
HAL Id: hal-00530860
https://hal.science/hal-00530860

Preprint submitted on 30 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Framework for a Functional Language with
Adaptable Components

Pascal Coupey, Christophe Fouqueré

To cite this version:
Pascal Coupey, Christophe Fouqueré. A Formal Framework for a Functional Language with Adaptable
Components. 2010. �hal-00530860�

https://hal.science/hal-00530860
https://hal.archives-ouvertes.fr

A Formal Framework for a Functional
Language with Adaptable Components

P. Coupey C. Fouqueré

LIPN – UMR7030
CNRS – Université Paris 13

99 av. J-B Clément, F–93430 Villetaneuse, France

firstname.lastname@lipn.univ-paris13.fr

Abstract

We propose a component programming language called FLAC,
Functional Language for Adaptable Components, on top of a func-
tional programming language which authorizes full adaptability of
components while ensuring type safety. The langage is given to-
gether with a type system that offers a complete static type ckeck-
ing of any programs (including adaptations) to ensure error-free
run-time adaptations. Dynamic adaptability and static type check-
ing might seem at first sight paradoxical, but our approach allows
it because, first, we use a single language for traditional services
and control services (i.e., services for adaptations), and secondly, a

specific merge operation takes care of adaptations.1

1. Introduction

Component-based programming is like a construction game: pro-
grams are assembled out of black boxes called components. The
term ‘black box’ is justified by the fact that only the interfaces of
components are publicly available. Such an interface characterizes
the signatures of services the component offers or needs. The basic
construct plug assembles a component that provides a service to a
component that needs it. The domain of component-based systems
(CBS) is mature enough to actually endorse the benefits of such a
paradigm [12]. Safety and adaptativity are the two main require-
ments for such systems. Safety is ensured when execution is error-
free. For that purpose, most CBSs expect each required service used
by a component to be satisfied by a service provided by another
component (soundness) and any service offered by a component to
be concretely defined (completeness) [7, 9]. Obviously, type check-
ing must be done accordingly. Adaptative capabilities are required
to fit the evolution of the environment, software or hardware. Hence
it is often given as an important goal for CBSs [3]. It may be min-
imal as in works of Aldrich [1] or Sreedhar [11] or first works of
Costa Seco et al. [8] or more developed as in works of Dowling
et al. [5] or Batista et al. [2], Bruneton et al. [4] or last works of
Costa Seco et al. [9, 10]. A CBS is dynamic if adaptations can be
made at runtime as reactions for contextual events. If adaptations
are made by an external actor (e.g., a programmer) via a declarative
or procedural interface, adaptations are called external although
they are called internal when the code and the prerequisites are
described in the program itself. A CBS is called closed when all
adaptations are internal. Current dynamic closed CBSs provide a
meta-model by incorporating a specific adaptation language dif-

ferent2 from the language allowing component description and as-
semble. They also have mechanisms ensuring integrity and con-

1 This work is supported by the Marie Curie action n. 29849 Websicola.
2 Even if the difference is sometimes more or less subjective [4].

sistency of the system during dynamic reconfiguration. The meta-
model manages a configuration graph of components and connec-
tions that can be inspected and modified at runtime. For example in
the Fractal framework [4], component controllers allow to predict
component changes at runtime (deleting or replacing a component,
adding/removing functionalities, changing links with other compo-
nents, . . .) and dynamic adaptation is achieved by introspecting
and reconfiguring the internal structure of components. The im-
plementation of adaptability is frequently done by modifying the
byte-code at runtime. However, in most existing CBSs, adaptability
is limited if type checking is in use: the type of the new compo-
nent should be a subtype of the type of the old component. The
type of a component is roughly defined in current CBSs as the set
of the signatures of its provided and requested services, and sub-
typing is covariant with provided services and contravariant with
requested services. Furthermore usual target languages, e.g., JAVA

[1, 4], are not as strongly typed as one can expect as type conver-
sion is allowed. Note also that types are not automatically inferred
in these languages. Thus, if the language is not constrained, the
programmer could easily override typing constraints, giving rise to
unexpected results or software crashes. Costa Seco et al. [9, 10]
propose a component-oriented programming language that autho-
rizes adaptations of component objects thanks to configurators, i.e.,
reconfiguration scripts that describe architectural operations modi-
fying the structure of a component. Type control is ensured by con-
figurator type declaration using a specific language. A configurator
type describes the pre and post conditions for the application of
the configurator. However, first the architectural operations in the
configurator description is outside the static context of the compo-
nents on which they are applied, hence they are white-box opera-
tions. Consequently, the type of a configurator cannot be automat-
ically inferred: a configurator definition requires an explicit type.
Second, precondition type mismatches are not visible to the type
system: the programmer has to prevent them by means of condi-
tional structures. To summarize, two drawbacks prevent a plain use
of CBSs:

• Adaptability is constrained by the way the component type is
defined: adaptations cannot alter the signature of required or
provided services. However, the environment may simultane-
ously evolve in such a way that the final system is still correctly
typed.

• Casting and byte-code modification forbid static analysis of a
code, hence safety of program execution.

The language FLAC, Functional Language for Adaptable Com-
ponents, presented in this paper allows dynamic internal adapta-
tions without the two previous drawbacks: dynamic adaptations

may remove or add requested or provided services, while types are
statically checked:

1. Adaptation constructs are first-class entities: there is no meta-
language. Hence, type specification integrates adaptations de-
clared in the code: the type of a component is not only given
by the actual signatures of requested and provided services but
also by those resulting from its adaptations. To the best of our
knowledge it is the first proposal where the type of a component
integrates adaptation services. It means that in our language, the
type of a component without adaptation capabilities is not iden-
tical to the "same" component with such adaptation properties.
Indeed, how a simple car toy can be considered as having the
same type than a car toy which can become a robot thanks to
an adaptation property? Consequently, type checking may be
completely done statically.

2. Executing an adaptation creates a new component in the mem-
ory, whereas current approaches change bytecodes in place.
Hence components have only one type for the whole run of the
program. A garbage collector mechanism, concretely the one
given with OCaml [6], allows for freeing unused components.

3. The language is strongly-typed (as well as OCaml) ensuring
error-free run-time adaptations.

In the next section we present the language FLAC. We focus
on adaptations capabilities with various examples. Its operational
semantics is described in section 3 and we give in section 4 a typing
system that ensures safetiness.

2. The FLAC Language

We extend a functional programming language3 mainly by means
of a Component data structure that integrates an interface (re-
quested and provided services) and a functional part intended to de-
fine service codes (see Fig. 1.). A Service name is a string. Return
types of service expressions are automatically inferred. Component
parameters may be any kind of expressions, including services as
well as components. Services are referenced by Uniform Resource
Services (URS). A URS is identified by a component followed by
a service name, optionally with a signature. The syntax for expres-
sions is augmented to take care of these new structures: call,
plug and merge operations are sufficient to illustrate adaptation
capability.

In Fig. 2, two components are declared: a database Server of-
fers a service u dedicated to process database requests, a Client
asks for a database service p. The program creates a client c1 and
a server s1 and plugs them together. The plug expression creates
a call indirection from p in c1 to u in s1. Note that such a plug
sends back a new component, i.e., it does not modify in place the
component c1.

Adaptations in FLAC are given by control services, i.e., ser-
vices that add/delete services, hence create new components. In
figures, control services appear on top of components. Control ser-
vices contribute to the definition of components without reference
to a meta-language: not only they could be required or provided,
but also they are undistinguishable from standard services. In fact,
control services are those that return a component, contrarily to
services that return basic data. The type system of FLAC is able
to infer and check control services types. A call to a control ser-
vice followed by a merge operation constructs a new component
adapted from the old one. Two modes are proposed in expression
(merge#e3 e1 e2): add returns a new component by adding the
contents of e2 to e1 while sub removes the contents of e2 from e1.

3 OCaml [6] is used as a core functional language.

Component default value is the empty set
C ::= Component

[Requested {s_mtlist}]
[Provided {s_mtlist}]
[Services {S_list}]

Cend;
Service Name
s ::= a string
Service Declaration
s_mtlist ::= empty | s[(t)] ; s_mtlist
Service Expression
S ::= [t] s[(tp)] (p)⇒ e
t is the service type, inferred by default, s is a service name,
e is the body of the service, with parameter p of type tp,
if tp is inferred by the type checker then it is added to the code.

S_list ::= empty | S ; S_list
Uniform Resource Service (URS)
urs ::= [e1]#e2[(t)]
e1 is a component (in the scope by default),
e2 is a service name possibly with a type t.

Mode
m ::= add | sub
Expression
e ::= expression of a functional language

| (call e1[?e3]) call of URS e1 [with arg. e3].
Return: value of e1[?e3]
| (plug e1 e2) plug in URS e1 the URS e2.

Return: copy of the first param., the service plugged
| (unplug e1) unplug URS e1.

Return: copy of the param., the service unplugged
| (merge[#e3] e1 e2) merge comp. e1 with comp. e2.

Return: copy of e1 merged in mode e3, add by def., with e2
| C | s | urs

Fig. 1: Grammar of FLAC

c2 = s1 =

p u
let Client = Component

Requested { p(string);}

Cend;;

let Server = Component

Provided { u(string);}

Services { u(string req) ⇒. . .;}

Cend;;

(let c1=Client and s1=Server in

(let c2=(plug c1#p s1#u) in . . .))

Fig. 2: Plugging two components

For readability purposes, we use the following aliases (where m is
explicitly either add or sub):

• (m e1 e2) in place of (merge#m e1 e2)

• (mself e1#s) in place of (merge#m e1 (call e1#s))

Note that in this last case, the result of call should be a
component, i.e., s is a control service.

In Fig. 3, a database server component Server1 may evolve
by mixing up with an administration component Admin: The con-
trol service r of Server1 returns a (copy of) component Admin
that offers a service a dedicated to administration request process-
ing. Executing on it merge in mode add results in component s2
that is an adaptation of s1. As s2 provides itself the control service
r, the administration service a may be removed from s2, as illus-

trated when computing s3. In the same way, it is obvious to add
or to remove a requested service. For example, our server could
evolve toward a securized server which needs a service k to encrypt
or decrypt a string. To do this, simply add a control service which
returns a component including a requested encryption/decryption
service k.

r

u

call r +
merge#add

call r +
merge#sub

r

u

a

let Admin = Component

Provided { a(string);}

Services { a(req)⇒. . .;}

Cend;;

let Server1 = Component

Provided { u(string); r();}

Services { u(req)⇒. . .;

r()⇒Admin ;}

Cend;;

(let s1 = Server1 in

(let s2 = (addself s1#r) in

(let s3 = (subself s2#r) in . . .)))

Fig. 3: Using control service: adding and removing a service

Example in Fig. 4 illustrates a succession of adaptations from a
simple client-server couple plugged together to a securized client-
server couple, that are plugged via both simple and administration
database request services. We add to previous figures component
Client2, a database client that can evolve toward one that needs
an encryption/decryption service and/or one that requires an ad-
ministration service p, and component Server2, that contains
a control service v able to transform it to a securized server that
needs an encryption/decryption service. Component Crypt pro-
poses a service v for encrypting/decrypting strings. Note the differ-
ence between the way clients c5 and c7 are created: client c5 shares
the same encryption/decryption protocol with server s3 (hence also
s4), whereas client c7 is allowed to call the service a declared in
server s4.

Next two sections are devoted to the formal aspects of FLAC.
Next section presents an operational semantics that gives the mean-
ing of any valid program in FLAC while section 4 highlights the
type system.

3. Operational Semantics

The operational semantics follow standard functional programming
operational semantics: it is given as an evaluation judgment on pro-
grams and expressions to be computed with respect to a given en-
vironment. An environment is an evaluation environment together
with a handler environment. An evaluation environment is a partial
function from the set of variable names and component locations to
values, either ground values or handlers to such values (supposing
a domain of handlers). The evaluation environment has a special
variable name ‘_self’ whose value is a handler, it is supposed to
be the handler of the component defined in the current context. A
handler environment is a partial function from the set of handlers
to values. Handlers are used to denote component values. The eval-
uation judgment for expressions is of the following form:

E ,H ⊢ e ⇓ v,H′

read as: the evaluation of expression e in an evaluation environment
E with a handler environment H leads to a value v together with a
handler environment H′. A handler value is given as a function
over the domain {req, prv, serv}. Values for req and prv selec-
tors are sets of requested or provided services, i.e., signatures of
services. The value of serv selector is a map from service names
to functional closures. We do not present the operational semantics

c2 = s1 =r q r q

p u

r q r q

a

u
kk

p

i

v v

adaptations

let A1 = Component

Requested { i(string);}

Cend;;

let B = Component

Requested { k(string,int);}

Cend;;

let Crypt =

Component

Provided { v(string,int);}

Services { v(req, n)⇒. . .;}

Cend;;

let Client2 =

Component

Requested { p(string); q();}

Provided { r();}

Services { r()⇒A1;}

Cend;;

let Server2 =

Component

Provided { u(string); r(); q();}

Services { u(req)⇒. . .;

q()⇒B;

r()⇒Admin;}

Cend;;

(let c1=Client2 and s1=Server2 in

(let c2=(plug c1#p s1#u) in

. . . //c2 and s1 may be used before adaptations

(let s2=(addself s1#r) in

(let s3=(addself s2#q) in

(let c3=(unplug c2#p) in

(let c4=(addself c3#r) in

(let c5=(add c4 (call s3#q)) in

(let k1=Crypt and k2=Crypt in

(let s4=(plug s3#k k1#v) in

(let c6=(plug c5#k k2#v) in

(let c7=(plug (plug c6#p s4#u)#i s4#a) in

. . .)). . .)

Fig. 4: Adapting components

of the functional part of the language. We extend a domain of basic
(functional and data) values by the following kinds of values:

• h, value of a component, i.e., a handler value.

• (h, s, tp), value of an URS where h is the value of a component,
s is a service name, i.e., a string, tp is a type (for discrimating
services with the same name, it may be empty).

The operational semantics of Components is given in Fig. 5. The
semantics corresponding to a Component declaration is straightfor-
wardly given by lists of requested or provided services, and a clo-
sure similar to the treatment of functions: the rule is nothing else
but a new value given for the reference. The lists of requested or
provided services may be used if one extends the language by ex-
pressions asking for the interface of components. The semantics of
plugging a service is similar to

Component

Services {s1(p)⇒ (call e2?p); }
Cend

except that _self should refer to the component given in the first

argument. The operation noted ‘
+
←’ (resp. ‘

−

←’) adds (resp. deletes)
from its first argument the second argument if present. The seman-
tics of an URS follows its syntactical structure. Rules are given in
Fig. 6. A call to a service stipulates a service name and possibly a
type, and as usual parameter values if needed.

There are various ways of merging components in FLAC. This
gives the user full control over the model of components to have
at the end and full modularity with respect to specification. Infor-
mally, two merge modes are given here:

h fresh E ′ = E
+
← (_self 7→ h) E ′ ⊢ Sl3 ⇓ L

E ,H ⊢

Component

[Requested {sl1}]
[Provided {sl2}]
[Services {Sl3}]

Cend

⇓ h,H ∪ {h 7→







[req 7→ sl1,]
[prv 7→ sl2,]
[serv 7→ L]







}

E ,H ⊢ e1 ⇓ (h1, s1, tp1),H1 h2 fresh

E ′ = E
+
← (_self 7→ h2)

H2 = H1 ∪ {h2 7→ H1(h1) ∪ {serv[(s1, tp1)] 7→ cval(E ′, (p)⇒ (call e2?p))}}

E ,H ⊢ (plug e1 e2) ⇓ h2,H2[h2(req)
−

← (s1, tp1)]

E ,H ⊢ e1 ⇓ (h1, s1, tp1),H1 h2 fresh

E ′ = E
+
← (_self 7→ h2)

H2 = H1 ∪ {h2 7→ H1(h1)}

E ,H ⊢ (unplug e1) ⇓ h2,H2[h2(prv)
−

← (s1, tp1), h2(req)
+
← (s1, tp1)]

In the following rule, the expression defining the parameter has
value () by default.

E ,H ⊢ e1 ⇓ (h1, s1, tp1),H1 [E ,H1 ⊢ e2 ⇓ v,H2]
h1(serv)[(s1, tp1)] = cval(E1, (p)⇒ e0) matchPatt(v, p) = E0

E1\(dom(E0) ∪ h1) ∪ E0 ∪ h1,H2 ⊢ e0 ⇓ v0,H0

E ,H ⊢ (call e1[?e2]) ⇓ v0,H0

(matchPatt(_, _) is a standard pattern matching function return-
ing the bound variables)
In the following rule, the expression defining mode has value add
by default.

E ,H ⊢ e1 ⇓ h1,H1 E ′ = E
+
← (_self 7→ h1) E

′,H1 ⊢ e2 ⇓ h2,H2

[E ′,H2 ⊢ e3 ⇓ m,H3]

E ,H ⊢ (merge[#e3] e1 e2) ⇓ h1 ←m h2,H3

Fig. 5: Operational semantics for Components

h = E(_self) E ,H ⊢ e2 ⇓ s,H1

E ,H ⊢ #e2[(t)] ⇓ (h, s, t),H1

E ,H ⊢ e1 ⇓ h,H1 E ,H1 ⊢ e2 ⇓ s,H2

E ,H ⊢ e1#e2[(t)] ⇓ (h, s, t),H2

E ,H ⊢ empty ⇓ []
E ,H ⊢ S ⇓ v E ,H ⊢ S_list ⇓ L

E ,H ⊢ S ; S_list ⇓ [v|L]

E ,H ⊢ [t] s(tp) (p)⇒ e ⇓ (s, tp)→ cval(E , (p)⇒ e)

Fig. 6: Operational semantics for URS and services

• The add mode is the default one. It consists in superposing the
new component over the old one. In case two nodes exist, the
sets of services are merged with a priority to the new compo-
nent.

• The sub mode deletes from the old component declarations
given in the second parameter of the call.

Formally, we define below the merge operations that serve for
the operational semantics and the typing system. A component
c is considered in the following definition as a partial function
N −→ V where N is a set of (service) names, V is a set of values
(e.g., service codes). We note dom(c) the domain of the partial
function c.

Definition 1. Let c1, c2 be two components, c1 ←op c2, where
op ∈ {add, sub}, is a component defined by:

• ∀n ∈ dom(c2), if op =add, (c1 ←op c2)(n) = c2(n),
• ∀n ∈ dom(c1)\dom(c2), (c1 ←op c2)(n) = c1(n),
• otherwise functions are undefined.

Components
tc ::= (ρ,ρ,ρ) component type
ρ ::= ǫ end of the sequence of service types
| s→ [tp [→ t]],ρ service type

Fig. 7: Type Language

4. Typing System

One adds, to a standard language of functional types, types tc for
component expressions. Such a type tc is a triple of sequences of
service types. A service type is a mapping from a service name to
a type of the service code. The type of the service code may not be
given: this case corresponds to a requested service. Otherwise it is
a mapping from a pattern type tp to a type. The system we present
below is a type checker, however it requires only standard methods
to derive from it a type inference system. The type environment is
a partial function from a set of variable names and a special name

self to types. Typing judgments are of one of the following forms4

where ∆ is a type environment and t is a type:

• ∆ ⊢ e : t where e is an expression

• ∆ ⊢s e : s where e is a service name (string)

• ∆ ⊢URS e : (tc,s,tp) where e is an URS

• ∆ ⊢S_list e : t where e is a list of services

• ∆ ⊢mtlist e : t where e is a list of services, either requested or
provided

• ∆ ⊢p p : tp where p is a pattern

As components are not modified in-place, there is no specific
difficulties in the typing system as soon as one considers that a
component is a partially defined object. Hence its expected services
are marked as partially defined function types, and a plug operation
completes accordingly the type of the provided service in the com-
ponent. Conversely, an unplug operation partially undefines part of
the component type. Finally, as in the operational semantics, in a
call operation, the special name self is defined to be the type of
the first argument to be reused during the typing of the second ar-
gument of the call operation if the component is omitted. Note that
this special name self is not part of the (user) type language.

Types for service names and URS follow the data structure (in
URS rule, tp is empty if t is not given):

s string

∆ ⊢s s : s

tc = ∆(self) ∆ ⊢s e2 : s [∆ ⊢p t : tp]

∆ ⊢URS #e2[(t)] : (tc,s,tp)

∆ ⊢ e1 : tc ∆ ⊢s e2 : s [∆ ⊢p t : tp]

∆ ⊢URS e1#e2[(t)] : (tc,s,tp)

Service declarations, respectively service interfaces, are typed
with ⊢S_list, respectively ⊢mtlist, judgment rules. It consists mainly
of mappings from service names to code types. The ∨ operation
merges two lists: if a service name is present in each list then the

code type should be equal5 or at most one is defined (see ⊢mtlist
judgment rules below), otherwise the service name is just added.

∆ ⊢S_list:

∆ ⊢s s : s ∆ ⊢p p : tp ∆ ⊢ e : t

∆ ⊢S_list S_list : ρ [t′ = s→ tp→ t]

ρ′ = ρ ∨ (s→ tp→ t)

∆ ⊢S_list [t
′] s[(tp)] (p)⇒ e ; S_list : ρ′

4 We omit type judgments and type rules for the functional language.
5 We do not consider subtyping in this paper.

Provided and requested service declarations are typed with
⊢mtlist judgment rules. Note that requested services are given ser-
vice types without code types.

∆ ⊢mtlist:

∆ ⊢s s : s [t a type]
∆ ⊢mtlist s_mtlist : ρ
ρ′ = ρ ∨ (s→t→)

∆ ⊢mtlist s[(t)] ; s_mtlist : ρ′

A component type merges together service types as declared in
the three parts of a component definition.

∆,⊢mtlist sl1 : ρr ∆,⊢mtlist sl2 : ρp ∆,⊢s_list Sl3 : ρs

∆ ⊢

Component

[Requested {sl1}]
[Provided {sl2}]
[Services {Sl3}]

Cend

: (ρr,ρp,ρs)

For typing the plug operation, a virtual component is created
that serves as a go-between to send the call from a component to
another one. The unplug operation is typed accordingly: a virtual
component is created containing only an undefined service type for
what is unplugged.

∆ ⊢URS e1 : (tc1,s1,tp1) tc1 = (ρr1,ρp1,ρs1)
∆, self 7→ tc1 ⊢URS e2 : (tc2,s2,tp2)

∆, v 7→ tp1 ⊢ (call e2?v) : t2

ρ′r = ρr1
−

← s1→tp1 ρ′s = ρr1
+
← s1→tp1→ t2

∆ ⊢ (plug e1 e2) : (ρ
′

r,ρp1,ρ
′

s)

∆ ⊢URS e1 : (tc1,s1,tp1) tc1 = (ρr1,ρp1,ρs1)

ρ′r = ρr1
+
← s1→tp1 ρ′s = ρr1

−

← s1→tp1→

∆ ⊢ (unplug e1) : (ρ
′

r,ρp1,ρ
′

s)

The call result type is the result type of the service.

∆ ⊢URS e1 : (tc1,s1,tp1) tc1 = (ρr1,ρp1,ρs1)
[∆ ⊢ e2 : tp]

s1 7→tp 7→t′ ∈ ρs1 s1 7→tp ∈ ρp1

∆ ⊢ (call e1[?e2]) : t
′

The type language is extended by a mode value µ ⊂ {add, sub}.
The type of a component expression is a sequence of service types.
A service type is a mapping from a service name to a set of modes
and a code type (the type of the service code). The set of modes
declares the available ways to call the service. Finally, as in ob-
ject functional programming, component locations appear as types.
This generates a finite set of types for a finite program. The merge
operation merges the two component types with respect to the
mode. In rule below, m = add if e3 is empty:

∆ ⊢ e1 : tc1 ∆,self 7→ tc1 ⊢ e2 : tc2 [∆ ⊢µ e3 : m]

∆ ⊢ (merge[#e3] e1 e2) : tc1 ←m tc2

Type safety follows from verifying standard type preservation
properties. Hence well-typed expressions are evaluable, i.e., there
cannot be evaluation errors (provided for the functional language
part an operational semantics safe with respect to a classic typing).
E.g., if expressions typable in the underlying functional langage are

always reducible to values:6

Theorem 1. Let e be an expression of the language, if ⊢ e : t is
provable, then there exist v,H such that ⊢ e ⇓ v,H is provable.

6 A more general statement may be given: if an expression is well-typed
then it is either a value or it is reducible with a small-step version of the
operational semantics.

The proof is standard and the more general property is checked:
let e be an expression of the language, if ∆ ⊢ e : t is provable,
then there exist v, E ,H,H′ such that E ,H ⊢ e ⇓ v,H′ is prov-
able, furthermore if t is a component type then v is a handler with
value in H′ such that the structure of this value follows the struc-
ture of t, finally if ∆(x) is defined then also E(x) and if E(x) is a
handler thenH(E(x)) has a value. Similar properties for other type
inference systems, i.e., ⊢URS, . . . The proof is straightforward if we
notice that there is no in-place adaptation and the underlying pro-
gramming language is supposed to be functional, thus adaptations
do not lead to type changes. Note that there is no necessity for a
component to have values for all its required services: the typing
system ensures that a call is correct as soon as what is needed for
the call to be executed is present in the component, and only that.
However, in case of distributed systems or web services, a dynamic
type-checking has to be added as one cannot be sure that requests
are well-formed with respect to the program.

5. Conclusion

The FLAC programming language deals with adaptable compo-
nents. Its main feature concerns dynamic internal adaptations in a
strongly-typed language. It is facilitated by the fact that adaptations
are described in the same language as the component description
language. This language may be developed in several directions we
currently study. Among them, structuring components is in prac-
tice highly expected as it increases the modularity of the language.
This may be done by adding named parameters to component def-
initions. Such named parameters not only allow assignments of
(sub)components but they may be used for denoting them. It is then
possible, for the programmer, to write control services such that the
part of the component not involved in the evolution is automatically
rebuilt. This may be implemented by abstractly manipulating the
structure of components, i.e., addressing each subcomponent by its
logical named path.

References

[1] Jonathan Aldrich. Using types to enforce architectural structure. In
WICSA ’08: Proceedings of the Seventh Working IEEE/IFIP Confer-

ence on Software Architecture (WICSA 2008), pages 211–220, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[2] Thaís Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Manag-
ing dynamic reconfiguration in component-based systems. In Software

Architecture, 2nd European Workshop, EWSA, pages 1–17, Pisa, Italy,
2005.

[3] Jan Bosch, Clemens A. Szyperski, and Wolfgang Weck, editors. Pro-

ceedings of the Third International Workshop on Component-Oriented

Programming, Brussels, Belgium, 1998. Turku Centre for Computer
Science.

[4] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma,
and Jean-Bernard Stefani. The FRACTAL component model and its
support in java: Experiences with auto-adaptive and reconfigurable
systems. Software: Practice and Experience, 36(11-12):1257–1284,
2006.

[5] Jim Dowling and Vinny Cahill. The K-component architecture meta-
model for self-adaptive software. In REFLECTION ’01: Proceed-

ings of the Third International Conference on Metalevel Architectures

and Separation of Crosscutting Concerns, pages 81–88, London, UK,
2001. Springer-Verlag.

[6] Objective CAML homepage. http://caml.inria.fr/ocaml/index.en.html.

[7] Piriquito Margarida. Type System for the ComponentJ Programming

Language. PhD thesis, Universidade Nova de Lisboa, Faculdade de
Ciências e Tecnologia, 2009.

[8] João Costa Seco and Luís Caires. A basic model of typed components.
In ECOOP ’00: Proceedings of the 14th European Conference on

Object-Oriented Programming, pages 108–128, London, UK, 2000.
Springer-Verlag.

[9] João Costa Seco and Luís Caires. Types for dynamic reconfiguration.
In Peter Sestoft, editor, ESOP, volume 3924 of Lecture Notes in

Computer Science, pages 214–229. Springer, 2006.

[10] Piriquito Margarida Seco João Costa, Silva Ricardo. ComponentJ: A
component-based programming language with dynamic reconfigura-
tion. Computer Science and Information Systems, 5(2):63–86, 2008.

[11] Vugranam C. Sreedhar. Mixin’up components. In ICSE ’02: Proceed-

ings of the 24th International Conference on Software Engineering,
pages 198–207, New York, NY, USA, 2002. ACM.

[12] Clemens Szyperski. Component Software - Beyond Object-Oriented

Programming. Addison-Wesley, 2nd edition, 2002.

6. Appendix

Theorem 1. Provided the underlying functional language evalu-
ates typable expressions, let e be an expression of the language, if
⊢ e : t is provable, then there exist v,H such that ⊢ e ⇓ v,H is
provable.

Proof. We prove the following: Let e be an expression of the
language, if ∆ ⊢ e : t is provable, then there exist v, E ,H,H′ such
that E ,H ⊢ e ⇓ v,H′ is provable, furthermore if t is a component
type then v is a handler with value in H′ such that the structure
of this value follows the structure of t, finally if ∆(x) is defined
then also E(x) and if E(x) is a handler then H(E(x)) has a value.
Similar properties for other type inference systems, i.e., ⊢URS, . . .
The proof is done by considering each rule of the typing system.

•

s string

∆ ⊢s s : s then for allH,

s string

E ,H ⊢ s ⇓ s,H

•

tc = ∆(self) ∆ ⊢s e2 : s ∆ ⊢p tp : tp

∆ ⊢URS #e2(tp) : (tc,s,tp) then, given the
hypothesis of the typing rule, there exist E ,H, h,H1, s,H2,
that justify the hypothesis of the operational rule:
h = E(_self) E ,H ⊢ e2 ⇓ s,H1

E ,H ⊢ #e2(tp) ⇓ (h, s, tp),H1

•

∆ ⊢ e1 : tc ∆ ⊢s e2 : s ∆ ⊢p t : tp

∆ ⊢URS e1#e2(tp) : (tc,s,tp) then, given the hy-
pothesis of the typing rule, there exist E ,H, h,H1, s,H2, that
justify the hypothesis of the operational rule:
E ,H ⊢ e1 ⇓ h,H1 E ,H1 ⊢ e2 ⇓ s,H2

E ,H ⊢ e1#e2(tp) ⇓ (h, s, tp),H3

• ∆ ⊢S_list: then for all E ,H:
E ,H ⊢ empty ⇓ []

•

∆ ⊢s s : s ∆ ⊢p p : tp ∆ ⊢ e : t

∆ ⊢S_list S_list : ρ [t′ = s→ tp→ t]

ρ′ = ρ ∨ (s→ tp→ t)

∆ ⊢S_list [t
′] s[(tp)] (p)⇒ e ; S_list : ρ′ then, given the

hypothesis of the typing rule, there exist E ,H, v, L, that justify
the hypothesis of the operational rules:

E ,H ⊢ [t] s(tp) (p)⇒ e ⇓ (s, tp)→ cval(E , (p)⇒ e)

and E ,H ⊢ S ⇓ v E ,H ⊢ S_list ⇓ L

E ,H ⊢ S ; S_list ⇓ [v|L]

• ∆ ⊢mtlist: This rule as well as the following one are used to
present a list of available or requested services. The operational
semantics is nothing else but the list itself.

•

∆ ⊢s s : s [t a type]
∆ ⊢mtlist s_mtlist : ρ
ρ′ = ρ ∨ (s→t→)

∆ ⊢mtlist s[(t)] ; s_mtlist : ρ′

•

∆,⊢mtlist sl1 : ρr ∆,⊢mtlist sl2 : ρp ∆,⊢s_list Sl3 : ρs

∆ ⊢

Component

[Requested {sl1}]
[Provided {sl2}]
[Services {Sl3}]

Cend

: (ρr,ρp,ρs)

then, given the hypothesis of the typing rule, there exist E ,H, L,
that justify the hypothesis of the operational rule:

h fresh E ′ = E
+
← (_self 7→ h) E ′ ⊢ Sl3 ⇓ L

E ,H ⊢

Component

[Requested {sl1}]
[Provided {sl2}]
[Services {Sl3}]

Cend

⇓ h,H ∪ {h 7→







[req 7→ sl1,]
[prv 7→ sl2,]
[serv 7→ L]







}

•

∆ ⊢URS e1 : (tc1,s1,tp1) tc1 = (ρr1,ρp1,ρs1)
∆, self 7→ tc1 ⊢URS e2 : (tc2,s2,tp2)

∆, v 7→ tp1 ⊢ (call e2?v) : t2

ρ′r = ρr1
−

← s1→tp1 ρ′s = ρr1
+
← s1→tp1→ t2

∆ ⊢ (plug e1 e2) : (ρ
′

r,ρp1,ρ
′

s) then,
given the hypothesis of the typing rule, there exist E , H, H1,
h1, s1, tp1, that justify the hypothesis of the operational rule:

E ,H ⊢ e1 ⇓ (h1, s1, tp1),H1 h2 fresh

E ′ = E
+
← (_self 7→ h2)

H2 = H1 ∪ {h2 7→ H1(h1) ∪ {serv[(s1, tp1)] 7→ cval(E ′, (p)⇒ (call e2?p))}}

E ,H ⊢ (plug e1 e2) ⇓ h2,H2[h2(req)
−

← (s1, tp1)]

•

∆ ⊢URS e1 : (tc1,s1,tp1) tc1 = (ρr1,ρp1,ρs1)

ρ′r = ρr1
+
← s1→tp1 ρ′s = ρr1

−

← s1→tp1→

∆ ⊢ (unplug e1) : (ρ
′

r,ρp1,ρ
′

s) then,
given the hypothesis of the typing rule, there exist E , H, H1,
h1, s1, tp1, that justify the hypothesis of the operational rule:

E ,H ⊢ e1 ⇓ (h1, s1, tp1),H1 h2 fresh

E ′ = E
+
← (_self 7→ h2)

H2 = H1 ∪ {h2 7→ H1(h1)}

E ,H ⊢ (unplug e1) ⇓ h2,H2[h2(prv)
−

← (s1, tp1), h2(req)
+
← (s1; tp1)]

•

∆ ⊢URS e1 : (tc1,s1,tp1) tc1 = (ρr1,ρp1,ρs1)
[∆ ⊢ e2 : tp]

s1 7→tp 7→t′ ∈ ρs1 s1 7→tp ∈ ρp1

∆ ⊢ (call e1[?e2]) : t
′ then, given the

hypothesis of the typing rule, there exist E ,H,H1, h1, s1, tp1,
that justify the hypothesis of the operational rule:

E ,H ⊢ e1 ⇓ (h1, s1, tp1),H1 [E ,H1 ⊢ e2 ⇓ v,H2]
h1(serv)[(s1, tp1)] = cval(E1, (p)⇒ e0) matchPatt(v, p) = E0

E1\(dom(E0) ∪ h1) ∪ E0 ∪ h1,H2 ⊢ e0 ⇓ v0,H0

E ,H ⊢ (call e1[?e2]) ⇓ v0,H0

•

∆ ⊢URC e1 : t1 ∆,self 7→ t1 ⊢ e2 : t2 [∆ ⊢µ e3 : m]

∆ ⊢ (merge[#e3] e1 e2) : t1 ←m t2
then, given the hypothesis of the typing rule, there exist E , H,
H1, h1, s1,H2, h2, that justify the hypothesis of the operational
rule:
E ,H ⊢ e1 ⇓ h1,H1 E ′ = E

+
← (_self 7→ h1) E

′,H1 ⊢ e2 ⇓ h2,H2

[E ′,H2 ⊢ e3 ⇓ m,H3]

E ,H ⊢ (merge[#e3] e1 e2) ⇓ h1 ←m h2,H3

