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Introduction to the Fast Marching Method

R. Monneau ∗

October 31, 2010

Abstract
In these notes, we present an introduction to the classical Fast Marching Method (FMM). The

FMM has been first introduced to find numerical approximations of the solutions to the stationary
eikonal equation. More generally we show that this method allows to find exactly the solutions of
numerical schemes that satisfy a certain causality assumption.
In order to motivate this method, we present the shape from shading problem, introduce the notion
of viscosity solutions to the stationary eikonal equation and consider finite differences schemes.
We also provide various comparison principles for the eikonal equation and for the schemes. We
give an error estimate between the numerical solution and the viscosity solution. We finally in-
dicate some extensions of the FMM to more general equations than the stationary eikonal equation.

Keywords: Fast Marching method, Level Set method, viscosity solutions, eikonal equation, finite
differences scheme, causality, comparison principle, error estimate, shape from shading.
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1 Introduction

The goal of these notes is to give an introduction to the classical Fast Marching Method
and some of its applications. These notes are written such that it should be easy to read
at least up to Section 7. Sections 8, 9 and the appendix 10 are more technical and difficult
to read. In a first reading of the manuscript, they can be seen by the reader as a complement.

In Section 2, we start with the classical shape from shading problem in image processing,
in order to introduce easily the eikonal equation, as an example of Hamilton-Jacobi equation.
We also discuss the non-uniqueness of solution and the necessity to introduce a new notion of
solution, namely the notion of viscosity solution. But the precise notion of viscosity solution
is not yet introduced.

In Section 3, we go directly to finite differences schemes in order to discretize the eikonal
equation. It is quite easy to write such a scheme and to list some of its general properties.
Using these properties, we show in particular the uniqueness of solution to the numerical
scheme. We also underline general properties of the scheme:

(H1) Monotonicity,

(H2) Invariance by addition of constants,

(H3) Causality,

(H4) Finite homogeneous antisymmetric stencil,

(H5) Strong monotonicity.
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Under these five assumptions, we indicate that there exists a unique numerical solution to
the scheme.

In Section 4, using the previous general assumptions, we describe the Fast Marching
Method (FMM) in this framework. The FMM appears here as a method to solve the non
linear numerical scheme, using in an essential way the causality assumption (H3).

In Section 5, we introduce the reader to the precise definition of viscosity solution, starting
from the example of the eikonal equation in dimension 1, when we add vanishing viscosity.

In Section 6, we relate the eikonal equation to the Level Set formulation. We interprete
in particular the numerical front (or narrow band) of the FMM as the discrete analogue of
the level set of the solution to an evolution equation. It is indicated that this level set moves
with a certain normal velocity. We also indicate an application of these notions of moving
curves to a problem of image segmentation: we present a simplified version of the model of
Chan and Vese.

In Section 7, we indicate references related to further developments of the Fast Marching
Method.

In Section 8, we prove a comparison principle for viscosity solutions and give uniqueness
results as a corollary.

In Section 9, we prove an error estimate (of Crandall-Lions type) to compare the solution
of the FMM and the continuous solution of the eikonal equation.

Finally, in the appendix (Section 10), we show the uniqueness of the solution to the
scheme, under assumptions (H1),(H2),(H3),(H4) and (H5). Under the same assumptions we
also check that the sequence of times given by the FMM is an increasing sequence, as it is
expected (for causal schemes).

Even if the whole material of these notes is contained in the common knowledge (and is
indeed an easy adaptation of classical results), we are not aware of written proofs of several
of the presented results. For this reason, we think that these notes also include several
original proofs and results (like for instance Proposition 3.4, Proposition 4.3, Theorem 8.1
and Theorem 9.1).

2 Shape from shading

In this section, we introduce the reader to a particular problem: the problem of recovering
the shape of an object from its shadow. This problem is an example which motivates the
introduction of the eikonal equation and the question of the uniqueness of the solution to this
equation. This example will also motivate the other sections of this course and in particular
the Fast Marching Method.

2.1 The axioms

Let us consider that you shed some light on an three-dimensional object (like for instance
a ball) and take a picture in black and white. Then you will see a certain shadow on the
object in the picture. From that shadow, the human eye is able to guess what is the full
three-dimensional shape of the object. This is called the shape from shading procedure.
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Then the basic question is:

§̈ ¥¦what is the physical law that describes the observed brightness/shadow?

We now present a simple mathematical model to compute the brightness (and then the
shadow) of an object.

object

light source

θ

normal
eye or camera

Figure 1: object, direction of light and camera

Axioms for the brightness of an object
We recall that we consider an object, the direction of the light and the position of the camera
which takes the picture (see Fig. 1).
(A0) [No distorsions]
We assume that both the souce of light and the camera are far from the observed object
(with respect to the diameter of the object).
A extreme example of such a situation is the case of a camera on the earth observing the
moon which is enlighted by the sun. But even for more common pictures, we will make these
assumptions, just in order to avoid distorsions of the pictures.
(A1) [Brightness between 0 and 1]
The maximal brightness is equal to 1 and the minimal brightness is 0 (see Fig. 2 and Fig. 3
for an illustration).
(A2) [The Lambertian case]
The brightness does not depend on the position of the camera (but only depends on the
direction of the source of light with respect to the orientation of the surface of the object).
More precisely, we consider the Lambertian case: we assume that the local brightness per
surface of the picture is given by the following formula:

(2.1) brightness =
flux of light

surface of the object
= cos θ

where θ ∈ [0, π/2] is the angle between the direction of the source and the normal to the
surface of the object (see Fig. 1).

We see in particular that axiom (A1) can be deduced from axiom (A2).

4



object

light direction

maximal brightness

Figure 2: Full reflection of light with maximal brightness

object

shadow

light direction

Figure 3: No reflexion of light with no brightness (i.e. shadow)

An other way to understand the axiom (A2) is to consider a flat object (see the triangle
in Fig 4) such that the angle between the direction of light and the normal to the object is
constant and equal to θ).

Then we can decompose artificially the flat surface (i.e. the long segment of the triangle
of Fig. 4) in a succesion of small vertical and horizontal segments (see Fig. 5). In particular
the flat surface can be seen in some sense as a limit of this succession of small vertical and
horizontal segments Si, when the size of the segments goes to zero. On the one hand, when
the segment is vertical, the reflexion is maximal and the brightness is equal to 1. On the
other hand, when the segment is horizontal, there is no light reflected by the segment and
the brightness is minimal and equal to 0. Then we see that the total brightness of the surface
is:

total brightness =
∑

vertical Si

1 × |Si| +
∑

horizontal Si

0 × |Si|

where |Si| is the length of the segment Si. Finally we find that the total brightness is equal
to the high of the triangle, i.e. equal to cos θ. This is true before to pass to the limit when
the length of the small segments goes to zero. Finally we see that the Lambertian case is
nothing else that saying that this is still true after passing to the limit and we recover the
formula (2.1).
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light direction

θ

θcos 

θ

len
gth

 =
 1

Figure 4: Angle θ between the direction of light and the normal

light direction

Figure 5: Succession of small vertical and horizontal segments

2.2 Mathematical modeling

To simplify the situation, we consider an object that is posed on a table. We assume that
the table is at the level z = 0. We set x = (x1, x2), and assume that the object fills the
volume of R3 defined by {

(x, z) ∈ R2 × R, 0 < z < u(x)
}

where u is a continuous function such that Ω = {x ∈ R2, u(x) > 0} is a non empty bounded
set. An example of such an object is a half ball like in Fig. 6.

We assume that the direction of light is vertical (i.e. the object is enlighted from the
top). We recall that by axiom (A2), we have

(2.2) brightness = I(x) = cos (̂n, ez)

where (̂n, ez) is the angle between the outward normal n to the object and the vertical unit
vector ez (see Fig. 6). Here I(x) stands for the intensity of light mesured on the picture.
Assuming the function u smooth enough on Ω, we can compute

n =
1√

1 + |∇u|2

(
−∇u

1

)
, ez =

 0
0
1


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Figure 6: A half ball posed on a table

which shows that

I(x) =
1√

1 + |∇u|2

and then

|∇u(x)| = a(x) with a(x) =

√
1

I2(x)
− 1.

The intensity of light I(x) is the observed data (for instance that you can see on the picture).
This shows that the function a(x) is also given, and we are looking for a function u solution
of the following eikonal equation

(2.3)


|∇u(x)| = a(x) for x ∈ Ω ⊂ R2

u(x) = 0 for x ∈ ∂Ω.

2.3 Uniqueness of the solution ?

In order to understand the uniqueness or non-uniqueness of the solution, we focus in this
subsection on problem (2.3) for the particular example

Ω = (−1, 1) ⊂ R and a(x) = 1.

This means that we want to solve
|u′(x)| = 1 for x ∈ (−1, 1)

u(x) = 0 for x = ±1,

It is not difficult to realize that there is no C1 solutions to this equation. Indeed there
is at least an optimum (maximum or minimum) in the interior of the segment, and at that
point, we have u′ = 0 for a C1 function, which is in contradiction with the equation. So
the next step is to try to look for Lipschitz-continuous solutions which are only solutions
almost everywhere in (−1, 1). We show in Fig 7 several such solutions. We should not be
surprised by the fact that we can get several solutions. This is a well-known fact. Looking
at pictures of a sculpture of a face of somebody in the rock, there is a natural ambiguity.
We can either think that this sculpture is essentially convex (like for the subgraph of the
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first picture of Fig. 7) or convave (like for the subgraph of the second picture of Fig. 7). See
further discussion in [15].

We said that there are several solutions, and this is even not difficult to construct an
infinite number of such solutions.

−1 1

1

−1 1

−1 1

−1

Figure 7: Several Lipschitz-continuous functions which are almost everywhere solutions on
(−1, 1)

Then the next question is: which solution to choose?
One answer would be that we want to choose the one corresponding to the real object that
we are observing. But the point is that if we do not know already the object that we are
observing, then this does not help at all.

The good news is that there is at least a mathematical idea which can help us to distin-
guish a particular solution among all the solutions. The idea is to add artificially a small
viscosity term in the equation. For ε > 0 small, we can for instance consider the solutions
uε to the equation

(2.4)


−ε(uε)′′ + |(uε)′| = 1 on Ω

uε = 0 on ∂Ω,

Of course equation (2.4) is exactly equation (2.3) in the particular case ε = 0. The interesting
property of equation (2.4) is that we can show that the solution is unique and moreover is
given by 

uε(−x) = uε(x) for x ∈ [−1, 1]

uε(x) = x + 1 − ε(e
x
ε − e−

1
ε ) if − 1 ≤ x ≤ 0,

The graph of the function uε is sketched on Fig. 8.

x

u (x)ε

ε
ε

O(  )
O(  )

0−1 1

Figure 8: Graph of uε
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On the other hand, we have

uε(x) −→ u0(x) = 1 − |x| as ε −→ 0.

Here we show that the passage to the limit as the viscosity parameter ε vanishes, selects a
particular solution of equation (2.3), namely the function u0. This function u0 is called the
viscosity solution of equation (2.3).

We will see in Section 5 that this particular solution can be characterized directly on
problem (2.3) without using the ε-perturbed problem (2.4). We will also see that for this
caracterization, the solution is unique.

3 Finite differences scheme

In this section, we discuss numerical schemes to compute discrete approximations of the
(viscosity) solutions of equation (2.3). We also underline some properties of the schemes.
Some of these properties will be important to apply later the Fast Marching Method.

3.1 The 1D example

We want to approximate the (viscosity) solutions (see Fig. 9) of the following problem (with
the function a(x) > 0) 

|u′| = a on Ω = (−1, 1)

u = 0 on ∂Ω.

−1 1

|u’|=a(x)

Figure 9: Example of a continuous solution in 1D

We discretize the variable x as xi = i∆x for i ∈ Z and a small mesh size ∆x > 0. Then
we approximate the value u(xi) by the quantity ui that will be a solution of a scheme that
we have to write. To this end we approximate the derivative u′(xi) as

ui+1 − ui

∆x
or

ui − ui−1

∆x

We want to discretize the equation

|u′(x)| − a(x) = 0

as a scheme
Si(ui−1, ui, ui+1) = 0

9



Here we propose the following scheme for u = (uj)j:

(3.1) Si[u] := Si(ui−1, ui, ui+1) := −a(xi) + max

(
0,

ui − ui−1

∆x
,
ui − ui+1

∆x

)
At the stage, it is not clear for the reader why this scheme is a good candidate to compute

the (viscosity) solution. Nevertheless, we will extract some general good properties of this
scheme and deduce further consequences.

For u = (ui)i and any constant M ∈ R, we set u + M = (ui + M)i. Then we can easily
check that the scheme S[u] = (Si[u])i given in (3.1) satisfies the following properties for all
u:
(H1) Monotonicity

(3.2)
∂Si[u]

∂uj

≤ 0 for all j 6= i

(H2) Invariance by addition of a constant

(3.3) Si[u + M ] = Si[u] for all M ∈ R, for all i

The monotonicity property is an important property which will insure the uniqueness of
the solution of the scheme. Here our scheme satisfies also a had hoc property which is the
following:
(H3’) Multiplication by a constant

(3.4) Si[λu] = λSi[u] + (λ − 1)a(xi) for all λ ≥ 0, for all i

This property (H3’) will allow us to give a simple proof of uniqueness of the solution to the
scheme. Then we have

Proposition 3.1 (Uniqueness of the solution to the scheme)
Let a > 0. Assume that u = (ui)i∈Z solves

(3.5)


ui = 0 if xi 6∈ Ω = (−1, 1)

Si[u] = 0 if xi ∈ Ω.

where the scheme S[·] satisfies assumptions (H1),(H2) and (H3’). Then u is unique.

Proof of Proposition 3.1
Assume that (ui)i and (vi)i are two different solutions of the scheme (3.5) and that

sup
i∈Z

(ui − vi) > 0. (otherwise we exchange u and v)

Then, for some λ > 1 (λ close enough to 1), we have

Mλ = sup
i∈Z

(ui − λvi) > 0

= ui0 − λvi0 for some xi0 ∈ Ω.

10



We deduce that 
ui ≤ wi := Mλ + λvi

ui0 = wi0 .

This implies

0 = Si0 [u]

≥ Si0 [w] (using the monotonicity (H1) of the scheme for j 6= i0)

= Si0 [λv] (using the invariance (H2) by addition of a constant)

= λSi0 [v]︸ ︷︷ ︸
=0

+ (λ − 1)a(xi0)︸ ︷︷ ︸
>0

(using (H3’) for the multiplication by a constant)

> 0

Contradiction. Therefore ui = vi for all i and this ends the proof. ¤
Before to close this subsection, let us give the following result that will be used in the

next subsection:

Lemma 3.2 (Monotonicity in ui)
Under assumptions (H1) and (H2), the scheme S[·] also satisfies for all u:

(3.6)
∂Si[u]

∂ui

≥ 0 for all i

Proof of Lemma 3.2
Hor any h ∈ R, let us define

uh
j =


ui + h if j = i

uj if j 6= i

and

(uh)j =


ui if j = i

uj − h if j 6= i

Then from (H2), we deduce that for h > 0

Si[u
h] = Si[uh] ≥ Si[u]

where the inequality follows from (H1). This implies (3.6) and ends the proof of the lemma.

3.2 The 2D case

We want to approximate the solutions of the following problem
|∇u| = a on Ω

u = 0 on ∂Ω.

11



where Ω is bounded domain in R2. Similarly to the 1D case, we discretize the variable x as
xI = I∆x for I = (I1, I2) ∈ Z2 and a small mesh size ∆x > 0. Then we approximate the
value u(xI) by the quantity uI that will be a solution of a scheme that we have to write. We
discretize

|∇u(x)| − a(x) = 0

as a scheme
SI({uJ}J∈V (I)) = 0

where the stencil

(3.7) V (I) =
{
J ∈ Z2, |J − I| ≤ 1

}
is the “five points” neighborhood of the point I on the grid Z2 (see Fig. 10). Indeed we have

V (I) =
{
I, I1,+, I1,−, I2,+, I2,−}

with Iα,± = I ± eα for α = 1, 2

I II

I

I

1,−

2,+

2,−

1,+

Figure 10: The “five points” neighborhood of the point I on the grid Z2

Here we propose the following Rouy-Tourin scheme (see [13])
(3.8)

−a(xI) +

√(
max

(
0,

uI − uI1,−

∆x
,
uI − uI1,+

∆x

))2

+

(
max

(
0,

uI − uI2,−

∆x
,
uI − uI2,+

∆x

))2

:= SI(uI , uI1,− , uI1,+ , uI2,− , uI2,+) := SI [u]

Again it is easy to check that this scheme S[u] = (SI [u])I satisfies assumptions (H1),(H2)
and (H3’) and we have also a result of uniqueness of the solution of the scheme similar to
Proposition 3.1 (with a proof identical word for word).

Indeed it is more interesting to replace the ad hoc property (H3’) by three natural prop-
erties (H3), (H4) and (H5) that will also be used later for the Fast Marching Method in
Section 4. We now give these assumptions.

(H3) Causality

(3.9) SI [u] = SI [û] with ûJ =


uJ if uJ < uI or J = I

+∞ otherwise

12



This assumption (H3) means that the value uI only depends on the values of uJ for points
J with values uJ < uI . This assumption is quite restrictive in general and does not apply to
certain schemes (especially for anisotropic equations in general). Nevertheless, we will see
that this assumption is essential to apply later the Fast Marching Method (see Section 4).
(H4) Finite homogeneous antisymmetric stencil

(3.10) SI [u] = SI({uJ}J∈V (I)) with V (I) = I + V0 and − V0 = V0 is bounded

In the special case of our scheme, we have the stencil V0 = {0, e1,−e1, e2,−e2}, which satisfies
the antisymmetry property:

−V0 = V0

What is particularly important in practice is to have a bounded stencil. The assumption
that V0 is antisymmetric is not really a constraint in general, because we can always anti-
symmetrize the stencil, if necessary adding artificial points that are not used by the scheme.
Notice that it is very convenient (but not fundamental) to have a size of the stencil V (I)
which is homogeneous, i.e. independent on the point I.

Before to introduce our last property, let us recall (see Lemma 3.2) that properties (H1)
and (H2) imply in particular

(3.11)
∂SI [u]

∂uI

≥ 0 for all I

We now write the following strengthened property:
(H5) Strong monotonicity

(3.12)



∂SI [u]

∂uI

≥ δ > 0 if uI > inf
J∈V (I)\{I}

uJ

SI [0] < 0

the map uI 7→ SI [u] is continuous

Notice that the bound from below on
∂SI [u]

∂uI

could be more general (like any positive constant

also depending on I).
This last property (H5) is natural and allows us to find the unique solution uI of the

equation

(3.13) SI(uI , {u∗
J}J∈V (I)\{I}) = 0

Proposition 3.3 (Existence and uniqueness of uI solution of (3.13))
Assume (H1),(H2),(H4) and (H5). Given the numbers u∗

J for J 6= I, there exists a unique
solution uI of (3.13). Moreover we have

uI > inf
J∈V (I)\{I}

u∗
J

13



Proof of Proposition 3.3
Let

m = inf
J∈V (I)\{I}

u∗
J

If z ≤ m, then

SI(z, {u∗
J}J∈V (I)\{I})

≤ SI(z, {z}J∈V (I)\{I}) (using the monotonicity (H1) and u∗
J ≥ z for all J ∈ V (I)\ {I})

= SI [z] (using (H4) for the stencil)

= SI [0] (using the invariance (H2) by addition of a constant)

< 0 (using the second line of (H5))

We set
f(z) := SI(z, {u∗

J}J∈V (I)\{I})

and we want to find the solution uI = z of f(z) = 0. Then from the previous computation
and from (H5), we deduce that

f(z) ≤ SI [0] < 0 for z ∈ (−∞, m]

f is continuous increasing on [m, +∞)

f(z) → +∞ as z → +∞

Therefore, we conclude that there exists a unique uI = z such that f(z) = 0. Moreover
uI > m. This ends the proof of the Proposition.

It is easy to check that our scheme (3.8) satisfies the properties (H1),(H2),(H3),(H4) and
(H5) (using in particular the assumption a > 0 to check the second line of (H5)).

Then we have the following result:

Proposition 3.4 (Comparison principle for the scheme)
Assume that Ω ⊂ R2 is a bounded domain. Let us consider u = (uI)I and v = (vI)I satisfying

(3.14)


uI ≤ vI if xI 6∈ Ω

SI [u] ≤ SI [v] and SI(v) ≥ 0 if xI ∈ Ω.

where S[·] is a scheme satisfying assumption (H1),(H2),(H3),(H4) and (H5). Then u ≤ v.

Remark 3.5 Notice that we assume that SI [v] ≥ 0 for xI ∈ Ω. This condition is usually
not assumed in the statement of classical comparison results. We use this condition in the
proof, but do not know if the result still holds or not without this condition.

The proof of Proposition 3.4 will be given in the appendix (see subsection 10.1).

As a consequence of Proposition 3.4, we have:
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Corollary 3.6 (Uniqueness of the solution to the scheme)
Let Ω ⊂ R2 be a bounded domain. Assume that u = (uI)I solves

(3.15)


uI = 0 if xI 6∈ Ω

SI [u] = 0 if xI ∈ Ω.

where the scheme S[·] satisfies assumptions (H1),(H2),(H3),(H4) and (H5). Then the solu-
tion u of the scheme is unique.

Proof of Corollary 3.6
We consider two solutions u and v and apply Proposition 3.4 to u,v and then exchange the
role of u and v.

4 The Fast Marching Method

In practice it is not so easy in general to solve non linear schemes like the scheme in (3.8).
Using in a fundamental way the causality property, there is a nice method to solve the scheme.
This method is called the Fast Marching Method (FMM) and has been introduced by
Sethian in 1996. The idea is to solve exactly the scheme starting from the known region
(here this is the set of points xI ∈ R2\Ω where uI = 0) and going progressively inside the
domain Ω (see Fig. 11). Somehow there is a progressive propagation of information from
the boundary of the domain Ω, going inside the domain Ω. This will make appear a discrete
front propagating inside the domain.
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Figure 11: Sets for the FMM: accepted points An, front F n and the far region

4.1 A first description of what the FMM does

General structure of the FMM
We will define an increasing sequence of times (tn)n with t0 = 0, an increasing sequence of
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sets (An)n and a non increasing sequence of functions (un)n where each un = (un
I )I is defined

for I on the grid Z2. Everything is done such that the unique solution u of the scheme (3.14)
is given by

uI = un
I for all I ∈ An

In other words the values of un computed on the sets An are the exact values of the solution
u of the scheme (3.14). This is the reason why the set An is called the set of accepted points
(which means the set of points where the value of u is definitely computed and accepted).
Because the values of un are of no interest for points outside An, we simply set

un
I = +∞ if I ∈ Z2\An

On the other hand the values tn are such that

un
I = tn for all I ∈ An\An−1

i.e. tn is the common value of the new points accepted in the set An that were not contained
in the previous set An−1. The FMM algorithm stops at the first step N such that the set of
accepted points is the full grid, i.e.

AN = Z2

and then
uI = uN

I for all I ∈ Z2

We also have that
{t0, ..., tN} =

{
uI , I ∈ Z2

}
Therefore the times (tn)n appear as an increasing ordering of the values {uI} of the solution,
and we also have

An\An−1 =
{
I ∈ Z2, uI = tn

}
The FMM algorithm simply gives a decomposition of the grid in subsets where uI is constant
(and equal to tn):

Z2 =
N∪

n=0

(
An\An−1

)
with A−1 = ∅.

Further details of the FMM
It is natural to define the front F n as the discrete boundary of the accepted points An, i.e.

F n =
{
I ∈ Z2\An, such that V (I) ∩ An 6= ∅

}
Using property (H4) on finite homogeneous antisymmetic stencil, it is easy to see that we
can rewrite this front with a new expression that is more convenient for the classical FMM:

F n =

( ∪
I∈An

V (I)

)
\An

This notion of discrete boundary is modeled on the notion of discrete neighborhood V (I) of
a point I, introduced in (3.7). The front F n is a set of grid points close to An, but outside
An (see Fig. 12 and Fig. 13). For this reason, the front is also called the “narrow band”.
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Figure 12: A schematic vue of the front F n

The front F n can be seen as a discrete analogue of the level set {u = tn+1} for the
continuous solution u of the PDE. The main difference is that the discrete function (uI)I is
not constant on the front F n. The values

{uI , I ∈ F n}

are essentially close to each other but not the same in general. This means that the discrete
function (uI)I is only almost constant on the front F n.

A  = Accepted pointsn

Front  F n

Far region
point I

Figure 13: Vue of the grid with the sets An and F n.

The set F n is particularly interesting, because this is the set where we will look for the
new points of An+1\An, i.e. we will have

An+1\An ⊂ F n

The complementar of the set An ∪ F n will be called the far region (also depending on n),
because the points of this region will not be used going from step n to step n + 1 (but will
be used later).

What is important is to decide which points of the front F n will be the new one in
An+1\An. To this end, we compute for each point I of the front F n, a value ũn

I . This value
is a candidate (or guess) of what should be the value uI (but it can be bigger than uI). From
those ũn

I , we will only keep the minimal value

tn+1 = min
I∈F n

ũn
I
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and then we will choose as the new accepted points, the ones which realize this minimum,
i.e.

An+1\An = {I ∈ F n, ũn
I = tn+1}

(This definition of the new accepted points is indeed related to an interpretation of the value
of the function u as the minimal time needed to reach the point xI , for fronts starting from
the boundary of Ω at time t = 0 (see Subsection 6.1).) We will naturally define the new
function un+1 such that

un+1
I =


tn+1 if I ∈ An+1\An

un
I otherwise

How to compute the candidate ũn
I ?

The last thing to explain is now the way we compute the candidate value ũn
I . To this end,

we obviously have to use the explicit form of the scheme (3.14). Given the function un, we
simply find the solution ũn

I of the equation

(4.1) SI(ũ
n
I , {un

J}J∈V (I)\{I}) = 0

We see that equation (4.1) is simply the same as

SI({uJ}J∈V (I)) = 0

where the values uJ have been replaced by un
J for J 6= I and the value uI has been replaced

by the unknown ũn
I . Moreover there is a unique solution ũn

I of (4.1). Notice that if a value
un

J = +∞ appears in equation (4.1) for some neighbors J of the point I, this means that
the scheme will not use the point J . Indeed there is no information carried by the point
J in that case, because the point J is then in the complementar of the set An of accepted
points. Only the points J from the set An will be used to compute ũn

I . More precisely, the
computation of the whole values ũn

I for I ∈ F n, only requires the knowledge of some “useful
points”: the points of the discrete boundary of Z2\An (i.e. of an inner front or “narrow
band” in An).

As an example, see Fig. 14 for a closer at point I of Fig. 13. Here we see that points
A,B are in An, while C,D are not in An (C is on the front F n and D is in the far region).
This means that points C and D will not be used in the computation of ũn

I . Only the values
of un

J = uJ for J = A,B will be used to compute ũn
I .

B

D

A C
I

Figure 14: Closer at point I of Fig. 13
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4.2 Statement of the FMM

We give here the algorithm describing the FMM.

Initialization 

t0 = 0

A0 = {I ∈ Z2, xI 6∈ Ω}

u0
I =

{
0 if I ∈ A0

+∞ if I 6∈ A0

From step n to step n + 1
We assume that tn, A

n, un are known. We set

F n =

( ∪
I∈An

V (I)

)
\An

i) Definition of the candidate times: ũn
I :

For each I ∈ F n, we find the unique solution ũn
I of

0 = SI(ũ
n
I , {un

J}J∈V ∗(I)) with V ∗(I) = V (I)\ {I} .

ii) Minimizing the candidate times:

tn+1 = inf
I∈F n

ũn
I .

iii) Redefining the new sets and functions:
Define the new accepted points

NAn+1 = {I ∈ F n, ũn
I = tn}

We get 

tn+1,

An+1 = An ∪ NAn+1,

un+1
I =


tn+1 if I ∈ NAn

un
I otherwise

End of the algorithm

The algorithm stops for the first integer N such that AN = Z2.

Remark 4.1 Notice that by Proposition 3.3, the solution ũn
I is well defined under assump-

tions (H1),(H2),(H4) and (H5).
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4.3 Properties of the FMM

Proposition 4.2 (Properties of the FMM)
Assume that Ω ⊂ R2 is a bounded domain. Assume also (H1),(H2),(H4) and (H5). If
A0 6= Z2, then N ≥ 1 and for all n ∈ {0, ..., N − 1}, we have

An ⊂ An+1,

un+1 ≤ un.

Proof of Proposition 4.2
If A0 6= Z2, then the front F 0 is non empty and then N ≥ 1. From the definition of the set
An+1, we have An ⊂ An+1. From the definition of un+1, we have un+1

I 6= un
I only for the new

accepted points I satisfying I ∈ NAn+1 = An+1\An. But we have

un+1
I = tn+1 < +∞ = un

I for all I ∈ NAn+1

The fact that tn+1 is finite and well defined follows from Proposition 3.3. Therefore this
implies that

un+1
I ≤ un

I for all I ∈ Z2

¤

Proposition 4.3 (Properties of times of the FMM)
Assume that Ω ⊂ R2 is a bounded domain. Assume also that the scheme satisfies
(H1),(H2),(H3), (H4) and (H5). If A0 6= Z2, then N ≥ 1 and for all n ∈ {0, ..., N − 1}, we
have

tn+1 > tn.

This proposition is admitted and will be proven in the appendix (see Subsection 10.2).
Notice that the proof of the monotonicity of the times (tn)n strongly uses the causality
assumption (H3).

Theorem 4.4 (Existence of a solution to the scheme, using the FMM)
Assume that Ω ⊂ R2 is a bounded domain. Assume also that the scheme satisfies
(H1),(H2),(H3), (H4) and (H5). Then the function u = uN of the FMM algorithm is a
solution of the scheme (3.15).

Proof of Theorem 4.4
We assume that A0 6= Z2, otherwise there is nothing to prove. We consider n ∈ {0, ..., N − 1}
and a point I ∈ NAn+1. Then we have uN

I = ũn
I = tn+1. We also have

un
J = uN

J if un
J < +∞

uN
J ≥ tn+1 if un

J = +∞

Combining assumptions (H3) and (H4), we see that the scheme has the following property:
(4.2)

SI(ũ
n
I , {un

J}J∈V ∗(I)) = SI(ũ
n
I , {ûn

J}J∈V ∗(I)) with ûn
J =


un

J if un
J < ũn

I = tn+1

+∞ if un
J ≥ ũn

I = tn+1
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Similarly we have

SI(u
N
I ,

{
uN

J

}
J∈V ∗(I)

) = SI(u
N
I ,

{
ûN

J

}
J∈V ∗(I)

) with ûN
J =


uN

J if uN
J < uN

I = tn+1

+∞ if uN
J ≥ uN

I = tn+1

Because uN
I = tn+1 = ũn

I and ûN
J = ûn

J for J ∈ V ∗(I), we deduce that

SI(tn+1,
{
uN

J

}
J∈V ∗(I)

) = SI(u
N
I ,

{
ûN

J

}
J∈V ∗(I)

) = SI(ũ
n
I , {ûn

J}J∈V ∗(I)) = SI(ũ
n
I , {un

J}J∈V ∗(I))

Using the fact that
SI(ũ

n
I , {un

J}J∈V ∗(I)) = 0,

we deduce that
SI(u

N
I ,

{
uN

J

}
J∈V ∗(I)

) = 0.

We have shown that this last equation is true for any point I ∈ Z2\A0, which ends the proof
of the theorem. ¤

5 Introduction to viscosity solutions

We recall that subsection 2.3 was a kind of pre-introduction to viscosity solutions. We were
studying the solutions of the following equation for ε > 0

(5.1)


−ε(uε)′′ + |(uε)′| = 1 on Ω = (−1, 1)

uε = 0 on ∂Ω,

where we have added artificially the ε term to the original equation. The function u(x) =
1−|x| was both a solution of the original equation for ε = 0 and also the limit of the solutions
uε as ε goes to zero.

5.1 Properties of uε and u

In order to go further, we ask the question: what are the properties of uε, and u?

The answer is given by the following result:

Proposition 5.1 (Properties of uε)
i) (test from above)
If ϕ ∈ C2(Ω) satisfies 

uε ≤ ϕ on Ω

uε = ϕ at x0 ∈ Ω,

then
−εϕ′′ + |ϕ′| ≤ 1 at x0 ∈ Ω.
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ii) (test from below)
If ϕ ∈ C2(Ω) satisfies 

uε ≥ ϕ on Ω

uε = ϕ at x0 ∈ Ω,

then
−εϕ′′ + |ϕ′| ≥ 1 at x0 ∈ Ω.

w

x
0

Figure 15: Graph of w

Proof of Proposition 5.1
We only show the i) (the proof of ii) beeing similar).
By assumptions,

w = ϕ − uε ≥ 0 = w(x0)

From the fact that w is minimal at x0 (see Fig. 15), we deduce that{
w′(x0) = 0
w′′(x0) ≥ 0

i.e. {
ϕ′(x0) = (uε)′(x0)
ϕ′′(x0) ≥ (uε)′′(x0)

This implies that
−εϕ′′ + |ϕ′| ≤ −ε(uε)′′ + |(uε)′| = 1 at x0

which ends the proof of case i). ¤

5.2 Definition of viscosity solutions

The idea to define what are viscosity solutions of problem (2.3), is simply to use the property
satisfied by uε for ε > 0 as it is given in Proposition 5.1, and to require that the solution u
of (2.3) satisfies the same condition but for ε = 0. We recall problem (2.3), namely

(5.2)


|∇u| = a on Ω

u = 0 on ∂Ω.
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Definition 5.2 (Viscosity sub/super/solution)
Let u ∈ C(Ω).

• We say that u is a viscosity subsolution of (5.2) if and only if

u ≤ 0 on ∂Ω

and if for any ϕ ∈ C2(Ω) satisfying (see Fig. 16)
u ≤ ϕ on Ω

u = ϕ at x0 ∈ Ω,

we have
|∇ϕ(x0)| ≤ a(x0).

• We say that u is a viscosity supersolution of (5.2) if and only if

u ≥ 0 on ∂Ω

and if for any ϕ ∈ C2(Ω) satisfying (see Fig. 17)
u ≥ ϕ on Ω

u = ϕ at x0 ∈ Ω,

we have
|∇ϕ(x0)| ≥ a(x0).

• We say that u is a viscosity solution of (5.2) if and only if u is a viscosity subsolution
and supersolution.

If you hesitate to know from which side you have to test, just keep in mind the following:
REMINDER: The subsolutions are tested from above.

ϕ

u
Figure 16: Testing a subsolution from above

Then we have
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ϕ

u

Figure 17: Testing a supersolution from below

Proposition 5.3 (Checking a viscosity solution)
The function

u(x) = 1 − |x|

is a viscosity solution of 
|u′| = 1 on Ω = (−1, 1)

u = 0 on ∂Ω

ϕ

−1 1

|u’|=1

0

Figure 18: Cheking u from above

Proof of Proposition 5.3
If a test function ϕ touches the function u at a point x0 where u is C1, then ϕ and u have
the same derivatives, i.e. ϕ′(x0) = u′(x0), and it is straightforward to check the definition
because we have |ϕ′(x0)| = |u′(x0)| = 1. Therefore we only have to check from above and
from below at the point x0 = 0 which is the only point of Ω where u is not C1.
i) Checking from above at x0 = 0
Let us assume that ϕ ∈ C2(Ω) satisfies

ϕ ≥ u on (−1, 1)

ϕ = u at x0 = 0,

Then this implies a limitation on the slopes of ϕ at x0 = 0. Precisely we have (see Fig. 18):

−1 = u′(0+) ≤ ϕ′(0) ≤ u′(0−) = 1

This implies |ϕ′(0)| ≤ 1 and then u is a subsolution at x0 = 0.
ii) Checking from below at x0 = 0

24



If ϕ satisfies 
ϕ ≤ u on (−1, 1)

ϕ = u at x0 = 0,

then it is easy to realize that ϕ can not be C2 (neither C1) at x0, because of the shape of
u in the neighborhood of x0 = 0. Therefore there is nothing to check in the definition of
supersolution at x0, and this shows that u is a viscosity supersolution at x0 = 0.
This ends the proof of the proposition. ¤

Then we have the following result that is admitted.

Theorem 5.4 (Existence and uniqueness of the viscosity solution)
Let Ω be a bounded open set and a > 0 be a Lipschitz-continuous function on Ω. Then there
exists a unique viscosity solution of

|∇u| = a on Ω

u = 0 on ∂Ω.

To read a proof of the uniqueness of the solution, see Section 8.

6 Further remarks and applications of the eikonal

equation

In this section, we consider solutions to the eikonal equation. We give an interpretation of
the level set of the solution in terms of a front moving with prescribed velocity (this is indeed
an analogy with the numerical front apprearing in the FMM). We also give an application
of this notion of moving fronts to a model for image segmentation.

6.1 The level set interpretation of the eikonal equation

Let us consider the solution u of the eikonal equation
|∇u| = a(x) on Ω

u = 0 on ∂Ω.

Let us now define the function
v(x, t) = u(x) − t

Then we can check (at least formally) that v solves the following equation

(6.1)
∂v

∂t
= c(x)|∇v|

with

c(x) = − 1

a(x)
.
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It is possible to see that the levet set

Γt = {x ∈ Ω, v(x, t) = 0} = {x ∈ Ω, u(x) = t}

moves with normal velocity equal to c(x) (see Fig. 19 and 20). Moreover, equation (6.1) is
called a Level Set formulation of the geometric motion of the curve Γt.

Notice that the front Γt is the continuous analogue of the discrete front F n that appears
in the FMM. And the value u(x) = t is then the time at which the front Γt reaches the point
x. This is also why the values ũn

I = tn+1 in the FMM are interpreted as a time of arrival of
the numerical front at the point xI .

c   t∆

Γ

Γt

t +   t∆

Figure 19: The case with negative velocity c

Γt
Γt +   t∆

c   t∆

Figure 20: The case with positive velocity c

The case where the velocity c(x, t) depends on the space variable x and on the time
variable t is more delicate, especially if the velocity changes sign in space and time. In that
case a generalisation of the Fast Marching Method has been given and convergence results
for the method have been proven. See Carlini, Falcone, Forcadel, Monneau [4] for a reference
on the subject.
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6.2 Application to image segmentation

In this subsection, we want to give an example of application of the motion of an curve
by normal velocity (and then this can be seen as an application of the FMM with general
velocity). We present a simplified version of the model of Chan, Vese (2001) [6], used
for segmentation of images.
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Figure 21: Model of Chan and Vese to move a curve Γt towards the boundary of disk

To simplify, we consider an image which is a white rectangle Q containing a black disk,
as in Fig. 21. The intensity of the picture is given by a function I(x), with the convention
that

I(x) =


1 if the point x is black

0 if the point x is white

Notice here that the convention to define the intensity I(x) has been reversed with respect
to the one introduced in (2.2). We consider an open set Ωt whose boundary is a curve Γt.
The goal of the method is to move the curve Γt towards the boundary of the black disk. To
this end, we define two intermediate quantities which are respectively the mean intensity of
the pixels enclosed by the curve Γt and the mean intensity of the pixels in the complementar:

c1(t) =

∫
Ωt

I(x) dx∫
Ωt

1 dx

c2(t) =

∫
Q\Ωt

I(x) dx∫
Q\Ωt

1 dx
.

We then define the normal velocity of the curve Γt:

c(x, t) = (I(x) − c2(t))
2 − (I(x) − c1(t))

2.
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To understand the mechanism of this motion, let us assume that the curve Γt is a circle
like on Fig. 21. Because the set Ωt is quite close to the disk, we see that we have

c1(t) ' 1 and c2(t) ' 0

Let us now focus on the points A and B of Fig. 21.
Point A
At the point A, we have

c ' (1 − 0)2 − (1 − 1)2 = 1 > 0

and then the point A moves with positive normal velocity (for the outward normal to Ωt),
i.e. the point A moves to the right.
Point B
At the point B, we have

c ' (0 − 0)2 − (0 − 1)2 = −1 < 0

and then the point B moves with negative normal velocity (for the outward normal to Ωt),
i.e. the point B also moves to the right.

We see that this model is able to move the set Ωt to the right (which is what we wanted
to do) and then to move the curve Γt in the direction of the boundary of the disk.

We present below in Figure 22 an application of this model to the segmentation of an
image of a brain. These results have been obtained by Forcadel, Le Guyader and Gout [12],
based on a generalized FMM introduced in [4].

Figure 22: Evolution of the curve (from left to right and top to bottom), taken from [12]

7 More on the FMM

In this section, we give some indications in the litterature to learn further.
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The Fast Marching Method
See the original papers [22] of Tsitsiklis and [18] of Sethian. See also the review paper [16]
of Sethian.

The Fast Marching Method for sign changing velocities
For special cases of motion, see [7] Chopp (non-signed velocities but time independent), [23]
Vladimirsky (case of positive time-dependent velocity). For general velocities, see the pa-
per [4] of Carlini, Falcone, Forcadel, Monneau, where a Generalised Fast Marching Method
(GFMM) is presented. For an improved method with a proof of a comparison principle, see
also [11] Forcadel. For an application to convergence results for non-local dynamics, see [5].

The Fast Marching Method for anisotropic and more general equations
For an application of the FMM to more general Hamilton-Jacobi equations than the eikonal
equation, see [19, 20] Sethian, Vladimirsky. See in particular [21] for a method to solve the
eikonal equation on surfaces. For FMM devoted to axis-aligned anisotropy, see [1] Alton,
Mitchelld.

The Level Set Method
See the seminal paper [14] of Osher, Sethian for the introduction of the method. See also
the book [17] of Sethian, and the book [10] of Fedkiw, Osher.

Viscosity solutions
We refer to the book of Barles [2] for an introduction to viscosity solutions to first order
equations. See also the User’s Guide of Crandall, Ishii, Lions [8] for a general overview on
the subject (including second order equations).

Convergence of finite differences schemes
We refer the reader to the general convergence result of Barles and Souganidis [3] and to the
original paper of Crandall, Lions [9] for error estimates. For a proof of convergence of the
Generalised FMM, see [4].

8 More on viscosity solutions

In this section we present comparison results and a result of uniqueness for viscosity solutions.

We start with the

Theorem 8.1 (Comparaison principle)
Let a > 0 be a Lipschitz continuous function defined on a bounded domain Ω ⊂ R2. Let u be
a subsolution of (5.2) and v be a supersolution of (5.2). Then we have

u ≤ v on Ω.

As a consequence we have the

Corollary 8.2 (Uniqueness of the viscosity solution)
Let a > 0 be a Lipschitz continuous function defined on a bounded domain Ω ⊂ R2. Then
the solution of (5.2) is unique.
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Proof of Corollary 8.2
Let u1, u2 be two solutions.
From the comparison principle we have

u1 ≤ u2

and similarly
u2 ≤ u1

Therefore
u1 = u2.

¤

Proof of Theorem 8.1 in the case a ≡ 1.
Let us assume by contradiction that

M∗ = sup
x∈Ω

(u(x) − v(x)) > 0.

Then for some λ > 1 (close enough to 1), we have

M0 = sup
x∈Ω

(u(x) − λv(x)) > 0.

For ε > 0, let us define (introducing the doubling of variables)

Mε = sup
x,y∈Ω

(
u(x) − λv(y) − |x − y|2

2ε

)
= u(xε) − λv(yε) −

|xε − yε|2

2ε
.

where the suppremum is reached for xε, yε ∈ Ω. Notice that we have in particular

Mε ≥ sup
x=y∈Ω

(...) = M0 > 0

We now distinguish four cases and conclude to a contradiction in each one of these cases.

Case 1: xε, yε ∈ Ω.

• subsolution inequality
From the definition of Mε, we deduce that

u(x) ≤ Mε + λv(yε) +
|x − yε|2

2ε
=: ϕ(x)

u(xε) = ϕ(xε).

From the subsolution property of u, we deduce that

|∇ϕ(xε)| ≤ 1 with ∇ϕ(xε) =
xε − yε

ε
=: p
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i.e.

(8.1) |p| ≤ 1.

• supersolution inequality
Similarly from the definition of Mε, we have

v(y) ≥ 1

λ

{
−Mε + u(xε) −

|xε − y|2

2ε

}
=: ψ(y)

v(yε) = ψ(yε).

From the supersolution property of v, we deduce that

|∇ψ(yε)| ≥ 1 with ∇ψ(yε) =
1

λ
p,

i.e.

(8.2)
1

λ
|p| ≥ 1.

• Difference of the viscosity inequalities (8.1)-(8.2):
We get

(1 − 1

λ
)|p| ≤ 0 with λ > 1,

This implies
p = 0;

which gives a contradiction with (8.2).

Case 2: xε, yε ∈ ∂Ω.
In that case we have

0 < M0 ≤ Mε = −|xε − yε|2

2ε
≤ 0

which is impossible.

Case 3: xε ∈ Ω, yε ∈ ∂Ω.

Then we have

(8.3) 0 < M0 ≤ Mε ≤ u(xε) −
|xε − yε|2

2ε
.

Therefore, up to extract a convergent subsequence, we can assume that

xε → x0 ∈ Ω as ε → 0

Moreover from (8.3), we have

|xε − yε| ≤
(

2ε sup
Ω

|u|
) 1

2

→ 0
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x

Ω

εyε

Figure 23: The case xε inside Ω and yε on the boundary of Ω.

Therefore
yε → x0 ∈ ∂Ω

This implies in particular that
u(xε) → u(x0) ≤ 0

and then
lim sup

ε→0
Mε ≤ 0

which is in contradiction with Mε ≥ M0 > 0.

Case 4: xε ∈ ∂Ω, yε ∈ Ω.
We get a contradiction similarly as in case 3.

Conclusion
Finally, we have not M∗ = sup (u − v) > 0, and then

u ≤ v.

This ends the proof of the theorem. ¤

9 An error estimate for the FMM

In this section, we show how to get an error estimate between the viscosity solution and the
solution of the scheme (and then the solution constructed by the FMM).

For a continuous function a > 0, we consider a viscosity subsolution of the equation:

(9.1)


|∇u| = a on Ω

u = 0 on ∂Ω.

We consider a solution v = (vI)I of the scheme, i.e. satisfying

(9.2)


vI = 0 if xI 6∈ Ω

SI [v] = 0 if xI ∈ Ω.
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where S[·] is a scheme satisfying assumption (H1).
More generally we will say that v is a supersolution of the scheme if and only if it

satisfies

(9.3)


vI ≥ 0 if xI 6∈ Ω

SI [v] ≥ 0 if xI ∈ Ω.

where S[·] is a scheme satisfying assumption (H1).
We recall that

xI = I · ∆x for I ∈ Z2

In order to prove a error estimate between the solution to the continuous problem and the
solution of the scheme, we need a consistency assumption:
(H6) Consistency∣∣SI

[
{ψ(xJ)}J∈Z2

]
− (|∇ψ(xI)| − a(xI))

∣∣ ≤ C1|D2ψ|L∞∆x for all I ∈ Z2 and ψ ∈ C2

Then we have the following result:

Theorem 9.1 (Discrete-continuous error estimate for sub/supersolutions)
Assume that Ω ⊂ R2 is a bounded domain, that a ≥ 1 and that a is Lipschitz-continuous. Let
us consider a continuous viscosity subsolution u of (9.1) and a supersolution of the scheme,
i.e. a function v satisfying (9.3). Let us also assume that there exists a constant C0 > 0
such that

(9.4) |u|, |v| ≤ C0

and

(9.5) |u(x) − u(y| ≤ C0|x − y| and |vI − vJ | ≤ C0|xI − xJ |

We also assume that there exists a constant K ≥ 1 such that
(9.6)

for all x ∈ ∂Ω, there exists xJ ∈ (R2\Ω) ∩ ((∆x)Z)2 such that |x − xJ | ≤ K∆x

If the scheme S[·] satisfies (H1) and (H6), then there exists a constant C (depending on C0,
K, on the scheme and on a, but independent on ∆x) such that for ∆x ≤ 1/C we have

(9.7) sup
I∈Z2

(u(xI) − vI) ≤ C
√

∆x.

We also have a similar result exchanging (u and v) with a similar proof. As a consequence
we also have the following result:

Corollary 9.2 (Discrete-continuous error estimate)
Under the assumptions of Theorem 9.1, if moreover u is a viscosity solution of (9.1) and v
a solution of the scheme (9.2), then there exists a constant C (depending on C0, K, on the
scheme and on a, but independent on ∆x) such that for ∆x ≤ 1/C we have

(9.8) sup
I∈Z2

|u(xI) − vI | ≤ C
√

∆x.
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Remark 9.3 (Comment on the existence of the constants C0 and K)
Notice that for solutions u of the PDE (9.1) and v of the scheme (9.2), it is possible to show
the existence of a constant C0 such that u and v satisfy (9.4) and (9.5). Roughly speaking,
the solutions are Lipschitz because of the equation (which implies at least formally an upper
bound on the gradient). And the Lipschitz bound and the boundedness of the open set Ω
imply the boundedness of the solutions themself.

On the other hand, the existence of a constant K in the technical condition (9.6) is a way
to quantify a minimal regularity of the boundary ∂Ω. This condition is for instance satisfied
if ∂Ω is C1 (for instance for ∆x ≤ 1).

Remark 9.4 (Error estimate on the level sets)
Notice that the error estimate (Corollary 9.2) on the continuous function u and the discrete
function v implies a certain error estimate between a continuous level set of u (i.e. the
boundary of {x ∈ R2, u(x) ≤ t}) and a “discrete level set” of v (i.e. points xJ with J in
the discrete boundary of {I ∈ Z2, vI ≤ t}, which is a front F n of the FMM for a certain
n).
From a bound on |u− v|, we can estimate in general the distance between the level sets of u
and of v, if the gradients of u and v are not degenerate. This estimate depends strongly on
a positive bound from below on the modulus of the gradient of the continuous solution u and
of the discrete solution v. For instance, when a ≥ 1, this bound is formally a consequence
of the equation (9.1) satisfied by u and of the scheme (9.2) satisfied by v (keep in mind the
scheme (3.8)).
Notive also that all the results hold if the condition a ≥ 1 is replaced by a ≥ δ for some
δ > 0.

As we will see, the proof of Theorem 9.1 can be understood as a variation of the proof
of the comparison principle for viscosity sub/supersolutions of the PDE (Theorem 8.1).
Proof of Theorem 9.1 in the case a ≡ 1
We introduce the notation

v(x) = vI for x = xI ∈ ((∆x)Z)2 =: G∆x

where G∆x is the grid of mesh size ∆x. For λ ∈ (0, 1) and ε > 0, let us consider the function

Φ(x, y) = λu(x) − v(y) − |x − y|2

2ε

and we set
Mε = sup

x∈Ω, y∈G∆x

Φ(x, y)

In particular for y = x ∈ G∆x, we deduce that

(9.9) u(x) − v(x) ≤ (1 − λ)u(x) + Mε ≤ C0(1 − λ) + Mε

i) If Mε ≤ 0, then we see that (9.9) implies in particular (9.7) for 1 − λ = O(
√

∆x).
ii) We now assume that Mε > 0. Because for x ∈ ∂Ω and y ∈ (R2\Ω) ∩ G∆x, we have
u(x) ≤ 0 and v(y) ≥ 0, we deduce in particular that we can write

Mε = Φ(xε, yε)
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with some points

xε ∈ Ω, yε ∈ G∆x with either xε ∈ Ω or yε ∈ Ω

We now distinguish three cases.

Case 1: xε, yε ∈ Ω.

• subsolution inequality
From the definition of Mε, we deduce that

u(x) ≤ 1

λ

{
Mε + v(yε) +

|x − yε|2

2ε

}
=: ϕ(x)

u(xε) = ϕ(xε).

From the subsolution property of u, we deduce that

|∇ϕ(xε)| ≤ 1 with ∇ϕ(xε) =
p

λ
and p :=

xε − yε

ε

i.e.

(9.10) |p| ≤ λ.

• supersolution inequality
Similarly from the definition of Mε, we have

v(y) ≥ −Mε + λu(xε) −
|xε − y|2

2ε
=: ψ(y)

v(yε) = ψ(yε).

We now use the fact that v is a supersolution for the scheme, i.e. for yε = xIε

SIε [v] ≥ 0

From the monotonicity property (H1) of the scheme, we deduce that

SIε [{ψ(xI)}I∈Z2 ] ≥ SIε [v] ≥ 0

From assumption (H6), we deduce that

|∇ψ(yε)| − 1 ≥ SIε [{ψ(xI)}I∈Z2 ] −
C1

ε
∆x with ∇ψ(yε) =

xε − yε

ε
= p

This implies in particular that

(9.11) |p| ≥ 1 − C1

ε
∆x

• Difference of the viscosity inequalities (9.10)-(9.11):
We get

C

ε
∆x ≥ 1 − λ
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Therefore we get a contradiction if we choose λ ∈ (0, 1) such that

(9.12) 1 − λ >
C1

ε
∆x

.

Case 2: xε ∈ Ω, yε 6∈ Ω.
Let us consider a point ȳε ∈ [xε, yε] ∩ ∂Ω. Then we have

Mε = λu(xε) − v(yε) −
(xε − yε)

2

2ε

≤ λu(xε) − λu(ȳε) −
(xε − ȳε)

2

2ε

(
using u(ȳε) ≤ 0 ≤ v(yε) for yε ∈ (R2\Ω) ∩ G∆x

and |xε − ȳε| ≤ |xε − yε|

)

≤ C0|xε − ȳε| −
(xε − ȳε)

2

2ε
(using the Lipschitz estimate (9.5))

≤ ε
C2

0

2
(doing an optimization on |xε − ȳε|)

Therefore (9.9) implies

(9.13) u(x) − v(x) ≤ C0(1 − λ) + ε
C2

0

2

Case 3: xε ∈ ∂Ω, yε ∈ Ω.
From condition (9.6), we know that there exists x̄ε ∈ G∆x ∩ (R2\Ω) such that

(9.14) |xε − x̄ε| ≤ K∆x

Then as in case 2, we have

Mε

= λu(xε) − v(yε) −
(xε − yε)

2

2ε

≤ v(x̄ε) − v(yε) −
(xε − yε)

2

2ε
(using u(xε) ≤ 0 ≤ v(x̄ε) for xε ∈ ∂Ω, x̄ε ∈ (R2\Ω) ∩ G∆x)

≤ C0|x̄ε − yε| −
(xε − yε)

2

2ε
(using the Lipschitz estimate (9.5))

≤ C0K∆x + C0|xε − yε| −
(xε − yε)

2

2ε
(using estimate (9.14))

≤ C0K∆x + ε
C2

0

2
(doing again the optimization on |xε − yε|)

Conclusion
For all the cases, we can choose λ such that

(9.15) 1 − λ = 2
C1

ε
∆x.
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Then (9.12) is satisfied, and we have (9.9), which implies in all cases

u(x) − v(x) ≤ C0(1 − λ) + ε
C2

0

2
+ C0K∆x

≤ 2C0
C1

ε
∆x + ε

C2
0

2
+ C0K∆x (using (9.15))

≤ C2

2

(
∆x

ε
+ ε

)
+ C0K∆x (with C2 = 4(max(C0, C1))

2)

≤ C2

√
∆x + C0K∆x (optimizing the value of ε with ε =

√
∆x)

≤ C
√

∆x (with C = C2 + C0K for ∆x ≤ 1)

In particular we recover λ ∈ (0, 1) for ∆x < 1
4C2

1
. This ends the proof of the Theorem. ¤

Lemma 9.5 (Checking the consistency assumption)
The scheme given in (3.8) satisfies the consistency assumption (H6).

Proof of Lemma 9.5
We consider the expression

A := SI [{ψ(xJ)}J∈Z2 ] − (|∇ψ(xI)| − a(xI))

with the scheme

SI [u] = −a(xI) + F

(
xI ,

uI1,− − uI

∆x
,
uI1,+ − uI

∆x
,
uI2,− − uI

∆x
,
uI2,+ − uI

∆x

)
with

F (p1,−, p1,+, p2,−, p2,+) =

√
(max (0,−p1,−,−p1,+))2 + (max (0,−p2,−,−p2,+))2

To evaluate this expression, let us compute

ψ(y) − ψ(y0) = ψ′(y0) · (y − y0) +

∫ 1

0

dt

∫ t

0

ds D2ψ(y0 + s(y − y0)) · (y − y0)
2

This implies for p = ψ′(y0) and ye = y0 + (∆x)e with e ∈ Z2 and |e| ≤ 1:∣∣∣∣ψ(ye) − ψ(y0)

∆x
− p · e

∣∣∣∣ ≤ 1

2
|D2ψ|L∞∆x

Using the fact that for P = (p1,−, p1,+, p2,−, p2,+), the function F (P ) is Lipschitz in P , i.e.
there exists a constant L (that can indeed be taken equal to 1) such that

|F (P ) − F (Q)| ≤ L|P − Q|

we get that with the choice y0 = xI

|A| ≤ L|D2ψ|L∞∆x

which ends the proof of the Lemma.
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10 Appendix: proof of some results for the FMM

In this section, we prove some results related to the FMM, namely a comparison principle for
the scheme (Proposition 3.4) and the monotonicity of the sequence of times (tn)n (Proposition
4.3).

10.1 Proof of the comparison principle for the scheme used in the
FMM

In this subsection we prove Proposition 3.4 which claims a certain comparison principle for
the scheme satisfying (H1),(H2),(H3),(H4),(H5).

Proof of Proposition 3.4
Step 1: Preliminaries
Let us consider two functions u = (uI)I and v = (vI)I as in the statement of Proposition
3.4. Let us proceed by contradiction, and assume that

(10.1) M = sup
I

(uI − vI) > 0.

We define the set
K =

{
I ∈ Z2, M + vI = uI

}
Because uI ≤ vI for xI ∈ R2\Ω, we deduce that

K ⊂
{
I ∈ Z2, xI ∈ Ω

}
and then K is bounded. Let us choose an index I0 ∈ K such that

vI0 = inf
J∈K

vJ

Because xI0 ∈ Ω, we deduce from (3.14) that

(10.2) SI0 [v] ≥ 0

Step 2: Proof of vI0 > infJ∈V (I0)\{I0} vJ

Assume by contradiction that

(10.3) vI0 ≤ inf
J∈V (I0)\{I0}

vJ

Let us define

v̂J =


vJ if vJ < vI0 or J = I0

+∞ otherwise

In particular, we have

v̂J =


vI0 if J = I0

+∞ if J ∈ V (I0)\ {I0}
Then by the causality asumption (H3), we have

SI0 [v] = SI0 [v̂] = SI0({v̂J}J∈V (I0))
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where we have also used assumption (H4) in the last equality. Defining now the constant
function

ṽJ = vI0 for all J

the same raisoning also gives that

SI0 [ṽ] = SI0({v̂J}J∈V (I0))

Therefore
SI0 [v] = SI0 [ṽ] = SI0 [0] < 0

where we have used (H2) for the last equality and (H5) for the last inequality. This gives a
contradiction with (10.2) and shows that (10.3) is not true, i.e. we have

vI0 > inf
J∈V (I0)\{I0}

vJ

Step 3: Proof that M + vJ > uJ for J ∈ J0

Let us define the set
J0 = {J ∈ V (I0)\ {I0} , vJ < vI0}

and consider a point J ∈ J0. On the one hand, from (10.1), we have

(10.4) uJ ≤ M + vJ

On the other hand, if

(10.5) uJ = M + vJ

this shows that J ∈ K. Therefore by definition of I0, we have

vI0 ≤ vJ

This is in contradiction with the defintion of the set J0. Therefore (10.5) is impossible and
we deduce from (10.4) that

(10.6) uJ < M + vJ for all J ∈ J0

Step 4: Getting a contradiction
Let us define the functions

v̄J =


vI0 if J = I0

vJ if J ∈ J0

+∞ otherwise

and

v̌J =


vI0 if J = I0

vJ − ε if J ∈ J0

+∞ otherwise
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for some ε > 0 small enough such that we can strengthen inequality (10.6) as

uJ < M + vJ − ε for all J ∈ J0

Then we have 
uJ ≤ M + v̌J for all J

uI0 = M + v̌I0

Therefore we deduce that
SI0 [u] ≥ SI0 [M + v̌]

= SI0 [ε + v̌]

≥ δε + SI0 [v̄]

= δε + SI0 [v] > SI0 [v]

where we have used (H1) for the first line, (H2) for the second line, (H5) for the third line
(with ε+ v̌J = v̄J for J 6= I0), and finally (H3) to get the last line. This gives a constradiction
with (3.14). Therefore u ≤ v and this ends the proof. ¤

10.2 Proof of the monotonicity of the times (tn)n for the FMM

We recall that Proposition 4.3 claims that the sequence of times constructed by the FMM
satisfies

tn < tn+1

In this subsection, we give the proof of this fact.

Proof of Proposition 4.3
If n = 0, the fact that t1 > 0 = t0 follows from the second line of (H5). Therefore we can
assume that n ≥ 1. Let us assume by contradiction that tn+1 ≤ tn, i.e.

(10.7) there exists a point I ∈ NAn+1 ⊂ F n with ũn
I = tn+1 ≤ tn.

We recall that ũn
I solves

(10.8) SI(ũ
n
I , {un

J}J∈V ∗(I)) = 0 with V ∗(I) = V (I)\ {I}

Let us define
Bn := V ∗(I) ∩ NAn

We have 
ũn

I ≤ tn = un
J < +∞ = un−1

J for every J ∈ Bn

un
J = un−1

J for every J ∈ V ∗(I)\Bn

Combining assumptions (H3) and (H4), we see that the scheme has the following property:

(10.9) SI(ũ
n
I , {un

J}J∈V ∗(I)) = SI(ũ
n
I , {ûn

J}J∈V ∗(I)) with ûn
J =


un

J if un
J < ũn

I

+∞ if un
J ≥ ũn

I
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Therefore we deduce that

(10.10) SI(ũ
n
I ,

{
un−1

J

}
J∈V ∗(I)

) = SI(ũ
n
I , {un

J}J∈V ∗(I)) = 0

Case 1: I ∈ F n−1

Recall that the uniqueness of the solution to equation (10.10) follows from Proposition 3.3.
Therefore we get

ũn−1
I = ũn

I

Then (10.7) implies in particular that

(10.11) ũn−1
I ≤ tn

On the other hand, because I ∈ NAn+1 and NAn+1 ∩ NAn = ∅, this implies that I ∈ F n−1

does not belong to NAn, and then the only possibility is that

ũn−1
I > tn

This gives a contradiction with (10.11).

Case 2: I ∈ F n \ F n−1

By assumption I ∈ F n and then I ∈ Z2\An. We have moreover An−1 ⊂ An, which implies
I ∈ Z2\An−1. If there exists a point K ∈ V ∗(I) ∩ An−1, this shows that I ∈ F n−1, which is
impossible by assumption. Therefore

V ∗(I) ∩ An−1 = ∅

which implies
V ∗(I) ∩ An = V ∗(I) ∩ NAn

Because I ∈ F n, we deduce that there exists J ∈ V ∗(I) such that J ∈ NAn and un
J = tn and

then
V ∗(I) ∩ NAn 6= ∅

We finally deduce from (10.8) and Proposition 3.3 that

ũn
I > min

J∈V ∗(I)
un

J = min
J∈V ∗(I)∩An

un
J = min

J∈V ∗(I)∩NAn
un

J = tn

This gives a contradiction with (10.7). ¤
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