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Given all moments of the marginals of a measure µ on R n , one provides (a) explicit bounds on its support and (b) a numerical scheme to compute the smallest box that contains the support of µ.

Introduction

Inverse problems in probability are ubiquitous in several important applications, and among them shape reconstruction problems. For instance, exact recovery of two-dimensional objects from finitely many moments is possible for polygons and so-called quadrature domains as shown in Golub et al. [START_REF] Golub | A stable numerical method for inverting shape from moments[END_REF] and Gustafsson et al. [START_REF] Gustafsson | Reconstructing planar domains from their moments[END_REF], respectively. But so far, there is no inversion algorithm from moments for ndimensional shapes. However, more recently Cuyt et al. [START_REF] Cuyt | Multidimensional integral inversion with application in shape reconstruction[END_REF] have shown how to approximately recover numerically an unknown density f defined on a compact region of R n , from the only knowledge of its moments. So when f is the indicator function of a compact set A ⊂ R n one may thus recover the shape of A with good accuracy, based on moment information only. The elegant methodology developed in [START_REF] Cuyt | Multidimensional integral inversion with application in shape reconstruction[END_REF] is based on multi-dimensional homogeneous Padé approximants and uses a nice Padé slice property, the analogue for the moment approach of the Fourier slice theorem for the Radon transform (or projection) approach; see [START_REF] Cuyt | Multidimensional integral inversion with application in shape reconstruction[END_REF] for an illuminating discussion.

In this paper we are interested in the following inverse problem. Given an arbitrary finite Borel measure µ on R n (not necessarily having a density with respect to the Lebesgue measure), can we compute (or at least approximate) the smallest box n i=1 [a i , b i ] ⊂ R n which contains the support of µ (not necessarily compact), from the only knowledge of its moments?

Contribution. Obviously, as we look for a box, the problem reduces to find for each i = 1, . . . , n, the smallest interval [a i , b i ] (not necessarily compact) that contains the support of the marginal µ i of µ. Of course, to bound a i and b i , one possibility is to compute zeros of the polynomials (p d ), d ∈ N, orthogonal with respect to the measure µ i . Indeed, for every d, the smallest (resp. largest) zero of p d provides an upper bound on a i (resp. a lower bound on b i ), and there is a systematic way to compute the p d 's from from the given moments of µ; see e.g. Gautschi [5, §1.2 and §2.1].

Our contribution is to provide a convergent numerical scheme for computing this smallest interval [a i , b i ], which (i) is based on the only knowledge of the moments of the marginals µ i , i = 1, . . . , n, and (ii) avoids computing orthogonal polynomials.

For each i, it consists of solving 2 hierarchies (associated with each of the end points a i and b i ) of so called semidefinite programs 1 in only one variable (and therefore those semidefinite programs are generalized eigenvalue problems for which even more specialized softwares exist). Importantly, we do not make any assumption on µ and in particular, µ may not have a density with respect to the Lebesgue measure as in the above cited works. In solving the two semidefinite programs at step d of the hierarchy, one provides an inner approximation [a d , b d ] ⊂ [a i , b i ] such that the sequence (a d ) (resp. (b d )), d ∈ N, is monotone nonincreasing (resp. nondecreasing) and converges to a i (resp. to b i ) as d → ∞ (with possibly a i = -∞ and/or b i = +∞). Interestingly, some explicit upper (resp. lower) bounds on a i (resp. b i ) in terms of the moments of µ i are also available.

Notation and definitions

Let N be the set of natural numbers and denote by x = (x 1 , . . . , x n ) a vector of R n whereas x will denote a scalar. Let R[x] be the ring of real univariate polynomials in the single variable x, and denote by R[x] d the vector space of polynomials of degree at most d. Let Σ[x] ⊂ R[x] be the set of polynomials that are sums of squares (s.o.s.), and Σ[x] d its subspace of s.o.s. polynomials of degree at most 2d. In the canonical basis d+1) be the real Hankel matrix defined by: (2.1)

(x k ), k = 0, . . . , d, of R[x] d , a polynomial f ∈ R[x] d is written x → f (x) = d k=0 f k x k , for some vector f = (f k ) ∈ R d+1 . Moment matrix. Given a infinite sequence y := (y k ), k ∈ N, indexed in the canonical basis (x k ) of R[x], let H d (y) ∈ R (d+1)×(
H d (y)(i, j) = y i+j-2 , ∀ i, j ≤ d.
The matrix H d (y) is called the moment matrix associated with the sequence y (see e.g. Curto and Fialkow [START_REF] Curto | Recursiveness, positivity, and truncated moment problems[END_REF] and Lasserre [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]). If y has a representing measure µ (i.e., if there exists a finite Borel measure µ such that

y k = x k dµ for every k ∈ N) then (2.2) f , H d (y)f = f (x) 2 dµ(x) ≥ 0, ∀f ∈ R[x] d ,
so that H d (y) 0, where for a real symmetric matrix A, the notation A 0 (resp. A ≻ 0) stands for A is positive semidefinite (resp. positive definite). d+1) be the real symmetric matrix defined by:

Localizing matrix. Similarly, given θ ∈ R[x] s with vector of coefficients (θ k ), let H d (θ y) ∈ R (d+1)×(
(2.3) H d (θ y)(i, j) := s k=0 θ k y i+j+k-2 , ∀ i, j ≤ d.
The matrix H d (θ y) is called the localizing matrix associated with the sequence y and the polynomial θ (see again Lasserre [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]). Notice that the localizing matrix with respect to the constant polynomial θ ≡ 1 is the moment matrix H d (y) in 1 A semidefinite program is a convex optimization problem that can be solved (up to arbitrary but fixed precision) in time polynomial in the input size of the problem, and for which efficient public softwares are available; see e.g. [START_REF] Vandenberghe | Semidefinite programming[END_REF] (2.1). If y has a representing measure µ with support contained in the level set {x ∈ R : θ(x) ≥ 0}, then

(2.4) f , H d (θ y)f = f (x) 2 θ(x) dµ(x) ≥ 0 ∀ f ∈ R[x] d , so that H d (θ y) 0.
Finally, for a finite Borel measure µ, denote its support by supp µ, that is, supp µ is the smallest closed set B such that µ(B c ) = 0 (where B c denotes the complement of B).

Main result

We may and will restrict to the one-dimensional case because if µ is a finite Borel measure on R n , and if we look for a box B := n i=1 [a i , b i ] such that supp µ ⊆ B, then we have the following result. For every i = 1, . . . , n, let µ i be the marginal of µ with respect to the variable x i .

Lemma 3.1. Let B ⊂ R n be the box n i=1 [a i , b i ] with possibly a i = -∞ and/or b i = +∞. Then supp µ ⊆ B if and only if supp µ i ⊆ [a i , b i ] for every i = 1, . . . , n. Proof. For every i = 1, . . . , n, let A i ⊂ R n be the Borel set {x ∈ R n : x i ∈ R \ [a i , b i ]}. Then 0 = µ(A i ) = µ i (R \ [a i , b i ]), shows that supp µ i ⊆ [a i , b i ], i = 1, . . . , n. Conversely, if µ i ⊆ [a i , b i ], i = 1, . . . , n, then 0 = µ i (R \ [a i , b i ]) = µ(A i ), i = 1, . . . , n. But since B c = ∪ n
i=1 A i we also obtain µ(B c ) = 0. So Lemma 3.1 tells us that it is enough to consider separate conditions for the marginals µ i , i = 1, . . . , n. Therefore, all we need to know is the sequence of moments

y i k := x k i dµ(x) = x k dµ i (x), k = 0, 1, . . .
of the marginal µ i of µ, for every i = 1, . . . , n.

Hence we now consider the one-dimensional case. For a real number a, let θ a ∈ R[x] be the polynomial x → θ a (x) = (x -a). Recall that the support of a finite Borel measure µ on R (denoted supp µ) is the smallest closed set For more details on semidefinite programming the interested reader is referred to e.g. [START_REF] Vandenberghe | Semidefinite programming[END_REF]. And we obtain: Proof. We prove the statements for (i) and (iii) only because similar arguments hold for (ii). We first prove that (3.7) has always a feasible solution. If supp µ ⊂ [a, +∞) for some a > -∞, then a is obviously feasible for the semidefinite program (3.7), for every d ∈ N. If there is no such a, consider the finite sequence of moments y d = (y 0 , . . . , y 2d+1 ). By Tchakaloff's theorem (see e.g. [START_REF] Bayer | The proof of Tchakaloff's theorem[END_REF][START_REF] Putinar | A note on Tchakaloff's theorem[END_REF], [7, Theorem B.12]) there exists a measure ν supported on finitely many points

B such that µ(R \ B) = 0. For instance is µ is supported on (a, b] ∪ [c, d) ∪ {e},
(3.1) H d (θ a y) 0, ∀d ∈ N. (ii) supp µ ⊆ [-∞, b] if and only if (3.2) H d (-θ b y) 0, ∀d ∈ N.
x 0 ≤ x 1 ≤ • • • ≤ x t , with t ≤ 2d + 2 (hence supp ν = ∪ t i=0 {x i } ⊂ [x 0 , +∞))
, and with same moments as µ, up to degree 2d + 1. Hence in view of what precedes, x 0 is feasible for (3.7). Next, as every feasible solution is bounded above by y 1 /y 0 and as we maximize, it follows that (3.7) has an optimal solution a d for every d ∈ N.

Next, observe that a d ≤ a k whenever d ≥ k because the feasible set of (3.7) for d is contained in that for k and every feasible solution is bounded above by y 1 /y 0 . Therefore the sequence (a d ), d ∈ N, is monotone nonincreasing and thus, converges to a * with possibly a * = -∞.

If a * = -∞ then there is no a such that supp µ ⊆ [a, +∞) because we would have a d ≥ a for all d. Next, consider the case a * > -∞, and let d ∈ N be fixed. Using H d (θ a d y) 0 and the continuity of a → H d (θ a y), one obtains H d (θ a * y) 0. As d fixed was arbitrary, we then obtain H d (θ a * y) 0 for every d ∈ N. But then by [7, Theorem 3.2], µ is supported on the set {x : θ a * (x) ≥ 0}, which shows that supp µ ⊆ [a * , +∞).

Concerning (iii), if a * > -∞ then a * is the largest a such that supp µ ⊆ [a, +∞) because if supp µ ⊆ [a, +∞) then a is feasible for (3.7), for every d ∈ N; therefore, a ≤ a d for every d, which in turn implies a ≤ a * .

Next, in the case where µ is known to have compact support one may even consider the following single hierarchy of semidefinite programs If Z 0 is feasible, using the singular value decomposition of Z one may write Z = i f i f T i for some vectors (f i ) ⊂ R d+1 , and so

1 = H d (y), Z = i f i , H d (y)f i = i f 2 i dµ = σ dµ, with σ = i f 2 i ∈ Σ[x] d
, and similarly

H d (x y), Z = i f i , H d (x y)f i = i xf i (x) 2 dµ(x) = xσ(x)dµ(x).
Therefore, equivalently, (3.10) reads

(3.11) a * d = min σ∈Σ[x] d      x σ(x)dµ(x) dν(x) : σ dµ dν = 1     
, and a * d ≥ a d (which is called weak duality). Indeed, for any two feasible solutions a, Z of (3.9) and (3.10) respectively, using Z 0 and H d (θ a y) 0, yields 

0 ≤ Z, H d (θ a y) = (x -a) σ(x) dµ(x) = xσ(x) dµ(x) -a,
(3.13) (x -a d ) σ * (x) dµ(x) = 0 = (b d -x) ψ * (x) dµ(x).
Proof. From Theorem 3.3, we know that (3.7) has an optimal solution a d . By Tchakaloff's theorem, let ν be the measure supported on the finitely many points x 0 , . . . , x t (with t ≤ 2d + 2), and with same moments as µ, up to degree 2d + 1.

There are positive weights λ k , k = 1, . . . , t, such that

pdµ = pdν = t k=0 λ k p(x k ) ∀ p ∈ R[x] 2d+1
(see e.g. [START_REF] Bayer | The proof of Tchakaloff's theorem[END_REF][START_REF] Putinar | A note on Tchakaloff's theorem[END_REF]). Hence H d (θ a y) ≻ 0 for every a < x 0 , because for every f ( = 0) ∈ R d+1 (hence every f Hence every a < x 0 is strictly feasible for (3.7), that is, Slater's condition 2 holds. But this implies that there is no duality gap, i.e., a d = a * d , and in addition, the dual (3.11) has an optimal solution σ * ; see e.g. [START_REF] Vandenberghe | Semidefinite programming[END_REF]. 2 For a convex optimization problem minx{ f (x) : g j (x) ≥ 0, j = 1, . . . , m}, Slater's condition states that there exists x 0 such that g j (x 0 ) > 0 for every j = 1, . . . , m. so that for every ℓ, p ℓ , H d (θ a d y)p ℓ = 0 (since H d (θ a d y) 0), that is, every p ℓ is in the kernel of H d (θ a d y).

( = 0) ∈ R[x] d ), f , M d (y)f = k λ k f (x k ) 2 > 0,

Proposition 3 . 2 .

 32 with a < b < c < d < e then supp µ is the closed set [a, b] ∪ [c, d] ∪ {e} and is contained in the interval [a, e]. 3.1. Bounds on supp µ. We first derive bounds on scalars a and b that satisfy supp µ ⊆ (-∞, a] and/or supp µ ⊆ [b, +∞). Let µ be a finite and non trivial Borel measure on the real line R, with associated sequence of moments y = (y k ), k ∈ N, all finite. Then: (i) supp µ ⊆ [a, +∞) if and only if

For 3 . 2 .: y 1 -

 321 each fixed d ∈ N, the condition H d (θ a y) 0 (resp. H d (-θ b y) 0) determines a basic semi-algebraic set of the form {(a, y) : p dk (a, y) ≥ 0, k = 0, . . . d -1} Computing the smallest interval [a, b] ⊇ supp µ.Theorem 3.2 provides bounds (some of them explicit) in terms of bounds on the largest (or smallest) root of some univariate polynomial whose coefficients are polynomials in y. But one may also get numerical sharp bounds via solving the following sequence of semidefinite programs, indexed by d:a d = max a { a : H d (θ a y) 0 } (3.7) b d = min b { b : H d (θ b y) 0 } , (3.8) where H d (θ * y) is the localizing matrix associated with the polynomial θ * ∈ R[x]. Observe that (3.7) and (3.8) are semidefinite programs with only one variable! For instance for d = 1, (3.7) reads a 1 = max a a ay 0 y 2 -ay 1 y 2 -ay 1 y 3 -ay 2 0 , whereas (3.8) reads b 1 = min b b : by 0 -y 1 by 1 -y 2 by 1 -y 2 by 2 -y 3 0

Theorem 3 . 3 .

 33 Let µ be a finite Borel measure with all moments y = (y k ) finite. Then supp µ ⊆ [a * , b * ], with possibly a * = -∞ and/or b * = +∞, and where: (i) a d is an optimal solution of (3.7) for all d ∈ N, and the sequence (a d ), d ∈ N, is monotone nonincreasing with a d ↓ a * as d → ∞. (ii) b d is an optimal solution of (3.8) for all d ∈ N, and and the sequence (b d ), d ∈ N, is monotone nondecreasing with b d ↑ a * as d → ∞. (iii) a * (resp. b * ) is the largest (resp. smallest) scalar such that supp µ ⊆ [a * , b * ].

(3. 9 )Corollary 3 . 4 .

 934 ρ d = min b,a { b -a : H d (θ a y), H d (-θ b y) 0 } , indexed by d, and with now two variables a and b. We obtain the following result of which the proof is omitted. Assume that µ has compact support. Then: (a) The semidefinite program (3.9) has an optimal solution (a d , b d ) for every d ∈ N. (b) Let (a d , b d ), d ∈ N, be a sequence of optimal solutions of (3.9). As d → ∞, (a d , b d ) → (a * , b * ) and supp µ ⊆ [a * , b * ]. Moreover, [a * , b * ] is the smallest interval which contains supp µ and if the support of µ is an interval then supp µ = [a * , b * ]. 3.3. Duality. We interpret the dual of the semidefinite program (3.7). Let S d ⊂ R (d+1)×(d+1) be the cone of real symmetric matrices. The dual of (3.7) is the semidefinite program: (3.10) a * d = min

  Z∈S d H d (x y), Z s.t. H d (y), Z = 1 ; Z 0.

Theorem 3 . 5 .

 35 that is, a ≤ xσ(x)dµ(x). So in the dual semidefinite program(3.11), one searches for a sum of squares polynomial σ ∈ Σ[x] d of degree at most 2d (normalized to satisfy σdµ = 1), which minimizes xσdµ. Equivalently, one searches for a probability measure ν with density σ ∈ Σ[x] d with respect to µ, which minimizes the upper bound xdν on the global minimum of x on the support of µ. Similarly, the dual of (3.8) is the semidefinite program: weak duality, b * d ≤ b d and in (3.12) one searches for a probability measure ν with density σ ∈ Σ[x] d with respect to µ, which maximizes the lower bound xdν on the global maximum of x on the support of µ. Suppose that µ is such that H d (y) ≻ 0 for all d (for instance if µ has no atom). Then there is no duality gap between (3.7) and (3.11) (resp. (3.8) and (3.12)), i.e. a d = a * d (resp. b d = b * d ). In addition (3.11) (resp. (3.12)) has an optimal solution σ * ∈ Σ[x] d (resp. ψ * ∈ Σ[x] d ), and

  and sof , H d (θ a y)f = f (x) 2 (x -a) dµ(x) = f (x) 2 (x -a) dν(x) = t k=0 f (x k ) 2 (x k -a)λ k > 0.

  For same reasons, b d = b * d and (3.12) has an optimal solution. Therefore,0 = xσ * (x)dµ(x) -a * d = (x -a * d )σ * (x)dµ(x) = (x -a d )σ * (x)dµ(x),and similarly,0 = b * d -xψ * (x)dµ(x) = (b * d -x)ψ * (x)dµ(x) = (b d -x)ψ * (x)dµ(x),which is the desired result (3.13).In Theorem 3.5, writeσ * ∈ Σ[x] d as σ * = ℓ p 2 ℓ for some polynomials (p ℓ ) ⊂ R[x] d , with respective coefiicient vectors p d ∈ R d+1 . Then by (3.13) σ * (x)(x -a d )dµ(x) = ℓ p ℓ (x) 2 (x -a d )dµ(x) = ℓ p ℓ , H d (θ a d y)p ℓ = 0,

Proof. ( 

for some polynomials (p dk ) ⊂ R[a, y], and where p dk is of degree k in the variable a. Then H d (a y) 0, if and only if c has all its roots nonnegative, which in turn, by Descarte's rule, happens if and only if p dk (a, y) ≥ 0, for every k = 0, . . . , d -1.

In fact (a, y) belong to the closure of a convex connected component of {(a, y) : p d0 (a, y) (= det H d (θ a y)) > 0}. A similar argument applies for (3.2) with now the characteristic polynomial

So with y and d fixed, a → p dk (a, y) is a univariate polynomial for every k, and so the conditions