρ N∗
RANy1 + y2

+εANNRN∗
RANy2 + εANNN∗ANy2 = f2 ∈ L2(ΩR), (18)

which is equivalent to

ANy1 +ANNRAρ N∗
RANy1 + y1 + εANNRN∗

RANy1 + εANNN∗ANy1

= − f1 − f2 − εANNRN∗
RAN f1 − εANNN∗AN f1. (19)

The operator

B ≡ AN +ANNRAρ N∗
RAN + I + εANNRN∗

RAN + εANNN∗AN

is a Lax-Milgram operator on the space V ≡ H1(ΩR). Indeed,

(Bu,u)L2(ΩR) = |A1/2
N u|2ΩR

+ |A1/2
ρ N∗

RANu|2ΓR
+ |u|2ΩR

+ε|N∗ANy|2Γ + ε|N∗
RANu|2ΓR

≥ |u|21,ΩR
.

The continuity of the associated form follows by Lemma 1.

Since with f ∈ H1(ΩR), and R(N) ⊂ D(Aα
N) for 0 ≤ α < 3/4, we have

ANNRN∗
RAN f1 ∈ [D(A

1/2
N )]′ ⊂V ′

and

ANNN∗AN f1 ∈ [D(A
1/2
N )]′ ⊂V ′.

The above leads to the solvability of (19) Thus, the generation of a strongly continu-

ous semigroup is deduced via monotone operator theory.
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Remark 3 We note that maximal dissipativity property of the operator Aρ does not

depend on strict positivity of the parameter ε . Thus, the conclusion on the existence of

semigroup solution is independent on the regularization. However, in order to prove

the energy inequality, as stated in the Theorem 3 , the presence of ε > 0 is critical.

This provides for additional boundary regularity.

In order to prove the energy inequality stated in Theorem 3, we first apply the

energy-multipliers method. Taking first v = 0 and multiplying equation (11) by yt

gives the following energy equality:

|Y (t)|2Hρ
+ ε

∫ t

0
|N∗

RANyt |2ΓR
+ ε

∫ t

0
|N∗ANyt |2Γ = |Y (0)|2Hρ

.

Since y|ΓR∪Γ ∈ H1(0,T ;L2(ΓR)), Y ∈C(0,T ;H) and ∂
∂ν

y ∈ L2(Σ), hidden regularity

applies [15,20] and implies the L2 regularity of tangential derivatives on the boundary

Γ . The same applies to ΓR after taking into considerations the regularity for ”small

frequencies” exhibited by elliptic problem resulting from microlocalization of the

wave operator to ”small” time dual variables (frequencies). This leads to considera-

tion of elliptic problem (microlocally) which are driven by L2 internal force and L2

boundary data (see [16]). This is to say that microlocal solutions satisfy

∆y = f ∈ L2(Ω),
∂

∂ν
y = h on Γ ,

∂

∂ν
y+Aρ y = g on ΓR

display the regularity:

|y|1+s,ΩR
+ |y|

H1/2+s(Γ∪ΓR) ≤C(| f |L2(ΩR) + |h|−1/2+s,Γ + |g|−1/2+s,ΓR
) (20)

for all s ∈ [0,1/2] uniformly in the parameter ρ > 0. Applying the above inequality

with s = 1/2 and accounting for the fact that we already know that yt ∈ L2(ΣR ∪Σ)
gives :

∫ T

0
|∇ΓR

y|2ΓR
+ |∇|Γ y|2Γ ds ≤ cε−1|Y (0)|2Hρ

.

By Lemma 1 we have that |Y |Hρ ∼ |Y |H , uniformly in ρ ∈ [0,1], so the norms Hρ can

be replaced (with appropriate change of the constants) by norms in H. This provides

the desired bound with v = 0.

STEP 2: We go back to the main equation (15) which is the boundary perturbation of

the ω dissipative semigroup. As such, it can be written as Y ≡ [y,yt ]

d

dt
Y = AρY +

(

0

ANNRv+ f

)

.

It is at this point where absorbing damping on the boundary Γ is critical. (Absorbing

damping on ΓR will be needed for sensitivity analysis).

Indeed, multiplying equation (15) by yt and integrating by parts (this procedure

is formally applied to smooth approximations of the problem and followed by limit

process [19] ) yields:
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|Y (t)|2Hρ
+2ε

∫ t

0
|N∗ANyt |2Γ ds+2ε

∫ t

0
|N∗

RANyt |2ΓR
ds

≤ |Y (0)|2Hρ
+

∫ t

0
| f |ΩR

|yt |ΩR
ds+

∫ t

0
(ANNv,yt)ΩR

ds. (21)

The above implies:

|A1/2
N y(t)|2ΩR

+ |yt(t)|2ΩR
+2ε

∫ t

0
|N∗ANyt |2Γ ds+2ε

∫ t

0
|N∗

RANyt |2ΓR
ds

≤C|A1/2
N y(0)|2ΩR

+C|yt(0)|2ΩR
+1/2 sup

s∈[0,t]

|yt(s)|2ΩR

+C(
∫ t

0
| f |ΩR

ds)2 + ε

∫ t

0
|N∗ANyt |2Γ ds+

2

ε

∫ t

0

∫

Γ
|v|2dxds. (22)

Hence

|Y (t)|2H + ε

∫ t

0
|yt |2ΓR

+ ε

∫ t

0
|yt |2Γ

≤Ct [|Y (0)|2H +C(
∫ t

0
| f |ΩR

ds)2 +
c

ε

∫ t

0

∫

Γ
|v|2dxds]. (23)

Since yt |ΓR
∈ L2(ΣR) and solutions are of finite energy, hidden regularity [15]

along with elliptic estimate (20) gives the control of all tangential - time and space

derivatives on the boundary. This completes the proof of Theorem 3.

It is convenient to introduce the following notation:

– Sρ,t : H 7→ H is the semigroup generated by (11) with f = 0,v = 0.

– (Lρ u)(t) =
∫ t

0 Sρ,t−sDu(s)ds where Du ≡ [0,ANNu], or equivalently solution to

(11) with f = 0, y0,y1 = 0, v = u. The bounds are independent on ρ .

Theorem 3 implies for all t ∈ [0,T ].

Corollary 1 1. |Sρ,tY |H ≤Ct |Y |H
2. ε

∫ T
0 [|γSρ,tY |2L2(Γ ) + |γRSρ,tY |2L2(ΓR)] ≤C|Y |2H

3. |Lρ(u)|C(0,T,H) ≤ C√
ε
|u|L2(Σ)

4. |γP2Lρ u|L2(Σ) + |γRP1Lρ u|H1(ΣR∪Σ) ≤ C
ε |u|L2(Σ)

where the bounds are uniform in ρ ≥ 0 and also t ∈ [0,T ].

6 Optimal control problem

We shall analyze next the optimal boundary control problem (11)-(13) in the domain

ΩR with the fixed parameter ρ > 0. The solution of the formulated optimal control

problem is equivalent to seeking a v0
ρ ∈Uad such that I(v0

ρ) ≤ I(v) for all v ∈Uad .
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Standard arguments in calculus of variations lead to the following results for α > 0 a

unique optimal control v0
ρ is characterized by the following condition

I′(v0
ρ)(v− v0

ρ) ≥ 0 ∀v ∈Uad . (24)

Using the form of the performance functional (13) we can express (24) in the follow-

ing form:

(R∗
R(Y (x,T ;v0

ρ)−Yd),(Y (x,T ;v)−Y (x,T ;v0
ρ))H +

+
α

2

T
∫

0

∫

Γ

v0
ρ(v− v0

ρ)dxdt ≥ 0 ∀v ∈Uad .
(25)

After denoting Lρ,T u = Lρ u(T ) and observing that Y (T,v) = Sρ,TY0 + Lρ,T v (25)

gives:

∫ T

0
(L∗

ρ,T R
∗
R(Lρ,T v0

ρ +Sρ,TY0 −YD),v− v0
ρ)Γ dt

+
α

2

∫ T

0
(v0

ρ ,v− v0
ρ)Γ dt ≥ 0 ∀v ∈Uad , (26)

which provides the following characterization of the optimal control.

v0
ρ ≡ PUad

[
−1

α
L∗

ρ,T R
∗
R(Lρ,T v0

ρ +Sρ,TY0 −YD)] = PUad
[−Cρ v0

ρ +Fρ ], (27)

where

Cρ ≡ 1

α
L∗

ρ,T R
∗
RLρ,T , Fρ ≡ −1

α
L∗

ρ,T R
∗
R(Sρ,TY0 −YD). (28)

Here we use the topology of H (independent on the parameter ρ) for the computations

of the adjoints.

Direct calculation of the adjoint operator L∗
ρ,T yields:

L∗
ρ,T Φ ≡ γΨ2(t),Ψ(t) ≡ S∗ρ(T − t)Φ .

In order to calculate the adjoint explicitly we find useful to introduce the notation

ÃN ≡ AN +ANNRA0γR = AN +ANNRA0N∗
RAN .

This is self-adjoint, positive operator acting on L2(ΩR) and |Ã1/2
N u|ΩR

∼ |u|1,ΩR
. We

also note that

|Y |2H = |Ã1/2
N y1|2ΩR

+ |y2|2ΩR
.

With the above notation we have

A
∗

ρ (y1,y2) = [−y2 − Ã−1
N ANNRR∗

ρ γRy2, ÃNy1 − εANNRγRy2 − εANNγy2]

where Rρ is introduced in (8).

To simplify (25), we introduce the adjoint equation. For every v ∈Uad , we define

the adjoint variable

Pρ(t) = [pρ,1(t), pρ,2(t)] ≡ S∗ρ,T−tR
∗
R(Y 0(T )−Yd).
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We verify that the vector Pρ is the solution of the following system of equations:

d

dt
pρ,1 = pρ,2 + ÃN

−1
ANNRR∗

ρ γR pρ,2,

d

dt
pρ,2 = −ÃN pρ,1 + εANNRγR pρ,2 + εANNγ pρ,2. (29)

The above system can be rewritten as the following PDE-non-local system

d

dt
pρ,1 = pρ,2 + ÃN

−1
ANNRR∗

ρ γR pρ,2,
d

dt
pρ,2 = ∆ pρ,1 in ΩR × (0,T ),

∂ pρ,1

∂η
− ε pρ,2 = 0 on Γ × (0,T ),

∂ pρ,1

∂η
− ε pρ,2 +A0(pρ,1) = 0 on ΓR × (0,T ),

Pρ(x,T ;v) = R∗R(Y 0
ρ (T )−Yd), in ΩR,















































(30)

where Y 0
ρ is the optimal trajectory corresponding to ρ problem.

Remark 4 We note that for ρ = 0, we have Rρ = 0 and the adjoint equation for the

variable P0(t) = [p0(t), p0
t (t)] can be written as:

p0
tt = ∆ p0,

∂

∂ν
p0 − ε p0

t = 0 on Γ ,

∂

∂ν
p0 − ε p0

t +A0(p0) = 0 on ΓR,

P0(T ) = R
∗
R(Y 0(T )−Yd). (31)

Lemma 2 The following estimate holds for solutions to (30) for all t ∈ [0,T ].

|pρ,1(t)|21,ΩR
+ |pρ,2(t)|20,ΩR

+ ε

∫ T

t
|pρ,2|2Γ

+ε

∫ T

t
|pρ,2|2ΓR

≤Ct(|pρ,1(T )|21,ΩR
+ |pρ,2(T )|20,ΩR

). (32)

Proof This result follows from the same arguments as used in the proof of Theorem

3. In order to obtain the energy estimate we multiply the first equation in (29) by

ÃN p1, the second equation by p2 and use duality pairings. This gives:

|Pρ(t)|2H + ε

∫ T

t
|p2,ρ |2Γ∪ΓR

ds = |Pρ(T )|2H +
∫ T

t
(R∗

ρ γR pρ,2,γR p1,ρ)ΓR
ds. (33)

Since R∗
ρ : L2(ΓR) 7→ H−1/2(ΓR) is bounded uniformly in ρ , we obtain

(R∗
ρ γR pρ,2,γR p1,ρ)ΩR

≤

C|p1|1,ΩR
|γR p2|0,ΓR

≤Cε |p1|21,ΩR
+1/4ε|γR p2|20,ΓR

.

The above estimate leads, via Gronwall’s inequality, to the final conclusion in

Lemma 2.
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Remark 5 One could prove additional tangential regularity of pρ,1|ΓR
∈ H1(ΓR) for

ρ sufficiently small, which would allow to relax regularity of R∗
ρ : L2 7→ H−1. This

step, however, would require analysis similar to that given in Regularity Theorem

3 but applied to pρ,1 equation and followed by perturbation argument in order to

incorporate non-local operator on the right side of the first equation in (30). It is for

this point where smallness of ρ will be needed. Since this point is not essential, we

shall not insist on the additional technicalities.

Theorem 4 Let the hypothesis of Theorem 1 be satisfied. Then for given Yd ,Y0 ∈ H,

v0
ρ ∈Uad , there exists a unique solution to (30)

Pρ(vρ) = [pρ(v0
ρ), pρ,t(v

0
ρ)] ∈C(H)

and such that p0
ρ,2|∂ΩR

∈ L2(Σ ∪ΣR) .

We simplify (25) using the adjoint equation (30). This leads to :

T
∫

0

∫

Γ

(pρ,2 +αv0
ρ)(v− v0

ρ)dxdt ≥ 0 ∀v ∈Uad . (34)

Theorem 5 Optimality Theorem For the problem (11) with the performance func-

tional (13) with Yd ∈ H and α > 0, and with constraints on the control (14), there ex-

iststs a unique optimal control v0
ρ which satisfies the maximum condition (34). More-

over, v0
ρ = PUad

(− 1

α
pρ,2) where PUad

is a projection operator on Uad with respect to

L2 topology.

Remark 6 Note, that the boundary regularity of the adjoint variable pρ,2|Γ∪ΓR
rep-

resents hidden regularity of the solutions to the adjoint equation. This is critical in

characterizing the optimal solution.

Remark 7 By using inner product induced by AN + ANNRAρ γR the adjoint equation

becomes just the wave equation (second order in time), rather then the system of two

equations of first order.

7 Sensitivity of optimal controls in U = L2(Γ × (0,T ))

By using variational definition of the projector operator PUad
we infer the following

characterization of the optimal control.

(v0
ρ +Cρ v0

ρ +Fρ ,u− v0
ρ)Σ ≥ 0 ∀u ∈Uad . (35)

The above characterization leads to the following error inequality satisfied by the

difference of two optimal controls corresponding to ρ > 0 and ρ = 0 and denoted

respectively by vρ and v0 .
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|v0 − v0
ρ |2Σ − (Cρ(v0 − v0

ρ),v0 − v0
ρ)Σ

≤ ((C0 −Cρ)v0,v0 − v0
ρ)Σ +(F0 −Fρ),v0 − v0

ρ)Σ . (36)

Since −Cρ is nonegative, we obtain:

|v0 − v0
ρ |2Σ ≤ ((C0 −Cρ)v0,v0 − v0

ρ)Σ +(F0 −Fρ),v0 − v0
ρ)Σ . (37)

Therefore, sensitivity analysis is reduced to sensitivity analysis of operators Cρ

and Fρ respectively.

The first step toward sensitivity analysis of optimal control is sensitivity analysis

of state operator due to specified control input.

We define the control-state operator Lρ ;L2(Σ) 7→C(H) as:

Lρ u ≡ [yρ ,
d

dt
yρ ] = Yρ ,

where yρ satisfies (11 ) with f = 0,y(0) = 0,yt(0) = 0.

We recall trace operator denoted by γy ≡ y|Γ . From Theorem 3 we have

Lρ ∈ L (L2(Σ);C(H))

γP1Lρ ∈ L (L2(Σ) 7→ H1(Σ)),γRP1Lρ ∈ L (L2(Σ) 7→ H1(ΣR)) (38)

We shall also introduce the following notation:

K(v) ≡ [z,zt ] = Z, where z satsifies

ztt = ∆z,

∂

∂ν
z+ εzt = 0 on Σ ,

∂

∂ν
z+ εzt +A0(z) = v on ΣR,

z(0) = zt(0) = 0, (39)

(K(v))(t) =
∫ t

0
S0,t−s

(

0

ANNRv(s)

)

ds. (40)

We already know from Theorem 3

K : L2(ΣR) 7→C(H), is bounded,

P1Kv|∂ΩR
∈ H1(Σ ∪ΣR) ∀v ∈ L2(ΣR). (41)

Lemma 3 Let u ∈ L2(Σ). Then

Lρ u−L0u = ρ2L′u+ r1(ρ),

where

L′u = K(B(γRy0)) = K(B(γRP1L0u)) ∈C(H), L′ ∈ L (L2(Σ) 7→C(H))

and
|r1(ρ)|C(H)

ρ2
7→ 0 ∀u ∈ L2(Σ).
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Proof Denote Ŷ ≡ Lρ u−L0u. Then Ŷ = [ŷ, ŷt ] satisfies

ŷtt = ∆ ŷ in QR,

∂

∂ν
ŷ+ ε ŷt = 0 on Σ ,

∂

∂ν
ŷ+ ε ŷt +A0(ŷ)+B(γRy0)ρ

2 = −B(γRŷ)ρ2 +Oρ4(γRP1Lρ u) on ΣR,

ŷ(0) = ŷt(0) = 0, (42)

where for u ∈ L2(Σ) we have

|Oρ4(γRyρ)|L2(ΣR)

ρ4
≤ c|γRyρ(t)|L2(H1(ΓR)) ≤C|u|L2(Σ). (43)

This last conclusion follows from the fact that for Yρ ∈C(H) we have by Theorem 3

γRyρ ∈ L2(H
1(ΓR)) and the higher order term O(ρ4) satisfies

|O(ρ4)(z)|L2(Γ ) ≤ ρ4|z|H1(Γ ).

From (42) and regularity Theorem 3 we obtain for all u ∈ L2(Σ)

L′u = −K(B(γRy0)) = −K(B(γRP1L0u)) ∈C(H), (44)

with P1 : R
2 7→ R

1, P1(x,y) ≡ x, so that PT
1 u = (0,u). From (42 )

Ŷ ρ−2 −L′u = K(B(γRŷ))+K(ρ−2Oρ4(γRP1Lρ u)).

Using the fact that the operator B is bounded from H1/2(Γ ) 7→ L2(Γ ) and K : L2(Σ) 7→
C(H) is bounded we obtain the estimate

∣

∣

∣

∣

Ŷ

ρ2
−L′u

∣

∣

∣

∣

C(H)

≤ ρ2

∣

∣

∣

∣

Ŷ

ρ2

∣

∣

∣

∣

C(H)

+ρ−2|Oρ4(γRP1Lρ u)|L2(Σ)

≤ ρ2

∣

∣

∣

∣

Ŷ

ρ2

∣

∣

∣

∣

C(H)

+ρ2|u|L2(Σ),

where in the last step we have used regularity theorems and the bound in (43). Thus,

taking ρ sufficiently small gives first via (44)

∣

∣

∣

∣

Ŷ

ρ2

∣

∣

∣

∣

C(H)

≤C,∀u ∈ L2(Σ).

Hence

|B(γRŷ)|C(L2(Γ ) ≤C|ŷ|C(H1(ΩR)) ≤C|Ŷ |C(H)

and

|B(γRŷ)|L2(Σ) 7→ 0, when ρ → 0,

consequently by (41)

|K(B(γRỹ)|C(H) → 0, as ρ → 0.
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This leads to

r1(ρ) ≡ K(B(γRŷ)ρ2 +K(Oρ4(Lρ(u))), (45)

where after recalling Lρ u|Γ ∈ L2(H
1(Γ ) (hidden tangential-space regularity in (38) )

we obtain

|r1(ρ)|C(H)ρ
−2 → 0,

when ρ → 0 for all u ∈Uad , as desired.

PDE interpretation of the derivative (LT )′ is given below.

L′
T u = Z(T ) = [z(t),zt(t)](t = T ) where z(t) satisfies :

ztt = ∆z in QR,

∂

∂ν
z+ εzt = 0 on Σ ,

∂

∂ν
z+ εzt +A0z = BγRP1L0u on ΣR,

Z(0) = 0 in ΩR. (46)

The analysis of the adjoint operator follows from duality. We recall that the duality

is always considered with respect to the norm in H topologized by Ã
1/2
N for the first

coordinate. We recall that this norm accounts for the effect of Steklov’s operator.

Lemma 4 Let W ∈ H. Then

L∗
ρ,TW −L∗

0,TW = ρ2(L∗
T )′W + r2(ρ),

where

[L∗
T ]′ = (L′

T )∗ ∈ L (H 7→ L2(Σ))

and
|r2(ρ)|L2(Σ)

ρ2
→ 0 ∀W ∈ H.

Proof The proof follows by duality. Let W ∈ H and u ∈ L2(Σ) . By Lemma 3

(L∗
ρ,TW −L∗

0,TW,u)Σ = (W,Lρ,T u−L0,T u)H =

ρ2(W,L′
T u)H +(W,r1(ρ)(T ))H = ρ2((L′

T )∗W,u)Σ +(r2(ρ),u)Σ

where (r2(ρ),u)Σ = (W,r1(ρ)(T ))H ≤ |W |H |r1(ρ)(T )|H . Thus

[L∗
T ]′ = (L′

T )∗ ∈ L (H 7→ L2(Σ)),

and by using the structure of r1(ρ)(T )

r2(ρ) ≡ [KT (B(γRP1([Lρ −L0])]
∗W +[KT (Oρ4(γRP1Lρ)]∗W,

which, by duality and Lemma 3 , exhibits the prescribed rate of convergence.

We recall projector operators Pi : R
2 7→ R

1, i = 1,2 given by

P1(u,v) = u, P2(u.v) = v.
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Considering P1 : H 7→ L2(ΩR) we introduce the adjoint P∗
1 : L2(Ω) 7→ H given by

P∗
1 = PT

1 Ã−1
N , (47)

where

PT
1 φ = (φ ,0), PT

2 φ = (0,φ).

Note that with the above notation: L′
T (u) = KT (BγRP1L0u) and recalling γ∗R = ANNR

we obtain

[KT (B(γRP1L0)]
∗ = L∗

0P∗
1 ANNRB∗K∗

T .

Since KT (v) = (Kv)(T )

KT (v) =
∫ T

0
S0,T−t

(

0

ANNRv(t)

)

dt

we have

[KT ]∗W (t) = γRP2S∗0,T−tW

and by (47)

(L′
T )∗W = L∗

0PT
1 Ã−1

N ANNRB∗γRP2S∗0,T−·W. (48)

The above can be interpreted as follows:

Let Ψ(t) ≡ S∗0,T−tW = [ψ1(t),ψ2(t)]. Then γRP2S∗0,T−tW = γRψ2(t).

Since (L∗
0F)(t) = N∗ANP2

∫ T
t S∗0,s−tF(s)ds we obtain the following lemma :

Lemma 5

v(t) ≡ (L′
T )∗W (t) = (L∗

0PT
1 Ã−1

N ANNB∗γRψt(·))(t) =

γP2

∫ T

t
S∗0,s−t

(

Ã−1
N ANNB∗γRψt(s)

0

)

ds

has (after some calculations) the following representation

v(t) = γφ(t),

where

φtt = ∆φ

∂

∂ν
φ − εφt = 0 on Γ ,

∂

∂ν
φ − εφt +A0φ = B∗γRψt on ΓR,

φ(T ) = φt(T ) = 0,

ψtt = ∆ψ,

∂

∂ν
ψ − εψt = 0 on Γ ,

∂

∂ν
ψ − εψt +A0ψ = 0 on ΓR,

Ψ(T ) = W
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and Ψ satisfies the following energy inequality

|Ψ(t)|2H + ε

∫ t

0
|ψt(s)|2Γ∪ΓR

+ ε|ψ|2
H1(Γ∪ΓR)ds ≤C|W |2H . (49)

We note that the regularity of the system above is not obvious, when considering

PDE representation (since ( B∗γRψt ∈ L2(0,T ;H−1/2(ΓR)) ). However, this result can

be easily deduced from semigroup argument applied to integral representation of v(t)
(as given in the Lemma) along with hidden regularity given in Theorem 3.

The above results lead to the sensitivity analysis of operators Cρ and Fρ intro-

duced in (28)

Lemma 6 Let u ∈ L2(Σ),Y0,YD ∈ H. The following expansion holds

Cρ u−C0u = ρ2C′u+o(ρ2),

C′ =
1

α
L∗

T R
∗
RL′

T +
1

α
(L∗

T )′R∗
RLT ∈ L (L2(Σ)),

Fρ −F0 = F ′ρ2 +o(ρ2),

F ′ =
1

α
L∗

T R
∗
RS′0,TY0 +

1

α
(L∗

T )′R∗
R[S0,TY0 −YD] ∈ L2(Σ).

We establish the directional differentiability of the optimal controls with respect

to the parameter ρ = 0+.

Theorem 6 We have the following expansion of the optimal control in L2(Γ ×(0,T )),
with respect to the small parameter,

v0
ρ = v0 +ρ2q+o(ρ2) (50)

for ρ > 0.

Proof From (36) and formulas in Lemma 6 we obtain

|v0
ρ − v0|Σ ≤ |(C0 −Cρ)v0|Σ + |F0 −Fρ |Σ ≤Cρ2 (51)

for Y (0) ∈ H. Therefore, there exists q ∈ L2(Σ) such that

vρ = v0 +ρ2q+o(ρ2). (52)

In order to find the representation for the Gateau differential, we will be using repre-

sentation of optimal controls v0
ρ given in (27). We write

v0
ρ − v0 = PUad

[−Cρ v0
ρ +Fρ ]−PUad

[−C0v0 +F0]

= P′
Uad

(−C0v0 +F0)[(−Cρ +C0)v
0 −Cρ(v0

ρ − v0)+Fρ −F0]+o(ρ2)

= [PUad
]′(−C0v0 +F0)[(−C0q−C′

0v0 +F ′]+o(ρ2), (53)

where we have been using the fact that Pad is Lipschitz on L2(Σ). Comparing leading

terms in (52 ) and the last equality we obtain

q = [PUad
]′(−C0v0 +F0)[−C0q−C′

0v0 +F ′].
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Moreover, we assume that ρ is a sufficiently small. By exploiting explicit representa-

tions of Cρ operators the function q can be written as

q = [PUad
]′(−C0v0 +F0)[−L∗

T R
∗
RW (T )− (L∗

T )′R∗
R(Y 0(T )−YD)], (54)

where Y 0(t) is the optimal trajectory and W (t) = [w(t),wt(t)] satisfies the state equa-

tion
∂ 2w

∂ t2
−∆w = 0 in ΩR × (0,T ),

∂w

∂η
+ εwt = q on Γ × (0,T ),

∂w

∂η
+ εwt +A0(w)+B(γRy0) = 0 on ΓR × (0,T ),

w(x,0) = 0 in ΩR,

∂w

∂ t
(x,0) = 0 in ΩR.































































(55)

By using Regularity Theorem 3 one easily obtains:

Lemma 7 Solution w satisfies:

|w(t)|21,ΩR
+ |wt |20,ΩR

+
∫ t

0
|wt |20,Γ ≤ c

ε

∫ t

0
[|y0|21/2,ΓR

+ |q|2Γ ]. (56)

We shall also introduce the performance functional

I(u) =
1

2
|RW (T,x)|2Hdx+

α

2

T
∫

0

∫

Γ

|u|2dxdt, (57)

and the adjoint equation

∂ 2z

∂ t2
+∆z = 0 in ΩR × (0,T ),

∂ z

∂η
− εzt = 0 on Γ × (0,T ),

∂ z

∂η
− εzt +A0(z)+B∗(γR p0) = 0 on ΓR × (0,T ),

Z(T ) = W (T ) in ΩR















































(58)

and P0(t) = Ψ(t) satisfies the adjoint equation in Lemma 5 with

Ψ(T ) ≡ R∗R(Y 0(T )−Yd) (see Remark 4 ).

Lemma 8 Regularity for z.

|z(t)|21,ΩR
+ |zt(t)|20,ΩR

+ ε

∫ T

0
|zt |2Γ∪ΓR

ds ≤ |w(T )|21,ΩR
+ |wt(T )|20,ΩR

+
c

ε

∫ T

0
|p0|21/2,ΓR

(59)
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With the above notation, the formula (54) can be written as

q = [PUad
]′(−C0v0 +F0)[−γzt ].

Then, the optimal control q is characterized by

(RW (x,T ;q),R(W (x,T ;u)−W (x,T ;q))+

T
∫

0

∫

Γ

q(u−q)dxdt ≥ 0

∀u ∈ Sad ,

(60)

where: Sad is a set of admissible controls such that

Sad =
{

u ∈ L2(Γ × (0,T ))
∣

∣

∣

u(x, t) ≥ 0 on the set E0 = {(x, t)|v0(x, t) = 0},
u(x, t) < 0 on the set E1 = {(x, t)|v0(x, t) = 1},

T
∫

0

∫

Γ

(p0
t +αv0)udxdt = 0

}

,

(61)

where:

p0
t is a adjoint state for ρ = 0,

v0 is a optimal solution for ρ = 0 such that 0 ≤ v0(x, t) ≤ 1.

We simplify (60) using the adjoint equation (58). After transformations we obtain the

following maximum condition

T
∫

0

∫

Γ

(zt +αq)(u−q)dxdt ≥ 0 ∀u ∈ Sad . (62)

Theorem 7 For the hyperbolic problem

∂ 2w

∂ t2
−∆w = 0 in ΩR × (0,T ),

∂w

∂η
+ εwt = u on Γ × (0,T ),

∂w

∂η
+ εwt +A0(w)+B(y0) = 0 on ΓR × (0,T ),

w(x,0) = 0 in ΩR,

∂w

∂ t
(x,0) = 0 in ΩR,































































(63)

with the performance functional (57) with w(T ) ∈ L2(ΩR) and α > 0, and with con-

straints on the control (61), there exists a unique optimal control q which satisfies the

maximum condition (62).
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8 APPENDIX: Asymptotic analysis with Steklov-Poincaré operator

For the convenience of the reader we provide the asymptotic analysis used for the

elliptic problem in a singularly perturbed geometrical domain.

8.1 Steklov-Poincaré operator in the domain C(R,ρ) = BR \Bρ

The main result, we obtain is based on the expansion (66) of the Steklov-Poincaré

operator with respect to the parameter ρ . The expansion is established in section 8.1

by an application of elementary Fourier analysis.

We consider the mapping Aρ : H1/2(ΓR) 7→ H−1/2(ΓR) defined by the boundary

value problem

−∆wρ = 0 in C(R,ρ) ,

wρ = v on ΓR = ∂BR, ∂nwρ = 0 on Γρ ,

and we set

∂nwρ = Aρ(v) on ΓR .

By an elementary evaluation of the associated energy functional, we refer the reader

to Section 8.2 for details, taking into account the relation which follows by integration

by parts, we find that

〈Aρ(v),v〉ΓR
=

∫

C(R,ρ)
|∇wρ(v;x)|2dx ,

and for ρ > 0, ρ small enough,

∫

C(R,ρ)
|∇wρ(v;x)|2dx =

∫

BR

|∇w0(v;x)|2dx (64)

+ρ2b(ΓR;v,v)+O(ρ4),

where w0 denotes the solution in the intact domain without any hole, and the remain-

der O(ρ4) is uniformly bounded on bounded sets in the space H1/2(ΓR).
By the properties of harmonic functions the second term can be represented in

two spatial dimensions in the equivalent form of a line integral over the circle ΓR =
{x : |x−O| = R} with the centre at the origin O

b(ΓR;u,u) = − 1

2πR6

[

(

∫

ΓR

ux1 ds

)2

+

(

∫

ΓR

ux2 ds

)2
]

. (65)

Therefore, we obtain the expansion

Aρ = A0 +ρ2B+O(ρ4) , (66)

in the operator norm L (H1/2(ΓR);H−1/2(ΓR)).
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8.2 Compactness of asymptotic energy expansion

In this section we provide a simple proof for (66) which is equivalent [43,47] to (64).

Remark 8 We refer e.g., to [43,47] for the derivation of topological derivatives of

the energy functionals for a class of elliptic boundary value problems including the

linear elasticity. However, in our applications the form of the first term of the energy

expansion should have some specific properties, therefore, we use the equivalent form

of the topological derivative of the energy, which is bounded in the Sobolev energy

space. The same property is required in the topological sensitivity analysis of the

contact problems [47,48].

Let 0∈Ω and BR be a ball around 0, while C(ρ,R) is a ring C(ρ,R) = { x | ρ < ‖x‖<
R } with inner boundary Γρ and outer boundary ΓR. Additionally we use notation

ΩR = Ω \BR, We consider functions u ∈ H1(ΩR) with traces (still denoted by u) on

ΓR belonging to H1/2(ΓR). The following implication is true

‖u‖H1(ΩR) ≤ Λ0 =⇒ ‖u‖
H1/2(ΓR) ≤ Λ(R),

and since R is fixed, we shall omit it, writing Λ instead of Λ(R) (by Λ we shall

denote generic constant depending only on Λ0). Finally, we denote by (r,φ) spherical

coordinates around 0.

From the fact that u ∈ H1/2(ΓR) follows the existence of the Fourier series expan-

sion in terms of φ :

u =
1

2
a0 +

∞

∑
k=1

(ak sinkφ +bk coskφ)

with coefficients satisfying

∞

∑
k=1

√

1+ k2(a2
k +b2

k) ≤ Λ .

This implies two important for us properties:

∞

∑
k=1

(a2
k +b2

k) ≤ Λ ,
∞

∑
k=1

k(a2
k +b2

k) ≤ Λ . (67)

Now we shall consider in BR the solution of the Laplace equation with Dirichlet

boundary condition on ΓR coinciding with u, denoted by w, and the solution of the

same equation in C(ρ,R), with the same condition on ΓR and homogeneous Neumann

condition on Γρ , denoted by wρ . We define energies

E(u) =
∫

BR

‖∇w‖2 dS, Eρ(u) =
∫

C(ρ,R)
‖∇wρ‖2 dS (68)

which depend on u via boundary conditions. Our goal is to prove that Eρ has an

expansion in which the remainder is uniformly bounded. More precisely this can be

expressed as follows.
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Lemma 9 The energy Eρ(u) admits the expansion, for ρ > 0, ρ > 0 small enough,

Eρ(u) = E(u)+ρ2b(ΓR;u,u)+R(u) ,

where

|R(u)| ≤ Λρ4

uniformly on any fixed compact set in H1(ΩR), i.e. Λ depends on this set only.

Proof Since any compact set may be covered by finite number of balls, it is enough

to prove the Lemma for a fixed ball in H1(ΩR). We may therefore assume that (67)

holds. The proof will consist in obtaining explicit formulas for w and wρ as series, us-

ing the well known methods, similarly as in [43]. Then the energies may be computed

exactly and the desired property of the remainder R(u) proven.

Constructing w from the Fourier series of its boundary condition we get

w =
1

2
a0 +

∞

∑
k=1

( r

R

)k

(ak sinkφ +bk coskφ) . (69)

Similarly, for wρ in C(ρ,R) holds

wρ =
1

2
a0 +

∞

∑
k=1

vk(ρ)(ak sinkφ +bk coskφ) ,

where

vk(ρ) = Akrk +Bk

1

rk
,

and

AkRk +Bk

1

Rk
= 1,

kAkρk−1 −Bk

1

ρk+1
= 0.

Hence

Ak =
Rk

R2k +ρ2k
, Bk = Akρ2k

and finally

vk(ρ) =
rk

Rk
+

ρ2k

R2k +ρ2k

(

Rk

rk
− rk

Rk

)

.

Substituting this into the expansion for wρ gives

wρ = w+
∞

∑
k=1

ρ2k

R2k +ρ2k

(

Rk

rk
− rk

Rk

)

(ak sinkφ +bk coskφ) := w+ zρ (70)

with

zρ =
∞

∑
k=1

ρ2k

R2k +ρ2k

(

Rk

rk
− rk

Rk

)

(ak sinkφ +bk coskφ) . (71)
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For any function f we denote by f/r, f/φ the partial derivatives with respect to the po-

lar coordinates, thus the norm of the gradient with respect to the cartesian coordinates

takes the form

‖∇ f‖2 = f 2
/r +

1

r2
f 2
/φ

and therefore

Eρ(u) =
∫

C(ρ,R)
‖∇w+∇zρ‖2 dS

= E(u)+
∫

C(ρ,R)
[(zρ/r)

2 +
1

r2
(zρ/φ )2]dS

+2

∫

C(ρ,R)
[w/rzρ/r +

1

r2
w/φ zρ/φ ]dS

−
∫

Bρ

‖∇w‖2 dS

:= E(u)+ I1 + I2 + I3 .

(72)

Now we have

zρ/r = −
∞

∑
k=1

ρ2k

R2k +ρ2k
k

1

r

(

Rk

rk
− rk

Rk

)

(ak sinkφ +bk coskφ) ,

1

r
zρ/φ =

∞

∑
k=1

ρ2k

R2k +ρ2k
k

1

r

(

Rk

rk
− rk

Rk

)

(ak coskφ −bk sinkφ) .

After taking into account the orthogonality of trigonometric functions on [0,2π] and

integrating with respect to φ one gets

I1 =
1

π

∞

∑
k=1

(

ρ2k

R2k +ρ2k

)2

k2(a2
k +b2

k) · Iρk,

where

Iρk =
∫ R

ρ

[

(

Rk

rk+1
+

rk−1

Rk

)2

+

(

Rk

rk+1
− rk−1

Rk

)2
]

rdr .

Since, after integration

Iρk =
1

k

[

R2k

ρ2k
− ρ2k

R2k

]

we obtain

I1 =
1

π

∞

∑
k=1

(

ρ2k

R2k +ρ2k

)2

k(a2
k +b2

k)

[

R2k

ρ2k
− ρ2k

R2k

]

. (73)

In order to compute I2 we observe that

w/r =
∞

∑
k=1

k
rk−1

Rk
(ak sinkφ +bk coskφ) ,
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w/φ =
∞

∑
k=1

k
rk

Rk
(ak coskφ −bk sinkφ)

and after easy computations

I2 = 0. (74)

There remains I3. It has the form

I3 = −
∫

Bρ

‖∇w‖2 dS = −
∫

Bρ

(w2
/r +

1

r2
w2

/φ ) dS,

and in view of the written above expressions for w/r,w/φ and orthogonality

I3 = − 1

π

∞

∑
k=1

k2(a2
k +b2

k)
∫ ρ

0

r2k−2

R2k
rdr.

Finally

I3 = − 1

2π

∞

∑
k=1

ρ2k

R2k
k(a2

k +b2
k). (75)

There remains to observe that, for ρ ≤ 1
2
R,

ρ2k

R2k +ρ2k
=

ρ2k

R2k

[

1− ρ2k

R2k
+

(

ρ2k

R2k

)2

+ . . .

]

.

Collecting the formulas (73),(74),(75) we may single out the first terms containing

ρ2 and the rest, which in view of the regularity of boundary conditions and implied

by this inequalities (67) is uniformly bounded by Λρ4.

It is worth noticing that as a byproduct of this proof we have once again derived

the formula for energy correction b(ΓR;u,u).

9 Conclusions

The approximation used in this paper is obtained from the asymptotic analysis of the

energy functional for the stationary problem. The energy functional is written for the

Laplacian. The approximation is governed by a small parameter which describes sin-

gular perturbations of the domain. Such perturbations can be considered as a defect in

a real world. The results presented are obtained for a defect in the form of a circular

hole. For applications in the structural mechanics, the Laplace operator is replaced

by a system of linear elasticity, and the defects can be some cracks, cavities or some

other singularities with geometrical boundaries. Our method applies for such situa-

tions as well. The difference encountered is that instead of a scalar wave equation

one should consider dynamic system of elasticity. There are several works [3,10,35,

48] which furnish the same kind of approximation for the energy functional, with the

explicit expressions for the first order term, which can be used in our framework. The

only difficulty is that instead of scalar problem, vectorial system of elasticity should

be considered. This is possible, since all the ingredients are in place, including the
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hidden regularity [12,13,21].

In this paper the mixed initial-boundary value problems of hyperbolic type is con-

sidered. One could also consider similar optimal control problems defined for time

delay hyperbolic systems. The ideas mentioned above will be developed in forthcom-

ing papers.
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37. Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Princeton University Press,

Princeton, NJ (1951).

38. Sakamoto, R.: Hyperbolic Boundary Value Problems. Cambridge University Press (1982)

39. Sokołowski, J.: Differential stability of solutions to constrained optimization problems. Appl. Math.

Optim. 13, 97–115 (1985)

40. Sokołowski, J.: Sensitivity analysis of control constrained optimal control problems for distributed

parameter systems. SIAM J. Control Optim. 25, 1542–1556 (1987)

41. Sokołowski, J.: Shape sensitivity analysis of boundary optimal control problems for parabolic sys-

tems. SIAM J. Control Optim. 26, 763–787 (1988)

42. Sokołowski, J., Zolesio, J-P.: Introduction to Shape Optimization. Shape Sensitivity Analysis.

Springer Verlag, Berlin-Heidelberg (1992)
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