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BOUNDING THE SUPPORT OF A MEASURE FROM ITS

MARGINAL MOMENTS

JEAN B. LASSERRE

Abstract. Given all moments of the marginals of a measure µ on R
n, one

provides (a) explicit bounds on its support and (b) a numerical scheme to
compute the smallest box that contains the support of µ.

1. Introduction

Inverse problems in probability are ubiquitous in several important applications,
and among them shape reconstruction problems. For instance, exact recovery of
two-dimensional objects from finitely many moments is possible for polygons and
so-called quadrature domains as shown in Golub et al. [2] and Gustafsson et al.
[6], respectively. But so far, there is no inversion algorithm from moments for n-
dimensional shapes. However, more recently Cuyt et al. [4] have shown how to
approximately recover numerically an unknown density f defined on a compact
region of Rn, from the only knowledge of its moments. So when f is the indicator
function of a compact set A ⊂ R

n one may thus recover the shape of A with good
accuracy, based on moment information only. The elegant methodology developed
in [4] is based on multi-dimensional homogeneous Padé approximants and uses a
nice Padé slice property, the analogue for the moment approach of the Fourier
slice theorem for the Radon transform (or projection) approach; see [4] for an
illuminating discussion.

In this paper we are interested in the following inverse problem. Given an arbi-
trary finite Borel measure µ on R

n (not necessarily having a density with respect
to the Lebesgue measure), can we compute (or at least approximate) the smallest
box

∏n

i=1[ai, bi] ⊂ R
n which contains the support of µ (not necessarily compact),

from the only knowledge of its moments?
Contribution. Obviously, as we look for a box, the problem reduces to find

for each i = 1, . . . , n, the smallest interval [ai, bi] (not necessarily compact) that
contains the support of the marginal µi of µ. Of course, to bound ai and bi, one
possibility is to compute zeros of the polynomials (pd), d ∈ N, orthogonal with
respect to the measure µi. Indeed, for every d, the smallest (resp. largest) zero
of pd provides an upper bound on ai (resp. a lower bound on bi), and there is a
systematic way to compute the pd’s from from the given moments of µ; see e.g.
Gautschi [5, §1.2 and §2.1].

Our contribution is to provide a convergent numerical scheme for computing this
smallest interval [ai, bi], which (i) is based on the only knowledge of the moments of
the marginals µi, i = 1, . . . , n, and (ii) avoids computing orthogonal polynomials.
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For each i, it consists of solving 2 hierarchies (associated with each of the end points
ai and bi) of so called semidefinite programs1 in only one variable (and therefore
those semidefinite programs are generalized eigenvalue problems for which even
more specialized softwares exist). Importantly, we do not make any assumption
on µ and in particular, µ may not have a density with respect to the Lebesgue
measure as in the above cited works. In solving the two semidefinite programs
at step d of the hierarchy, one provides an inner approximation [ad, bd] ⊂ [ai, bi]
such that the sequence (ad) (resp. (bd)), d ∈ N, is monotone nonincreasing (resp.
nondecreasing) and converges to ai (resp. to bi) as d→ ∞ (with possibly ai = −∞
and/or bi = +∞). Interestingly, some explicit upper (resp. lower) bounds on ai
(resp. bi) in terms of the moments of µi are also available.

2. Notation and definitions

Let N be the set of natural numbers and denote by x = (x1, . . . , xn) a vector of R
n

whereas x will denote a scalar. Let R[x] be the ring of real univariate polynomials in
the single variable x, and denote by R[x]d the vector space of polynomials of degree
at most d. Let Σ[x] ⊂ R[x] be the set of polynomials that are sums of squares
(s.o.s.), and Σ[x]d its subspace of s.o.s. polynomials of degree at most 2d. In the
canonical basis (xk), k = 0, . . . , d, of R[x]d, a polynomial f ∈ R[x]d is written

x 7→ f(x) =

d∑

k=0

fk x
k,

for some vector f = (fk) ∈ R
d+1.

Moment matrix. Given a infinite sequence y := (yk), k ∈ N, indexed in the
canonical basis (xk) of R[x], let Hd(y) ∈ R

(d+1)×(d+1) be the real Hankel matrix
defined by:

(2.1) Hd(y)(i, j) = yi+j−2, ∀ i, j ≤ d.

The matrix Hd(y) is called the moment matrix associated with the sequence y (see
e.g. Curto and Fialkow [3] and Lasserre [7]). If y has a representing measure µ
(i.e., if there exists a finite Borel measure µ such that yk =

∫
xkdµ for every k ∈ N)

then

(2.2) 〈f ,Hd(y)f〉 =

∫

f(x)2 dµ(x) ≥ 0, ∀f ∈ R[x]d,

so that Hd(y) � 0, where for a real symmetric matrix A, the notation A � 0 (resp.
A ≻ 0) stands for A is positive semidefinite (resp. positive definite).

Localizing matrix. Similarly, given θ ∈ R[x]s with vector of coefficients (θk), let
Hd(θ y) ∈ R

(d+1)×(d+1) be the real symmetric matrix defined by:

(2.3) Hd(θ y)(i, j) :=
s∑

k=0

θkyi+j+k−2, ∀ i, j ≤ d.

The matrix Hd(θ y) is called the localizing matrix associated with the sequence y

and the polynomial θ (see again Lasserre [7]). Notice that the localizing matrix
with respect to the constant polynomial θ ≡ 1 is the moment matrix Hd(y) in

1A semidefinite program is a convex optimization problem that can be solved (up to arbitrary
but fixed precision) in time polynomial in the input size of the problem, and for which efficient
public softwares are available; see e.g. [9]



BOUNDING THE SUPPORT OF A MEASURE 3

(2.1). If y has a representing measure µ with support contained in the level set
{x ∈ R : θ(x) ≥ 0}, then

(2.4) 〈f ,Hd(θ y)f〉 =

∫

f(x)2θ(x) dµ(x) ≥ 0 ∀ f ∈ R[x]d,

so that Hd(θ y) � 0.

Finally, for a finite Borel measure µ, denote its support by suppµ, that is, suppµ
is the smallest closed set B such that µ(Bc) = 0 (where Bc denotes the complement
of B).

3. Main result

We may and will restrict to the one-dimensional case because if µ is a finite Borel
measure on R

n, and if we look for a box B :=
∏n

i=1[ai, bi] such that suppµ ⊆ B,
then we have the following result. For every i = 1, . . . , n, let µi be the marginal of
µ with respect to the variable xi.

Lemma 3.1. Let B ⊂ R
n be the box

∏n

i=1[ai, bi] with possibly ai = −∞ and/or
bi = +∞. Then suppµ ⊆ B if and only if suppµi ⊆ [ai, bi] for every i = 1, . . . , n.

Proof. For every i = 1, . . . , n, let Ai ⊂ R
n be the Borel set {x ∈ R

n : xi ∈
R \ [ai, bi]}. Then 0 = µ(Ai) = µi(R \ [ai, bi]), shows that suppµi ⊆ [ai, bi], i =
1, . . . , n. Conversely, if µi ⊆ [ai, bi], i = 1, . . . , n, then 0 = µi(R \ [ai, bi]) = µ(Ai),
i = 1, . . . , n. But since Bc = ∪n

i=1Ai we also obtain µ(Bc) = 0. �

So Lemma 3.1 tells us that it is enough to consider separate conditions for the
marginals µi, i = 1, . . . , n. Therefore, all we need to know is the sequence of
moments

yi
k :=

∫

xki dµ(x) =

∫

xk dµi(x), k = 0, 1, . . .

of the marginal µi of µ, for every i = 1, . . . , n.

Hence we now consider the one-dimensional case. For a real number a, let
θa ∈ R[x] be the polynomial x 7→ θa(x) = (x − a). Recall that the support of
a finite Borel measure µ on R (denoted suppµ) is the smallest closed set B such
that µ(R \ B) = 0. For instance is µ is supported on (a, b] ∪ [c, d) ∪ {e}, with
a < b < c < d < e then suppµ is the closed set [a, b] ∪ [c, d] ∪ {e} and is contained
in the interval [a, e].

3.1. Bounds on suppµ. We first derive bounds on scalars a and b that satisfy
suppµ ⊆ (−∞, a] and/or suppµ ⊆ [b,+∞).

Proposition 3.2. Let µ be a finite and non trivial Borel measure on the real line
R, with associated sequence of moments y = (yk), k ∈ N, all finite. Then:

(i) suppµ ⊆ [a,+∞) if and only if

(3.1) Hd(θa y) � 0, ∀d ∈ N.

(ii) suppµ ⊆ [−∞, b] if and only if

(3.2) Hd(−θb y) � 0, ∀d ∈ N.

For each fixed d ∈ N, the condition Hd(θa y) � 0 (resp. Hd(−θb y) � 0) determines
a basic semi-algebraic set of the form {(a,y) : pdk(a,y) ≥ 0, k = 0, . . . d − 1}
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(resp. {(a,y) : (−1)d−kpdk(b,y) ≥ 0, k = 0, . . . d − 1}) for some polynomials
(pdk) ⊂ R[x,y].

With y and d fixed, the condition (3.1) (resp. (3.2)) yields an upper bound

a ≤ ad (resp. a lower bound b ≥ bd), and the sequence (ad) (resp. (bd)), d ∈ N, is
monotone nonincreasing (resp. nondecreasing). In particular,

a ≤ min

[
y1
y0
,
y1 + y3
y0 + y2

]

and a ≤ min

[
y1
y0
,
y3
y2
,
y1 + y3
y0 + y2

]

if y2 6= 0(3.3)

b ≥ max

[
y1
y0
,
y1 + y3
y0 + y2

]

and b ≥ max

[
y1
y0
,
y3
y2
,
y1 + y3
y0 + y2

]

if y2 6= 0,(3.4)

as well as

a ≤
y0y3 − y1y2 −

√

(y0y3 − y1y2)2 − 4(y0y2 − y21)(y1y3 − y22)

2(y0y2 − y21)
(3.5)

b ≥
y0y3 − y1y2 +

√

(y0y3 − y1y2)2 − 4(y0y2 − y21)(y1y3 − y22)

2(y0y2 − y21)
(3.6)

if (y0y3 − y1y2)
2 ≥ 4(y0y2 − y21)(y1y3 − y22).

Proof. (3.1) and (3.2) is well-known and can be found in e.g. Lasserre [7, Theorem
3.2]. Next, write the characteristic polynomial t 7→ c(t) of Hd(θa,y) in the form

c(t) (= det (tI −Hd(θa y))) = td +
d−1∑

k=0

(−1)d−kpdk(a,y) t
k, t ∈ R,

for some polynomials (pdk) ⊂ R[a,y], and where pdk is of degree k in the variable
a. Then Hd(ay) � 0, if and only if c has all its roots nonnegative, which in turn,
by Descarte’s rule, happens if and only if pdk(a,y) ≥ 0, for every k = 0, . . . , d− 1.
In fact (a,y) belong to the closure of a convex connected component of {(a,y) :
pd0(a,y) (= detHd(θa y)) > 0}. A similar argument applies for (3.2) with now the
characteristic polynomial

c̃(t) = det (tI −Hd(−θb y)) = (−1)dc(−t) = td +

d−1∑

k=0

pdk(b,y) t
k, t ∈ R.

So with y and d fixed, a 7→ pdk(a,y) is a univariate polynomial for every k, and
so the conditions (3.1) provide a bound of the form a ≤ ad for some ad since if a
satisfies (3.1) then so does a′ ≤ a. Similarly, the conditions (3.2) provide a bound of
the form b ≥ bd since if b satisfies (3.2) then so does b′ ≥ b. The scalar ad (resp. bd)
may be taken as the smallest (resp. largest) root of the polynomial x 7→ pd0(x,y);
bounds in terms of the coefficients of pd0(x,y) are available in the literature.

Finally (3.3)-(3.6) are obtained with d = 1 in which case (3.1) and (3.2) read:

[
y1 − ay0 y2 − ay1
y2 − ay1 y3 − ay2

]

� 0;

[
by0 − y1 by1 − y2
by1 − y2 by2 − y3

]

� 0.

�
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3.2. Computing the smallest interval [a, b] ⊇ suppµ.
Theorem 3.2 provides bounds (some of them explicit) in terms of bounds on

the largest (or smallest) root of some univariate polynomial whose coefficients are
polynomials in y. But one may also get numerical sharp bounds via solving the
following sequence of semidefinite programs, indexed by d:

ad = max
a

{ a : Hd(θa y) � 0 }(3.7)

bd = min
b

{ b : Hd(θb y) � 0 } ,(3.8)

where Hd(θ∗ y) is the localizing matrix associated with the polynomial θ∗ ∈ R[x].
Observe that (3.7) and (3.8) are semidefinite programs with only one variable! For
instance for d = 1, (3.7) reads

a1 = max
a

{

a :

[
y1 − ay0 y2 − ay1
y2 − ay1 y3 − ay2

]

� 0

}

,

whereas (3.8) reads

b1 = min
b

{

b :

[
by0 − y1 by1 − y2
by1 − y2 by2 − y3

]

� 0

}

For more details on semidefinite programming the interested reader is referred to
e.g. [9]. And we obtain:

Theorem 3.3. Let µ be a finite Borel measure with all moments y = (yk) finite.
Then suppµ ⊆ [a∗, b∗], with possibly a∗ = −∞ and/or b∗ = +∞, and where:

(i) ad is an optimal solution of (3.7) for all d ∈ N, and the sequence (ad), d ∈ N,
is monotone nonincreasing with ad ↓ a∗ as d→ ∞.

(ii) bd is an optimal solution of (3.8) for all d ∈ N, and and the sequence (bd),
d ∈ N, is monotone nondecreasing with bd ↑ a∗ as d→ ∞.

(iii) a∗ (resp. b∗) is the largest (resp. smallest) scalar such that suppµ ⊆ [a∗, b∗].

Proof. We prove the statements for (i) and (iii) only because similar arguments hold
for (ii). We first prove that (3.7) has always a feasible solution. If suppµ ⊂ [a,+∞)
for some a > −∞, then a is obviously feasible for the semidefinite program (3.7),
for every d ∈ N. If there is no such a, consider the finite sequence of moments
yd = (y0, . . . , y2d+1). By Tchakaloff’s theorem (see e.g. [1, 8], [7, Theorem B.12])
there exists a measure ν supported on finitely many points x0 ≤ x1 ≤ · · · ≤ xt,
with t ≤ 2d + 2 (hence supp ν = ∪t

i=0{xi} ⊂ [x0,+∞)), and with same moments
as µ, up to degree 2d+ 1. Hence in view of what precedes, x0 is feasible for (3.7).
Next, as every feasible solution is bounded above by y1/y0 and as we maximize, it
follows that (3.7) has an optimal solution ad for every d ∈ N.

Next, observe that ad ≤ ak whenever d ≥ k because the feasible set of (3.7) for
d is contained in that for k and every feasible solution is bounded above by y1/y0.
Therefore the sequence (ad), d ∈ N, is monotone nonincreasing and thus, converges
to a∗ with possibly a∗ = −∞.

If a∗ = −∞ then there is no a such that suppµ ⊆ [a,+∞) because we would have
ad ≥ a for all d. Next, consider the case a∗ > −∞, and let d ∈ N be fixed. Using
Hd(θad

y) � 0 and the continuity of a 7→ Hd(θa y), one obtains Hd(θa∗ y) � 0. As
d fixed was arbitrary, we then obtain Hd(θa∗ y) � 0 for every d ∈ N. But then by
[7, Theorem 3.2], µ is supported on the set {x : θa∗(x) ≥ 0}, which shows that
suppµ ⊆ [a∗,+∞).
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Concerning (iii), if a∗ > −∞ then a∗ is the largest a such that suppµ ⊆ [a,+∞)
because if suppµ ⊆ [a,+∞) then a is feasible for (3.7), for every d ∈ N; therefore,
a ≤ ad for every d, which in turn implies a ≤ a∗. �

Next, in the case where µ is known to have compact support one may even
consider the following single hierarchy of semidefinite programs

(3.9) ρd = min
b,a

{ b− a : Hd(θa y), Hd(−θb y) � 0 } ,

indexed by d, and with now two variables a and b. We obtain the following result
of which the proof is omitted.

Corollary 3.4. Assume that µ has compact support. Then:
(a) The semidefinite program (3.9) has an optimal solution (ad, bd) for every

d ∈ N.
(b) Let (ad, bd), d ∈ N, be a sequence of optimal solutions of (3.9). As d → ∞,

(ad, bd) → (a∗, b∗) and suppµ ⊆ [a∗, b∗]. Moreover, [a∗, b∗] is the smallest interval
which contains suppµ and if the support of µ is an interval then suppµ = [a∗, b∗].

3.3. Duality. We interpret the dual of the semidefinite program (3.7). Let Sd ⊂
R

(d+1)×(d+1) be the cone of real symmetric matrices. The dual of (3.7) is the
semidefinite program:

(3.10)
a∗d = min

Z∈Sd

〈Hd(xy),Z〉

s.t. 〈Hd(y),Z〉 = 1 ; Z � 0.

If Z � 0 is feasible, using the singular value decomposition of Z one may write
Z =

∑

i fif
T
i for some vectors (fi) ⊂ R

d+1, and so

1 = 〈Hd(y),Z〉 =
∑

i

〈fi,Hd(y)fi〉 =
∑

i

∫

f2
i dµ =

∫

σ dµ,

with σ =
∑

i f
2
i ∈ Σ[x]d, and similarly

〈Hd(xy),Z〉 =
∑

i

〈fi,Hd(xy)fi〉 =
∑

i

∫

xfi(x)
2dµ(x) =

∫

xσ(x)dµ(x).

Therefore, equivalently, (3.10) reads

(3.11) a∗d = min
σ∈Σ[x]d







∫

x σ(x)dµ(x)
︸ ︷︷ ︸

dν(x)

:

∫

σ dµ
︸︷︷︸

dν

= 1







,

and a∗d ≥ ad (which is called weak duality). Indeed, for any two feasible solutions
a,Z of (3.9) and (3.10) respectively, using Z � 0 and Hd(θa y) � 0, yields

0 ≤ 〈Z,Hd(θa y)〉 =

∫

(x− a)σ(x) dµ(x) =

∫

xσ(x) dµ(x) − a,

that is, a ≤
∫
xσ(x)dµ(x). So in the dual semidefinite program (3.11), one searches

for a sum of squares polynomial σ ∈ Σ[x]d of degree at most 2d (normalized to
satisfy

∫
σdµ = 1), which minimizes

∫
xσdµ. Equivalently, one searches for a

probability measure ν with density σ ∈ Σ[x]d with respect to µ, which minimizes
the upper bound

∫
xdν on the global minimum of x on the support of µ.
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Similarly, the dual of (3.8) is the semidefinite program:

(3.12) b∗d = max
σ∈Σ[x]d







∫

x σ(x)dµ(x)
︸ ︷︷ ︸

dν(x)

:

∫

σ dµ
︸︷︷︸

dν

= 1.







.

Again, by weak duality, b∗d ≤ bd and in (3.12) one searches for a probability measure
ν with density σ ∈ Σ[x]d with respect to µ, which maximizes the lower bound

∫
xdν

on the global maximum of x on the support of µ.

Theorem 3.5. Suppose that µ is such that Hd(y) ≻ 0 for all d (for instance if µ
has no atom). Then there is no duality gap between (3.7) and (3.11) (resp. (3.8)
and (3.12)), i.e. ad = a∗d (resp. bd = b∗d). In addition (3.11) (resp. (3.12)) has an
optimal solution σ∗ ∈ Σ[x]d (resp. ψ∗ ∈ Σ[x]d), and

(3.13)

∫

(x − ad)σ
∗(x) dµ(x) = 0 =

∫

(bd − x)ψ∗(x) dµ(x).

Proof. From Theorem 3.3, we know that (3.7) has an optimal solution ad. By
Tchakaloff’s theorem, let ν be the measure supported on the finitely many points
x0, . . . , xt (with t ≤ 2d + 2), and with same moments as µ, up to degree 2d + 1.
There are positive weights λk, k = 1, . . . , t, such that

∫

pdµ =

∫

pdν =

t∑

k=0

λkp(xk) ∀ p ∈ R[x]2d+1

(see e.g. [1, 8]). Hence Hd(θa y) ≻ 0 for every a < x0, because for every f (6= 0) ∈
R

d+1 (hence every f (6= 0) ∈ R[x]d), 〈f ,Md(y)f〉 =
∑

k λkf(xk)
2 > 0, and so

〈f ,Hd(θa y)f〉 =

∫

f(x)2(x− a) dµ(x)

=

∫

f(x)2(x− a) dν(x) =

t∑

k=0

f(xk)
2(xk − a)λk > 0.

Hence every a < x0 is strictly feasible for (3.7), that is, Slater’s condition2 holds.
But this implies that there is no duality gap, i.e., ad = a∗d, and in addition, the
dual (3.11) has an optimal solution σ∗; see e.g. [9]. For same reasons, bd = b∗d and
(3.12) has an optimal solution. Therefore,

0 =

∫

xσ∗(x)dµ(x) − a∗d =

∫

(x− a∗d)σ
∗(x)dµ(x) =

∫

(x− ad)σ
∗(x)dµ(x),

and similarly,

0 = b∗d −

∫

xψ∗(x)dµ(x) =

∫

(b∗d − x)ψ∗(x)dµ(x) =

∫

(bd − x)ψ∗(x)dµ(x),

which is the desired result (3.13). �

In Theorem 3.5, write σ∗ ∈ Σ[x]d as σ∗ =
∑

ℓ p
2
ℓ for some polynomials (pℓ) ⊂

R[x]d, with respective coefiicient vectors pd ∈ R
d+1. Then by (3.13)

∫

σ∗(x)(x − ad)dµ(x) =
∑

ℓ

∫

pℓ(x)
2(x − ad)dµ(x) =

∑

ℓ

〈pℓ,Hd(θad
y)pℓ〉 = 0,

2For a convex optimization problem minx{ f(x) : gj(x) ≥ 0, j = 1, . . . , m}, Slater’s condition

states that there exists x0 such that gj(x0) > 0 for every j = 1, . . . , m.
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so that for every ℓ, 〈pℓ,Hd(θad
y)pℓ〉 = 0 (since Hd(θad

y) � 0), that is, every pℓ

is in the kernel of Hd(θad
y).
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