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A DISCRETE APPROACH TO ROUGH ELLIPTIC EQUATIONS

A. DEYA

Abstract. By combining the formalism of [8] with a discrete approach close to the
considerations of [6], we interpret and solve the rough partial differential equation
dyt = Ayt dt +

∑m

i=1
fi(yt) dx

i
t (t ∈ [0, T ]) on a compact domain O of Rn, where A is

a rather general elliptic operator of Lp(O) (p > 1), fi(ϕ)(ξ) := fi(ϕ(ξ)) and x is the
generator of a 2-rough path. The (global) existence, uniqueness and continuity of a
solution is established under classical regularity assumptions for fi. Some identification
procedures are also provided in order to justify our interpretation of the problem.

1. Introduction

The rough paths theory introduced by Lyons in [15] and then refined by several
authors (see the recent monograph [11] and the references therein) has led to a very
deep understanding of the standard rough systems

dyit =
m
∑

j=1

σij(yt) dx
j
t , y0 = a ∈ R

d, (1)

where σij : R → R is a regular vector field and x is a so-called rough path, that is to
say a process allowing the construction of iterated integrals (see Assumption (X)γ for
the definition of a 2-rough path and [16] for a rough path of any order). The theory
provides for instance a new pathwise interpretation of stochastic systems driven by very
general Gaussian processes, as well as fruitful and highly non-trivial continuity results
for the Itô solution of (1), ie when x is a standard Brownian motion.

One of the new challenges of rough paths theory now consists in adapting the machin-
ery to infinite-dimensional (rough) equations involving a non-bounded operator, with,
as a final objective, the possibility of new pathwise interpretations for stochastic PDEs.
Some progresses have recently been made towards this goal, with on the one hand the
viscosity-solution approach due to Friz et al (see [2, 3, 10, 9]) and on the other the de-
velopment by Gubinelli and Tindel of a specific formalism designed for rough evolution
equations (see [13, 8]).

The present paper is a contribution to this global project. It aims at providing, in
a concise and self-contained formulation, the analysis of the following rough evolution
equation:

y0 = ψ ∈ Lp(O) , dyt = Ayt dt+
m
∑

i=1

fi(yt) dx
i
t , t ∈ [0, T ], (2)
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2 A. DEYA

where A is a rather general elliptic operator on a bounded domain O of Rn (see Assump-
tions (A1)-(A2)), fi(ϕ)(ξ) := fi(ϕ(ξ)) and x generates a m-dimensional 2-rough path
(see Assumption (X)γ). Although the global form of (2) is quite similar to the equation
treated in [8], several differences and notable improvements easily justify the interest of
the study we suggest here, as the three main theorems 2.10-2.12 will point it out:

(i) The equation is here analysed on a compact domain O of Rn. This allows to simplify
the conditions relative to the vector field fi, which reduce to the classical assumptions
of rough paths theory, ie k-times differentiable (k ∈ N

∗) with bounded derivatives (see
Assumption (F)k).

(ii) The conditions on p are less stringent than in [8], where p has to be taken very large.
It will here be possible to show the existence and uniqueness of a solution in Lp(O)
(for a regular enough initial condition ψ) as soon as p > n. In particular, we can go
back to the Hilbert framework of [13] for the one-dimensional equation (n = 1, p = 2).

(iii) Last but not least, the arguments we are about to use lead to the existence of a global
solution for (2), defined on any time interval [0, T ]. We recall that only a local solution
is obtained in [8], on a time interval that depends on the data of the problem, namely
x, f and ψ.

To reach those three improvements, the strategy will combine elements of the for-
malism used in [8] with a discrete approach of the equation, close to the machinery
developped in [6] for rough standard systems. A first step consists of course in providing
a reasonable interpretation of Equation (2): for sake of conciseness, we have chosen to
work with an interpretation à la Davie, based on the expansion of the regular solution
(see Definition 2.6), and we have left aside the sewing map at the core of the construc-
tions in [8]. Note however that the expansion at stake leans here on the operator-valued
processes Xx,i, Xax,i, Xxx,ij already identified in the latter reference (see Subsection 2.3),
and which, in some sense, plays the role of an infinite-dimensional rough path adapted
to the problem. We will let the reader observe (see Subsection 2.4) that when applying
the procedure to a regular driving process x (resp. a standard Brownian motion a),
the solution we retrieve coincides with the classical solution (resp. the Itô solution).
Together with the continuity statement of Theorem 2.12, this identification procedure
allows to justify the meaning that will be given to Equation (2) (see Corollary 2.13 and
Remark 2.14).

Once endowed with an interpretation of the equation, the solving method is based on
a discrete approach of the problem: as in [6], the solution is obtained as the limit of a
discrete scheme the mesh of which tends to 0. Nevertheless, some fundamental differences
arise when trying to mimic the strategy of [6]. To begin with, the middle-point argument
at the root of the reasoning in the diffusion case (see the proof of [6, Lemma 2.4]) cannot
take into account the regularization procedures that make up for the classical interplays
between time and space regularities in PDEs. Therefore, the argument must be replaced
with a little bit more complex algorithm described in Appendix A, and which will be
used to all through the paper. Let us also mention the fact that the expansion of the
vector field fi(ϕ)(ξ) := fi(ϕ(ξ)) is not as easy to control as in the standard finite-
dimensional case, even if one assumes that the functions fi : R → R are very regular.
Observe for instance that if W α,p (α ∈ (0, 1)) stands for the fractional Sobolev space
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likely to accomodate the solution process, and if fi is assumed to be smooth, bounded
with bounded derivative, then one can only rely on the non-uniform estimate (see [21])

‖fi(ϕ)‖Wα,p ≤ ‖f‖L∞(R) + ‖f ′
i‖L∞(R)‖ϕ‖Wα,p for any ϕ ∈ W α,p.

Consequently, more subtle patching arguments must be put forward so as to exhibit a
global solution. This requires in particular a careful examination of the dependence of
each estimate with respect to the initial condition (see for instance the controls (32) and
(33)). It is worth noticing here that the high regularity of the initial condition (see the
assumption in Theorem 2.10: ψ ∈ Bγ′,p with γ + γ′ > 1) will play a fundamental role in
our approach: it will be resorted to in order to get rid of the quadratic terms that poped
out of the estimates of [8], and which turned out to be very problematic when trying to
extend the solution on any interval.

The paper is structured as follows: In Section 2, we gather all the elements that allow
to introduce understand our interpretation of Equation (2), and we state the three main
results of the paper, namely Theorems 2.10-2.12. The three sections that follow are
dedicated to the proof of each of these results, with the existence theorem first (Section
3) and then the uniqueness (Section 4) and continuity (Section 5) results. Finally,
Appendix A contains the description and analysis of the algorithm at the root of our
machinery, while Appendix B is meant to provide the details relative to the identification
procedure in the Brownian case (see Proposition 2.9).

For sake of clarity, we shall only consider Equation (2) on the generic interval [0, 1].
It is however easy to realize that the whole reasoning remains valid on any (fixed) finite
interval [0, T ].

All through the paper, we will denote by Ck,b(R;Rl) (k, l ∈ N
∗) the set of Rl-valued

functions which are k-times differentiable with bounded derivatives. Moreover, following
the rough paths terminology, we will call regular process any piecewise differentiable
function.

2. Interpretation of the equation

We first give some precisions about the setting of our study, as far as the operator A,
the driving process x and the vector field fi are concerned (Subsection 2.1). Then we
introduce a few notations and tools designed for the analysis of the equation (Subsections
2.2 and 2.3), and with the help of which we can define and justify our notion of solution
(Subsection 2.4). We finally state the three main results associated to this definition
(Subsection 2.5), and which will be proved in the next sections.

2.1. Assumptions. As it was announced in the introduction, we mean to tackle the
equation dyt = Ayt dt + fi(yt) dx

i
t, t ∈ [0, 1], in Lp(O), where O is a bounded domain

of Rn, A is an elliptic operator, fi(ϕ)(ξ) := fi(ϕ(ξ)) and x is a Hölder process. More
precisely, to be in position to interpret and solve this equation, we will be led to assume
that the following conditions are satisfied:

Assumption (A1): A generates an analytic semigroup of contraction S on any
Lp(O). Under this hypothesis, we will denote Sts := St−s (s ≤ t), Bp := Lp(O), Bα,p :=
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Dom(Aαp ), and we endow the latter space with the graph norm ‖ϕ‖Bα,p := ‖Aαpϕ‖Lp(O).

We also assume that for any function g ∈ C2,b(R;R), there exists a constant cg such that

‖g(ϕ)‖B1/2,p
≤ cg{1 + ‖ϕ‖B1/2,p

} , ‖g(ϕ)‖Bα,p ≤ cg{1 + ‖ϕ‖2Bα,p
} if α ∈ (1/2, 1), (3)

where g(ϕ) is just understood in the composition sense, ie g(ϕ)(ξ) := g(ϕ(ξ)).

Assumption (A2): If 2αp > n, then Bα,p is a Banach algebra continuously included
in the space B∞ of continuous functions on O.

Assumption (X)γ: x allows the construction of a 2-rough path

(x,x2) ∈ Cγ1 ([0, 1];R
m)× C2γ

2 ([0, 1];Rm,m)

for some (fixed) coefficient γ ∈ (1/3, 1/2). In other words, we assume that x is a γ-
Hölder process and that there exists a 2-variable process x2 (also called a Lévy area)
such that for any 0 ≤ s ≤ u ≤ t ≤ 1,

∣

∣x2

ts

∣

∣ ≤ c |t− s|2γ and x2,ij
ts − x2,ij

tu − x2,ij
us = (xit − xiu)(x

i
u − xis).

We will then denote

‖x‖γ := N [x; Cγ1 ([0, 1];R
m)] +N [x2; C2γ

2 ([0, 1];Rm,m)],

where

N [x; Cγ1 ([0, 1];R
m)] := sup

0≤s<t≤1

|xt − xs|

|t− s|γ
, N [x2; C2γ

2 ([0, 1];Rm,m)] := sup
0≤s<t≤1

|x2

ts|

|t− s|2γ
.

Assumption (F)k: f belongs to Ck,b(R;Rm).

Before pondering over the plausibility of those conditions, let us precise that we hence-
forth focus on the mild formulation of Equation (2), ie

yt = Stψ +

∫ t

0

Stu dx
i
u fi(yu) , t ∈ [0, 1]. (4)

This is a classical change of viewpoint for the study of (stochastic) PDEs (see [5]),
which allows to resort to the regularizing properties of the semigroup. Note however
that owing to the regularity assumptions on f , it will be retrospectively possible to
make a link between the mild and strong interpretations of the equation (see Remark
2.14).

Application: Properties (A1)-(A2) are satisfied by any elliptic operator on Lp((0, 1)n)
that can be written as

A = −
n
∑

i,j=1

∂ξi(aij · ∂ξj ) + c , D(Ap) :=W 2,p((0, 1)n) ∩W 1,p
0 ((0, 1)n), (5)

where c ≥ 0 and the functional coefficients aij are bounded, differentiable with bounded
derivatives on [0, 1]n. Indeed, under those assumptions, it is proven in [7] that A gen-
erates an analytic semigroup of contraction. Then, thanks to [18], one can identify the
domain D(Aαp ) with the complex interpolation [Lp,D(Ap)]α and use the result of [20] to

assert that ‖.‖D(Aα
p ) ∼ ‖.‖F 2α

p,2
, where F 2α

p,2 is the classical Triebel-Lizorkin space described
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(for instance) in [19]. The results of [19] (resp. [21]) finally enables to check Condition
(A2) (resp. the controls contained in (3)).

As far as Condition (X)γ is concerned, the process we have in mind in this paper is the
fractional Brownian motion BH with Hurst index H > 1/3, for which the (a.s) existence
of a Lévy area has been established in [4]. Note however that Condition (X)γ is in fact
satisfied by a larger class of Gaussian processes, as reported in [11].

In brief, under the above-stated regularity assumptions, the results we are about to state
and prove can be applied to the equation

dyt =

[

−
n
∑

i,j=1

∂ξi(aij · ∂ξjyt) + cyt

]

dt+

m
∑

i=1

fi(Yt) dB
H,i
t , t ∈ [0, 1] , ξ ∈ (0, 1)n.

2.2. Hölder spaces. We suppose in this subsection that Assumption (A1) is satisfied.
In order to introduce the framework well-suited for the analysis of (4), let us only
point out the following consideration: we know that the most appropriate background
for the study of rough standard systems is the classical Hölder space {y : [0, 1] →
R
d : |yt − ys| ≤ c |t− s|γ} (see [12]), and this is (among others) due to the convenient

expression for the variations of the solution y of (1), namely yt − ys =
∫ t

s
σij(yu) dx

j
u.

Here, if we denote by y the solution of (4) (assume for the moment that x is regular), it
is readily checked that for any s < t,

yt − ys =

∫ t

s

Stu dx
i
u fi(yu) + atsys, where ats := Sts − Id .

With this observation in mind, the introduction of the following notations becomes quite
natural:

Notations. For all processes y : [0, 1] → Bp and z : S2 → Bp, where S2 := {(s, t) ∈
[0, 1]2 : s ≤ t}, we set, for s ≤ u ≤ t ∈ [0, 1],

(δy)ts := yt − ys , (δ̂y)ts := (δy)ts − atsys = yt − Stsys, (6)

(δ̂z)tus := zts − ztu − Stuzus. (7)

With these notations, the (regular) system (4) can be equivalently written as

y0 = ψ , (δ̂y)ts =

∫ t

s

Stu dx
i
u fi(yu). (8)

To make the introduction of Notations (6)-(7) even more legitimate in this convolutional
context, we let the reader observe the following elementary properties:

Proposition 2.1. Let y : [0, 1] → Bp and x : [0, 1] → R a regular process. Then it holds:

• Telescopic sum: δ̂(δ̂y)tus = 0 and (δ̂y)ts =
∑n−1

i=0 Stti+1
(δ̂y)ti+1ti for any partition

{s = t0 < t1 < . . . < tn = t} of an interval [s, t] of [0, 1].

• Chasles relation: if Jts :=
∫ t

s
Stu dxu yu, then δ̂J = 0.

The treatment of Equation (8) via the rough paths method will lean on the controlled

expansion of the convolutional integral
∫ t

s
Stu dx

i
u fi(yu). In order to express this control

with the highest accuracy, we must provide ourselves with suitable semi-norms, that
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can be seen as generalizations of the classical Hölder norms: thus, if y : [0, 1] → V ,
z : S2 → V and h : S3 → V , where V is any Banach space and S3 := {(s, u, t) ∈ [0, 1]3 :
s ≤ u ≤ t}, we will denote, for any λ > 0,

N [y; Ĉλ1 ([a, b];V )] := sup
a≤s<t≤b

‖(δ̂y)ts‖V

|t− s|λ
, N [y; C0

1([a, b];V )] := sup
t∈[a,b]

‖yt‖V , (9)

N [z; Cλ2 ([a, b];V )] := sup
a≤s<t≤b

‖zts‖V

|t− s|λ
, N [h; Cλ3 ([a, b];V )] := sup

a≤s<u<t≤b

‖htus‖V

|t− s|λ
. (10)

Then, in a natural way, Ĉλ1 ([a, b];V ) stands for the set of processes y : [0, 1] → V

such that N [y; Ĉλ1 ([a, b];V )] <∞, and we define Cλ2 ([a, b];V ) and Cλ3 ([a, b];V ) along the
same line. With these notations, observe for instance that if y ∈ Cλ2 ([a, b];L(V,W ))

and z ∈ Cβ2 ([a, b];V ), the process h defined as htus = ytuzus (s ≤ u ≤ t) belongs to

Cλ+β3 ([a, b];W ).

When [a, b] = [0, 1], we will more simply write Cλk (V ) := Cλk ([a, b];V ).

2.3. Infinite-dimensional rough path. When x is a regular process, the expansion
of the convolutional integral

∫ t

s
Stu dx

i
u fi(yu) puts forward the role played by the three

following operator-valued processes constructed from x (see the proof of Proposition
2.8):

∫ t

s

Stu dx
i
u ,

∫ t

s

atu dx
i
u ,

∫ t

s

Stu dx
i
u (δx

j)us.

Of course, when x becomes irregular, these expressions don’t make sense anymore. An
integration by parts argument, retrospectively justified through Lemmas 2.3 and 2.4,
leads in this situation to the following abstract definitions:

Definition 2.2. Under Assumptions (A1) and (X)γ, we define the three processes Xx,i,
Xax,i and Xxx,ij by the formulas

Xx,i
ts := Sts(δx

i)ts −

∫ t

s

AStu(δx
i)tu du, (11)

Xax,i
ts := ats(δx

i)ts −

∫ t

s

AStu(δx
i)tu du, (12)

Xxx,ij
ts := Stsx

2,ij
ts −

∫ t

s

AStu
[

x2,ij
tu + (δxi)tu(δx

j)us
]

du. (13)

If in addition Assumption (F)1 is satisfied, we set Fij(ϕ) := f ′
i(ϕ) · fj(ϕ) and associate

to any process y : [0, 1] → Bp the two quantities

Jyts := (δ̂y)ts −Xx,i
ts fi(ys)−Xxx,ij

ts Fij(ys), (14)

Ky
ts := (δ̂y)ts −Xx,i

ts fi(ys). (15)

Lemma 2.3. Let x a m-dimensional regular process and x2 its Lévy area, understood in
the classical Lebesgue sense as the iterated integral x2,ij

ts :=
∫ t

s
dxiu (δx

j)us. Then, ubder
Assumption (A1),

Xx,i
ts =

∫ t

s

Stu dx
i
u , Xax,i

ts =

∫ t

s

atu dx
i
u , Xxx,ij

ts =

∫ t

s

Stu dx
i
u (δx

j)us. (16)
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Proof. As aforementioned, this is just a matter of integration by parts. For instance,
one has

∫ t

s

Stu dx
i
u (δx

j)us =

∫ t

s

Stu du
(

x2,ij
us

)

=

∫ t

s

Stu du
(

−(δx2,ij)tus + x2,ij
ts − x2,ij

tu

)

=

∫ t

s

Stu du
(

−(δxi)tu(δx
j)us − x2,ij

tu

)

= Stsx
2,ij
ts −

∫ t

s

AStu
[

x2,ij
tu + (δxi)tu(δx

j)us
]

du.

�

Observe now that the three expressions contained in (16) can also be directly in-
terpreted as Itô integrals when x is a standard Brownian motion. This interpretation
remains consistent with Definition 2.2:

Lemma 2.4. Let x a m-dimensional Brownian motion and x2 its Lévy area, understood
in the Itô sense as the first iterated integral of x. Then, under Assumption (A1), the
three identifications of the previous lemma remain valid in this context.

Proof. The integration by parts argument is just replaced with Itô’s formula, after notic-
ing that we only deal with Wiener integrals. For Xxx, we know indeed that for any fixed
s, the process u 7→ x2,ij

us =
∫ u

s
dxiv (δx

j)vs is a semimartingale and
∫ t

s
Stu dx

i
u (δx

j)us =
∫ t

s
Stu du(x

2,ij
us ). �

To end up with this subsection, let us underline the regularity properties that will be
at our disposal in the sequel:

Proposition 2.5. Under Assumptions (A1) and (X)γ, one has, for all α ∈ (0, 1), κ ∈
[0, γ),

Xx,i ∈ Cγ2 (L(Bα,p,Bα,p)) ∩ Cγ−κ2 (L(Bα,p,Bα+κ,p)), (17)

Xax,i ∈ Cγ+α2 (L(Bα,p,Bp)), (18)

Xxx,ij ∈ C2γ
2 (L(Bα,p,Bα,p)) ∩ C2γ−κ

2 (L(Bα,p,Bα+κ,p)). (19)

We will denote by ‖X‖γ,α,κ the norm attached to X := (Xx, Xax, Xxx) through Properties
(17)-(19), that is to say

‖X‖γ,α,κ :=
m
∑

i,j=1

{

N [Xx,i; Cγ2 (L(Bα,p,Bα,p))] + . . .+N [Xxx,ij; C2γ−κ
2 (L(Bα,p,Bα+κ,p))

}

.

With this notation, one has ‖X‖γ,α,κ ≤ cγ,α,κ‖x‖γ. Moreover, if X̃ stands for the path
associated to another process x̃ satisfying (X)γ, then

‖X − X̃‖γ,α,κ ≤ cγ,α,κ {1 + ‖x‖γ + ‖x̃‖γ} ‖x− x̃‖γ. (20)

Proof. Properties (17)-(19) are straightforward consequences of the well-known estimates
(see [17])

‖Stsϕ‖Bα+κ,p ≤ cκ |t− s|−κ ‖ϕ‖Bα,p , ‖AStsϕ‖Bα+κ,p ≤ cκ |t− s|−1−κ ‖ϕ‖Bα,p,
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‖atsϕ‖Bp ≤ cα |t− s|α ‖ϕ‖Bα,p.

For example, for any ϕ ∈ Bα,p,

‖Xx,i
ts ϕ‖Bα+κ,p ≤ ‖x‖γ

{

|t− s|γ ‖Stsϕ‖Bα+κ,p +

∫ t

s

|t− u|γ ‖AStuϕ‖Bα+κ,p du

}

≤ cκ‖x‖γ‖ϕ‖Bα,p

{

|t− s|γ−κ +

∫ t

s

|t− u|−1+γ−κ du

}

≤ cγ,κ‖x‖γ‖ϕ‖Bα,p |t− s|γ−κ .

The controls of ‖X‖γ,α,κ and ‖X−X̃‖γ,α,κ can be readily checked from the very definitions
(11)-(13). Observe for instance that

‖

∫ t

s

AStu(δx
i)tu(δx

j)us du−

∫ t

s

AStu(δx̃
i)tu(δx̃

j)us du‖L(Bp,Bp)

≤

∫ t

s

‖AStu‖L(Bp,Bp)

{∣

∣δ(xi − x̃i)tu
∣

∣

∣

∣(δxj)us
∣

∣ +
∣

∣(δx̃i)tu
∣

∣

∣

∣δ(xj − x̃j)us
∣

∣

}

du

≤ c {1 + ‖x‖γ + ‖x̃‖γ} ‖x− x̃‖γ

(
∫ t

s

|t− u|−1+γ |u− s|γ du

)

≤ c |t− s|2γ {1 + ‖x‖γ + ‖x̃‖γ} ‖x− x̃‖γ.

�

2.4. Solution of the equation. The notion of solution we will use in this paper is
inspired by the considerations of [6] for rough standard systems. We first give its (ab-
stract) definition and then provide two results meant to make the apprehension of this
concept easier (Propositions 2.8 and 2.9). Remember that the notation Jy has been
introduced in Definition 2.2.

Definition 2.6. Under Assumptions (A1), (X)γ and (F)1, for all λ ≥ 0 and ψ ∈ Bλ,p,
we will call solution in Bλ,p of the equation

yt = Stψ +

∫ t

0

St−ufi(yu) dx
i
u , t ∈ [0, 1], (21)

any process y : [0, 1] → Bλ,p such that y0 = ψ and that there exists two coefficients
µ > 1, ε > 0 for which

Jy ∈ Cµ2 ([0, 1];Bp) and Jy ∈ Cε2([0, 1];Bλ,p).

Remark 2.7. The reader familiar with the strategy of [6] will not be surprised by the
condition Jy ∈ Cµ2 ([0, 1];Bp) for some coefficient µ > 1. The second condition Jy ∈
Cε2([0, 1];Bλ,p) may be less expected: it stems from the technical arguments that will be
displayed in Section 4 so as to obtain uniqueness of the solution (observe in particular
the estimate (43)).

Proposition 2.8. Let x a m-dimensional regular process, x2 its Lévy area, understood
in the Lebesgue sense. We suppose that Assumptions (A1) and (F)1 are satisfied. Then,
for all η ∈ (0, 1) and ψ ∈ Bη,p, the (classical) solution of Equation (21) is also solution
in Bη,p in the sense of Definition 2.6.
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Proof. Let y the classical solution of (21), with initial condition ψ ∈ Bη,p. Then y ∈

C0
1([0, 1];Bη,p) and since (δ̂y)ts =

∫ t

s
Stu dx

i
u fi(yu) and f is bounded, one clearly has

y ∈ Ĉ1
1([0, 1];Bp). Now notice that owing to the identification (16), we get

Ky
ts =

∫ t

s

Stu dx
i
u fi(yu)−Xx,i

ts fi(ys) =

∫ t

s

Stu dx
i
u δ(fi(y))us,

and so

‖Ky
ts‖Bp ≤ ‖

.
x‖∞,[0,1]‖f

′‖∞

∫ t

s

‖(δy)us‖Bp du (22)

≤ cx,f

∫ t

s

{

‖(δ̂y)us‖Bp + ‖aus‖L(Bp,Bp)‖ys‖
}

≤ cx,f,y

∫ t

s

{|u− s|+ |u− s|η} du ≤ cx,f,y |t− s|1+η .

To complete the proof, observe that by resorting to the identification (16) once again,

we can write Jyts =
∫ t

s
Stu dx

i
uM

i
us, with

M i
us := δ(fi(y))us − (δxj)usf

′
i(ys) · fj(ys)

=

∫ 1

0

f ′
i(ys + r(δy)us) · (δy)us − (δxj)usf

′
i(ys) · fj(ys)

=

∫ 1

0

f ′
i(ys + r(δy)us) · ausys

∫ 1

0

f ′
i(ys + r(δy)us) · (δ̂y)us − (δxj)usf

′
i(ys) · fj(ys),

and thus

M i
us =

∫ 1

0

dr f ′
i(ys + r(δy)us) · ausys +

∫ 1

0

dr f ′
i(ys + r(δy)us) ·K

y
us

+

∫ 1

0

dr f ′
i(ys+ r(δy)us) ·X

ax,j
us fj(ys)+

∫ 1

0

dr [f ′
i(ys + r(δy)us)− f ′

i(ys)] · (δx
j)usfj(ys),

(23)

where we have used the trivial relation Xx,i
us = Xax,i

us + (δxj)us. From this expression,
it is easy to show that ‖M i

us‖Bp ≤ cy |u− s|η, which leads to the result with (using the
notations of Definition 2.6) µ = 1 + η, ε = 1. �

Proposition 2.9. Let x a m-dimensional standard Brownian motion, x2 its Lévy area,
understood in the Itô sense. We suppose that Assumptions (A1) and (F)2 are satisfied.
Then, for all η ∈ (1/2, 1) and ψ ∈ Bη,p, the Itô solution of Equation (21) is almost surely
solution in Bη,p in the sense of Definition 2.6.

Proof. For sake of clarity, we have postponed the proof of this result to Appendix B. �

Together with the forthcoming uniqueness Theorem 2.11, the two above-stated results
allow to identify, in the two reference situations (ie when x is regular and when x
is a standard Brownian motion), the solution in the sense of Definition 2.6 with the
classical solution. We will then lean on the continuity Theorem 2.12 to fully justify our
interpretation of the equation (see Remark 2.14).



10 A. DEYA

2.5. Main results. With the help of the tools and definitions we have just introduced,
we are in position to state the three main results of this paper, which successively provide
the existence, uniqueness and continuity of the solution to (21).

Theorem 2.10. Under Assumptions (A1), (X)γ and (F)2, for all γ′ ∈ (1− γ, γ + 1/2)
and ψ ∈ Bγ′,p, Equation (21) admits a solution y in Bγ′,p in the sense of Definition 2.6,
which satisfies

N [y; Ĉγ1 ([0, 1];Bp)] +N [y; C0
1([0, 1];Bγ′,p)] ≤ C(‖x‖γ, ‖ψ‖Bγ′,p

),

for some function C : (R+)2 → R growing with its arguments.

Theorem 2.11. If p > n and if Assumptions (A1), (A2), (X)γ and (F)3 are satisfied,
then for all γ′ ∈ (1− γ, γ + 1/2) and ψ ∈ Bγ′,p, the solution y in Bγ′,p given by Theorem
2.10 is unique. Moreover, for any

0 < β < inf (3γ − 1, γ + γ′ − 1, γ − (γ′ − 1/2)) ,

there exists a constant cx,ψ,f,β such that for all n,

max
k=0,...,2n

‖ytnk − yntnk‖Bγ′,p
≤
cx,ψ,f,β
(2n)β

,

where yn stands for the process given by the discrete scheme (26).

Theorem 2.12. Under the conditions of Theorem 2.11, the solution of the equation
is continuous with respect to the initial condition and the driving rough path. More
precisely, if y (resp. ỹ) is the solution in Bγ′,p associated to (x,x2) (resp. (x̃, x̃2)), with

initial condition ψ (resp. ψ̃), then

N [y − ỹ; Ĉγ1 ([0, 1];Bp)] +N [y − ỹ; C0
1([0, 1];Bγ′,p)]

≤ C
(

‖x‖γ, ‖x̃‖γ, ‖ψ‖Bγ′,p
, ‖ψ̃‖Bγ′,p

){

‖ψ − ψ̃‖Bγ′,p
+ ‖x− x̃‖γ

}

, (24)

for some functions C : (R+)4 → R
+ growing with its arguments.

Together with the identification result established in Proposition 2.8, these three the-
orems offer another viewpoint on the solution of Equation (21), which may be more in
accordance with the formalism used in [11] for rough standard systems:

Corollary 2.13. Under the assumptions of Theorem 2.11, let ψ ∈ Bγ′,p and (x̃n)n a
sequence of regular processes such that ‖x − x̃n‖γ + ‖x2 − x̃2,n‖2γ → 0 as n tends to
infinity, where x̃2,n stands for the standard Lévy area constructed from x̃n. Let ỹn the
(classical) solution of (21) associated to each x̃n. If y is the solution of (21) given by
Theorem 2.11, then

N [y − ỹn; Ĉγ1 ([0, 1];Bp)] +N [y − ỹn; C0
1([0, 1];Bγ′,p)] → 0 (25)

as n tends to infinity.

Remark 2.14. Through the latter result, one can see that the solution y we exhibit
is a solution in the rough paths sense, that is to say a limit of regular solutions with
respect to some particular topology. In this context, y can legitimately be called a mild
solution of (2), as a limit of classical mild solutions. Furthermore, it is worth noticing
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that given the regularity assumptions on fi, if we suppose in addition that the initial
condition ψ belongs to the domain D(Ap), then each regular mild solution ỹn is also a
strong solution (see [17, Theorem 6.1.6]). Consequently, if ψ ∈ D(Ap), y can in some
way be also considered as a strong solution of (2), keeping in mind the topology of the
underlying convergence result (25).

3. Existence of a solution

This section is devoted to the proof of Theorem 2.10. Thus, we henceforth suppose
that the assumptions of the theorem, namely (A1), (X)γ and (F)2, are satisfied. Besides,
we fix a parameter γ′ ∈ (1− γ, γ + 1/2) and an initial condition ψ ∈ Bγ′,p.

3.1. A few additional notations. We consider the sequence (Πn)n of dyadic partitions
of [0, 1] and define the discrete process yn following the iteration formula:

yn0 := ψ , yntnk+1
:= Stnk+1

tnk
yntnk +Xx,i

tnk+1
tnk
fi(y

n
tnk
) +Xxx,ij

tnk+1
tnk
Fij(y

n
tnk
) (26)

for any point tnk of Πn. yn is then extended on [0, 1] by linear interpolation. For sake of
clarity, we will denote in this section Jn := Jy

n
and Kn := Kyn . Observe that owing to

the very definition of yn, one has Jntnk+1
tnk

= 0.

In the rest of the paper, we will also appeal to the discrete versions of the generalized
Hölder norms introduced in Subsection 2.2. Thus, for any n ∈ N, we denote Ja, bKn :=
[a, b] ∩Πn and

N [h; Ĉλ1 (Jt
n
p , t

n
q Kn,Bα,p)] := sup

tnp≤s<t≤t
n
q

s,t∈Πn

‖(δ̂h)ts‖Bα,p

|t− s|λ
,

We define the two quantities N [.; Cλ2 (Ja, bKn;Bα,p)] and N [.; Cλ3 (Ja, bKn;Bα,p)] along the
same line.

Now, for any (not necessarily uniform) partition Π̃ of [0, 1] made of points of Πn, we

introduce the process Jn,Π̃ defined for all s < t ∈ Πn as

Jn,Π̃ts :=











0 if (s, t) ∩ Π̃ = ∅

(δ̂Jn)tus if (s, t) ∩ Π̃ = u

Jnts − Jn
tt̃N

−
∑N−1

k=1 Stt̃k+1
Jn
t̃k+1 t̃k

− Stt̃1J
n
t̃1s

if (s, t) ∩ Π̃ = {t̃1, ..., t̃N}

Remark 3.1. Since Jntnk+1
tnk

= 0, one has in particular Jn,Π
n

ts = Jnts. Besides, if Π̃, Π̂ are

two partitions of [0, 1] made of points of Πn and such that Π̃ ∩ (s, t) = {t̃1, . . . , t̃N}

(N ≥ 3) and Π̂ ∩ (s, t) = {t̃1, . . . , t̃k−1, t̃k+1, . . . t̃N} for 1 ≤ k ≤ N − 1, then Jn,Π̃ts −

Jn,Π̂ts = Stt̃k+1
(δ̂Jn)t̃k+1 t̃k t̃k−1

. With the same notations, if Π̂∩ (s, t) = {t̃1, . . . , t̃N−1}, then

Jn,Π̃ts − Jn,Π̂ts = (δ̂Jn)tt̃N t̃N−1
.
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3.2. Preliminary results on Jn. We fix tnp < tnq ∈ Πn and apply the algorithm de-
scribed in Appendix A to the uniform partition {tnp , t

n
p+1, . . . , t

n
q }. We set N := q− p, so

that for any k ∈ {p, . . . , q}, tnk = tnp +
(k−p)(tnq −t

n
p )

N
. We also denote by (Πn,m)m∈{1,...,N−1}

the (decreasing) sequence of partitions of [tnp , t
n
q ] deduced from the algorithm, and Πn,0 :=

{tnp , t
n
p+1, . . . , t

n
q}. Finally, J

n,m
tnq t

n
p
:= Jn,Π

n,m

tnq t
n
p

. With these notations in hand, one has

Jntnq tnp =

N−1
∑

m=0

{

Jn,mtnq t
n
p
− Jn,m+1

tnq t
n
p

}

.

Once endowed with this decomposition, we are in position to show the following result,
which turns out to be the starting point of our reasoning:

Lemma 3.2. Let µ > 1 and κ > 0. There exists a constant c = cµ,κ such that

‖Jntnq tnp ‖Bγ′,p
≤ c

{

∣

∣tnq − tnp
∣

∣

κ
+
∣

∣tnq − tnp
∣

∣

µ−γ′
}

{

N [δ̂Jn; Cκ3 (Jt
n
p , t

n
q Kn;Bγ′,p)] +N [δ̂Jn; Cµ3 (Jt

n
p , t

n
q Kn;Bp)]

}

, (27)

and
‖Jntnq tnp ‖Bp ≤ c

∣

∣tnq − tnp
∣

∣

µ
N [δ̂Jn; Cµ3 (Jt

n
p , t

n
q Kn;Bp)]. (28)

Proof. We use the notations of Appendix A. By refering to Remark 3.1, one easily
deduces

N−1
∑

m=0

{

Jn,mtnq t
n
p
− Jn,m+1

tnq t
n
p

}

=
M−1
∑

r=1







(δ̂Jn)tnq tnp+kAr−1+1
tn
p+k−

Ar−1+1

+
Ar
∑

m=Ar−1+2

Stnq tn
p+k+m

(δ̂Jn)tn
p+k+m

tnp+km
tn
p+k−m







+ (δ̂Jn)tnq tnp+kAM−1+1
tn
p+k−

AM−1+1

+ 1{AM−1+1<N−1}(δ̂J
n)tnq tnp+kN−1

tnp .

Then, if Cn := N [δ̂Jn; Cκ3 (Jt
n
p , t

n
q Kn;Bγ′,p)] +N [δ̂Jn; Cµ3 (Jt

n
p , t

n
q Kn;Bp)],

N−1
∑

m=0

‖Jn,mtnq t
n
p
− Jn,m+1

tnq t
n
p

‖Bγ′,p

≤ 2Cn
∣

∣tnq − tnp
∣

∣

κ

+Cn

M−1
∑

r=0







∣

∣

∣

∣

tnq − tn
p+k−Ar−1+1

∣

∣

∣

∣

κ

+

Ar
∑

m=Ar−1+2

∣

∣

∣
tnq − tn

p+k+m

∣

∣

∣

−γ′ ∣
∣

∣
tn
p+k+m

− tn
p+k−m

∣

∣

∣

µ







≤ Cn

{

∣

∣tnq − tnp
∣

∣

κ
+
∣

∣tnq − tnp
∣

∣

µ−γ′
}







2 +

M−1
∑

r=0







∣

∣

∣

∣

∣

1−
k−Ar−1+1

N

∣

∣

∣

∣

∣

κ

+
1

Nµ

Ar
∑

m=Ar−1+2

∣

∣

∣

∣

1−
k+m
N

∣

∣

∣

∣

−γ′
∣

∣k+m − k−m
∣

∣

µ













≤ cκ,µ,γ′
{

∣

∣tnq − tnp
∣

∣

κ
+
∣

∣tnq − tnp
∣

∣

µ−γ′
}

Cn,
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thanks to Proposition 6.2. The second control (28) can be obtained with the same
arguments, once one has noticed that (51) entails in particular

M−1
∑

r=1







∣

∣

∣

∣

∣

1−
k−Ar−1+1

N

∣

∣

∣

∣

∣

µ

+
1

Nµ

Ar
∑

m=Ar−1+2

∣

∣k+m − k−m
∣

∣

µ







≤ cµ <∞.

�

Lemma 3.3. For any process y : [0, 1] → Bp and all s < u < t ∈ [0, 1],

(δ̂Jy)tus = Xx,i
tu δ(fi(y))us −Xx,i

tu (δx
j)usFij(ys) +Xxx,ij

tu δ(Fij(y))us (29)

and also

(δ̂Jy)tus = Itus + IItus + IIItus + IVtus, (30)

with

Itus := Xx,i
tu

(
∫ 1

s

dr f ′
i(ys + r(δy)us) ·K

y
us

)

,

IItus := Xx,i
tu

(
∫ 1

s

dr f ′
i(ys + r(δy)us) ·

{

ausys +Xax,j
us fj(ys)

}

)

,

IIItus := Xx,i
tu

(∫ 1

0

dr [f ′
i(ys + r(δy)us)− f ′

i(ys)] · (δx
j)usfj(ys)

)

,

IVtus := Xxx,ij
tus δ(Fij(y))us.

Proof. Those are only straightforward computations. For (29), we use the fact that if

mts := gtshs, then (δ̂m)tus = (δ̂g)tushs − gtu(δh)us, together with the algebraic relations

(δ̂Xx,i)tus = 0 , (δ̂Xxx,ij)tus = Xx,i
tu (δx

j)us for all s ≤ u ≤ t,

that can be readily checked from the expressions (11) and (13). The expansion of
δ(fi(y))us − (δxj)usFij(ys) which then leads to (30) has already been elaborated on in
the proof of Proposition 2.8. �

3.3. Existence of a solution. Thanks to the above preliminary results, we are first
able to control Jn on successive time intervals independent of n:

Proposition 3.4. Let µ, ε such that

3γ > µ > 1 , γ + γ′ > µ > 1 , γ − (γ′ −
1

2
) > ε > 0. (31)

There exists a time T0 = T0(x, f, γ, γ
′, µ, ε) > 0, T0 ∈ Πn, such that for any k,

N [Jn; Cε2(JkT0, (k + 1)T0 ∧ 1Kn;Bγ′,p)] ≤ 1 + ‖ynkT0‖Bγ′,p
(32)

and

N [Jn; Cµ2 (JkT0, (k + 1)T0 ∧ 1Kn;Bp)] ≤ 1 + ‖ynkT0‖Bγ′,p
. (33)



14 A. DEYA

Proof. This is an iteration procedure over the points of the partition, for which we first
focus on the case k = 0 in (32) and (33). Assume that both estimates hold true on
J0, tnq Kn. Then, for any t ∈ J0, tnq Kn, one has, thanks to (17), (19) and (3),

‖ynt ‖Bγ′,p
≤ ‖Jnt0‖Bγ′,p

+ ‖St0ψ‖Bγ′,p
+ c0xt

γ−(γ′− 1

2
)
{

‖fi(ψ)‖B1/2,p
+ ‖Fij(ψ)‖B1/2,p

}

≤ ‖Jnt0‖Bγ′,p
+ ‖St0ψ‖Bγ′,p

+ c1x,ft
γ−(γ′− 1

2
)
{

1 + ‖ψ‖Bγ′,p

}

≤ c2x,f

{

1 + ‖ψ‖Bγ′,p

}

, (34)

so that N [yn; C0
1(J0, t

n
q Kn,Bγ′,p)] ≤ c2x,f

{

1 + ‖ψ‖Bγ′,p

}

. Besides, if s < t ∈ J0, tnq Kn,

‖(δ̂yn)ts‖Bp ≤ ‖Jnts‖Bp + ‖Xx,i
ts fi(y

n
s )‖Bp + ‖Xxx,ij

ts Fij(y
n
s )‖Bp

≤ |t− s|γ c3x,f

{

1 + ‖ψ‖Bγ′,p

}

,

hence
N [yn; Ĉγ1 (J0, t

n
q Kn;Bp)] ≤ c3x,f

{

1 + ‖ψ‖Bγ′,p

}

. (35)

One can also rely on the estimate

‖Kn
ts‖Bp ≤ ‖Jnts‖Bp + ‖Xxx,ij

ts Fij(y
n
s )‖Bp ≤ c4x,f |t− s|2γ

{

1 + ‖ψ‖Bγ′,p

}

. (36)

Now, from the decomposition (30), we easily deduce, for all 0 ≤ s < u < t ∈ J0, tnq+1Kn,

‖(δ̂Jn)tus‖Bp ≤ c5x,f

{

1 + ‖ψ‖Bγ′,p

}{

|t− s|3γ + |t− s|γ+γ
′

}

.

Indeed, one has for instance

‖[f ′
i(ys + r(δy)us)− f ′

i(ys)] · (δx
j)usfj(ys)‖Bp

≤ cx,f |u− s|γ ‖(δy)us‖Bp

≤ cx,f |u− s|γ
{

‖(δ̂y)us‖Bp + ‖ausys‖Bp

}

≤ cx,f

{

1 + ‖ψ‖Bγ′,p

}{

|u− s|2γ + |u− s|γ+γ
′

}

≤ cx,f |u− s|2γ
{

1 + ‖ψ‖Bγ′,p

}

,

where the constant cx,f may of course vary from line to line. Consequently,

N [δ̂Jn; Cµ3 (J0, t
n
q+1Kn;Bp)] ≤ c5x,f

{

1 + ‖ψ‖Bγ′,p

}{

T 3γ−µ
0 + T γ+γ

′−µ
0

}

.

On the other hand, it is readily checked from (29) that

‖(δ̂Jn)tus‖Bγ′,p
≤ c6x,f

{

1 + ‖ψ‖Bγ′,p

}

|t− s|γ−(γ′− 1

2
) ,

and therefore

N [δ̂Jn; Ĉ
γ−(γ′− 1

2
)

3 (J0, tnq+1Kn;Bγ′,p)] ≤ c6x,f

{

1 + ‖ψ‖Bγ′,p

}

.

By using the estimate (27), we get

N [Jn; Cε2(J0, t
n
q+1Kn;Bγ′,p)] ≤ c7x,f

{

1 + ‖ψ‖Bγ′,p

}(

T 3γ−µ
0 + T γ+γ

′−µ
0 + T

γ−(γ′− 1

2
)−ε

0

)

.

It only remains to pick T0 such that

c7x,f

(

T 3γ−µ
0 + T γ+γ

′−µ
0 + T

γ−(γ′− 1

2
)−ε

0

)

≤ 1.
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We can follow the same lines to show (33) from the estimate (28).

It is now easy to realize that the same reasoning (with the same constants) can be applied
on the interval [T0, 2T0] by replacing ψ with ynT0 , and then on the interval [2T0, 3T0],
etc. �

Corollary 3.5. With the notations of Proposition 3.4, there exists a constant cx,f such
that for any k,

N [Jn; Cµ2 (JkT0, (k+2)T0∧1Kn;Bp)] ≤
{

1 + ‖yn(k+1)T0
‖Bγ′,p

}

+cx,f

{

1 + ‖ynkT0‖Bγ′,p

}

, (37)

N [Jn; Cε2(JkT0, (k + 2)T0 ∧ 1Kn;Bγ′,p)] ≤
{

1 + ‖yn(k+1)T0
‖Bγ′,p

}

+ cx,f

{

1 + ‖ynkT0‖Bγ′,p

}

.

(38)

Proof. If kT0 ≤ s < (k + 1)T0 ≤ t < (k + 2)T0,

Jnts = Jnt,(k+1)T0
− St,(k+1)T0J

n
(k+1)T0,s

− (δ̂Jn)t,(k+1)T0,s.

We already know that

‖Jnt,(k+1)T0
‖Bp + ‖Jn(k+1)T0,s

‖Bp ≤ |t− s|µ
{

2 + ‖yn(k+1)T0
‖Bγ′,p

+ ‖ynkT0‖Bγ′,p

}

.

By using the decomposition (30), together with the estimates (34), (35) and (36), we get

‖(δ̂Jn)t,(k+1)T0,s‖Bp ≤ cx |t− s|µ
{

1 + ‖ynkT0‖Bγ′,p

}

, which yields (37). (38) can be shown

with the same arguments. �

Proof of Theorem 2.10. With the same estimates as in (34), we first deduce from Propo-
sition 3.4

N [yn; C0
1(JkT0, (k + 1)T0 ∧ 1Kn;Bγ′,p] ≤ c1x,f

{

1 + ‖ynkT0‖Bγ′,p

}

,

where the constant c1x,f does not depend on k. As T0 is independent of yn, this leads to

N [yn; C0
1(J0, 1Kn;Bγ′,p)] ≤ c2x,f

{

1 + ‖ψ‖Bγ′,p

}

. (39)

From this uniform control, we get, by repeating the argument of Corollary 3.5,

N [Jn; Cµ2 (J0, 1Kn;Bp)] ≤ c4x,f

{

1 + ‖ψ‖Bγ′,p

}

, (40)

and then

N [yn; Ĉγ1 (J0, 1Kn;Bp)] ≤ c5x,f

{

1 + ‖ψ‖Bγ′,p

}

. (41)

Now remember that yn is extended on [0, 1] by linear interpolation, so that

N [yn; Cγ1 ([0, 1];Bp)] ≤ 3N [yn; Cγ1 (J0, 1Kn;Bp)]

≤ 3N [yn; Ĉγ1 (J0, 1Kn;Bp)] + cγ′N [yn; C0
1(J0, 1Kn;Bγ′,p)]

≤ c6x,f

{

1 + ‖ψ‖Bγ′,p

}

.

Thus, we are in position to apply Ascoli Theorem and assert the existence of a subse-
quence ynk of yn that converges to an element y in C0

1([0, 1];Bp). It remains to check
that y is a solution of (21). To do so, let s < t ∈ [0, 1] and consider two sequences
snk

< tnk
∈ Πnk such that snk

decreases to s and tnk
increases to t. Then

‖Jyts‖Bp ≤ ‖Jyts − Jy
nk

ts ‖Bp + ‖Jy
nk

ts − Jy
nk

tnk
snk

‖Bp + ‖Jy
nk

tnk
snk

‖Bp . (42)
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On the one hand,

‖Jyts − Jy
nk

ts ‖Bp ≤ cx,fN [y − ynk ; C0
1([0, 1];Bp)] → 0,

while on the other hand

‖Jy
nk

ts − Jy
nk

tnk
snk

‖Bp ≤ cf

{

‖Xx,i
ts −Xx,i

tnk
snk

‖L(Bp,Bp) + ‖Xxx,ij
ts −Xxx,ij

tnk
snk

‖L(Bp,Bp)

}

+ cx,f

{

‖ynk
t − ynk

tnk
‖Bp + ‖ynk

snk
− ynk

s ‖Bp

}

,

from which we easily deduce, with the uniform controls (39) and (41) in mind,

‖Jy
nk

ts − Jy
nk

tnk
snk

‖Bp → 0.

Finally, owing to (40),

‖Jy
nk

tnk
snk

‖Bp ≤ c7x,f

{

1 + ‖ψ‖Bγ′,p

}

|t− s|µ .

Going back to (42), this proves that Jy ∈ Cµ3 ([0, 1];Bp). Then we follow the same

lines starting with the estimate N [Jn; Cε3(J0, 1Kn;Bγ′,p)] ≤ c4x,f

{

1 + ‖ψ‖Bγ′,p

}

to get

Jy ∈ Cε3([0, 1];Bγ′,p), so that y is indeed a solution of (21) in Bγ′,p. �

4. Uniqueness of the solution

In this section, we mean to prove Theorem 2.11. As a consequence, we assume that
p > n and that Conditions (A1), (A2), (X)γ and (F)3 are checked. Let y a solution of (21)
in Bγ′,p, for some (fixed) parameter γ′ ∈ (1−γ, 1/2+γ), with initial condition ψ ∈ Bγ′,p,
and yn the process described by the scheme (26), with the same initial condition ψ.

We introduce, for all s < t ∈ Πn, the quantity

N [y − yn;Q(Js, tKn)] :=

N [y− yn; Ĉγ1 (Js, tKn;Bp)] +N [y− yn; C0
1(Js, tKn;Bγ′,p)] +N [Ky −Kyn ; C2γ

2 (Js, tKn;Bp)].

Besides, we fix µ > 1, ε > 0 such that ‖Jyts‖Bp ≤ c |t− s|µ and ‖Jyts‖Bγ′,p
≤ c |t− s|ε.

The proof of Theorem 2.11 is based on the two following preliminary results, which aim
at controlling, as in the previous section, the residual terms J :

Lemma 4.1. For all µ̃ > 1 and κ > 0, there exists two constants cy, cµ̃ such that if
s < t ∈ Πn,

‖Jyts − Jy
n

ts ‖Bγ′,p
≤ cy

{

1

(2n)ε
+

1

(2n)µ−1

}

+ cµ̃

{

|t− s|κ + |t− s|µ̃−γ
′

}

{

N [δ̂(Jy − Jy
n

); Cκ3 (Js, tKn;Bγ′,p)] +N [δ̂(Jy − Jy
n

); Cµ̃3 (Js, tKn;Bp)]
}

.

‖Jyts − Jy
n

ts ‖Bp ≤
cy |t− s|

(2n)µ−1
+ cµ̃ |t− s|µ̃N [δ̂(Jy − Jy

n

); Cµ̃3 (Js, tKn;Bp)].
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Proof. Going back to the notations of Subsection 3.1, we decompose Jyts − Jy
n

ts as

Jyts − Jy
n

ts =
[

Jy,Π
n

ts − Jy
n,Πn

ts

]

+Ry,Πn

ts ,

with, if s = tnk and t = tnl ,

Ry,Πn

ts := Jyttnl−1
+

l−2
∑

i=k

Sttni+1
Jytni+1

tni
.

To handle the term into brackets, we use the same arguments as in the proof of Lemma
3.2, which yield here

‖Jy,Π
n

ts − Jy
n,Πn

ts ‖Bγ′,p
≤ cµ̃,γ′

{

|t− s|κ + |t− s|µ̃−γ
′

}

{

N [δ̂(Jy − Jy
n

); Cκ3 (Js, tKn;Bγ′,p)] +N [δ̂(Jy − Jy
n

); Cµ̃3 (Js, tKn;Bp)]
}

and

‖Jy,Π
n

ts − Jy
n,Πn

ts ‖Bp ≤ cµ,γ′ |t− s|µ̃N [δ̂(Jy − Jy
n

); Cµ̃3 (Js, tKn;Bp)].

Then it suffices to observe that

‖Ry,Πn

ts ‖Bp ≤
cy

(2n)µ−1

{

∣

∣t− tnl−1

∣

∣ +
l−2
∑

i=k

∣

∣tni+1 − tni
∣

∣

}

≤
cy |t− s|

(2n)µ−1
,

and ‖Ry,Πn

ts ‖Bγ′,p
≤

cy
(2n)ε

+
l−2
∑

i=k

∣

∣t− tni+1

∣

∣

−γ′ cy
(2n)µ

≤ cy,γ′

{

1

(2n)ε
+

1

(2n)µ−1

}

. (43)

�

Lemma 4.2. Set µ̃ := inf(γ + γ′, 3γ). Then for every s < t ∈ Πn,

N [δ̂(Jy − Jy
n

); Cµ̃3 (Js, tKn;Bp)] ≤ cy,x,f,ψN [y − yn;Q(Js, tKn)], (44)

N [δ̂(Jy − Jy
n

); Cγ3 (Js, tKn;Bγ′,p)] ≤ cy,x,f,ψN [y − yn;Q(Js, tKn)]. (45)

Proof. (44) is a consequence of the decomposition (30). Indeed, one has for instance, if

Ny := N [y; Ĉγ1 ([0, 1];Bp)] +N [y; C0
1([0, 1];Bγ′,p)],

‖f ′
i(ys + r(δy)us)− f ′

i(ys)− f ′
i(y

n
s + r(δyn)us) + f ′

i(y
n
s )‖Bp

≤ ‖r

∫ 1

0

dr′ [f ′′
i (ys + rr′(δy)us)− f ′′

i (y
n
s + rr′(δyn)us)] (δy)us‖Bp

+‖r

∫ 1

0

dr′f ′′
i (y

n
s + rr′(δyn)us)δ(y − yn)us‖Bp

≤ cfNy |u− s|γ
∫ 1

0

dr′‖(ys + rr′(δy)us)− (yns + rr′(δyn)us)‖B∞

+cf |u− s|γ N [y − yn;Q(I)]

≤ cf,Ny |u− s|γ N [y − yn;Q(I)],
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where we have used the continuous inclusion Bγ′,p ⊂ B∞. As for (45), it suffices to
observe, with the expression (29) in mind, that one has for instance

‖Xx,i
tu (fi(yu)− fi(y

n
u))‖Bγ′,p

≤ cx |t− s|γ ‖fi(yu)− fi(y
n
u)‖Bγ′,p

≤ cx |t− s|γ ‖

∫ 1

0

dr f ′
i(yu + r(ynu − yu))(y

n
u − yu)‖Bγ′,p

≤ cx |t− s|γ ‖ynu − yu‖Bγ′,p
‖

∫ 1

0

dr f ′
i(yu + r(ynu − yu))‖Bγ′,p

≤ cx,f,Ny,Nyn
|t− s|γ N [y − yn;Q(I)]

≤ cx,f,Ny,ψ |t− s|γ N [y − yn;Q(I)], (46)

where, to get the last estimate, we have appealed to the uniform control Nyn ≤ cx,f,ψ
established in the proof of Theorem 2.10. �

Proof of Theorem 2.11. Let T1 ≤ 1 ∈ Πn. Write

δ̂(y − yn)ts = Xx,i
ts [fi(ys)− fi(y

n
s )] +Xxx,ij

ts [Fij(ys)− Fij(y
n
s )] +

[

Jyts − Jy
n

ts

]

,

and use the two previous lemmas to deduce first

N [y − yn; Ĉγ1 (J0, T1Kn;Bp)] ≤ cy,x,f,ψT
γ
1 N [y − yn;Q(J0, T1Kn)] +

cy
(2n)µ−1

and

N [y − yn; C0
1(J0, T1Kn;Bγ′,p)] ≤ cy,x,f,ψT

γ
1 N [y − yn;Q(J0, T1Kn)]

+ cy

{

1

(2n)ε
+

1

(2n)µ−1

}

.

Then, since Ky
ts −Kyn

ts = Xxx,ij
ts [Fij(ys)− Fij(y

n
s )] +

[

Jyts − Jy
n

ts

]

,

N [Ky −Kyn ; C2γ
2 (J0, T1Kn;Bp)] ≤ cy,x,f,ψT

γ
1 N [y − yn;Q(J0, T1Kn)] +

cy
(2n)µ−1

and we have thus proved that

N [y − yn;Q(J0, T1Kn)] ≤ c1y,x,f,ψT
γ
1 N [y − yn;Q(J0, T1Kn)] + c1y

{

1

(2n)ε
+

1

(2n)µ−1

}

.

Choose T1 such that c1y,x,f,ψT
γ
1 = 1

2
to get

N [y − yn;Q(J0, T1Kn)] ≤ 2c1y

{

1

(2n)ε
+

1

(2n)µ−1

}

.

By using the same arguments on JkT1, (k + 1)T1Kn, we get

N [y − yn;Q(JkT1, (k + 1)T1Kn)] ≤ 2c1y

{

1

(2n)ε
+

1

(2n)µ−1

}

+ cx,f‖ykT1 − ynkT1‖Bγ′,p
,

and it is now easy to establish that

N [y − yn; Ĉγ1 (J0, 1Kn;Bp)] +N [y − yn; C0
1(J0, 1Kn;Bγ′,p)] ≤ cy,x,f,ψ

{

1

(2n)ε
+

1

(2n)µ−1

}

.

(47)
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This inequality clearly proves the uniqueness of the solution and therefore enables to
identify y with the solution constructed in Section 3. This identification allows in turn
to choose µ and ε as in Proposition 3.4 and to assert that Ny ≤ cx,f,ψ, which completes
the proof of the result.

�

5. Continuity of the solution

It remains to prove Theorem 2.12. Following the statement of this result, we suppose
that p > n and that Assumptions (A1), (A2), (X)γ and (F)3 are satisfied. We fix γ′ ∈ (1−

γ, γ+1/2) and the two initial conditions ψ, ψ̃ ∈ Bγ′,p. We denote by X = (Xx, Xax, Xxx)

(resp. X̃ = (X̃x, X̃ax, X̃xx)) the path constructed from (x,x2) (resp. (x̃, x̃2)) through
Definition 2.2. With this notation, we define yn as the process described by the scheme
(26) and ỹn as the process obtained by replacing (ψ,Xx, Xxx) with (ψ̃, X̃x, X̃xx) in the
latter scheme.

Besides, we define J̃ and K̃ by replacing (Xx, Xxx) with (X̃x, X̃xx) in Formulas (14) and
(15). For sake of clarity, we also set Jn := Jy

n
, Kn := Kyn , J̃n := J̃y

n
, K̃n = K̃ ỹn , and

as in the previous section, we introduce the intermediate quantity

N [yn − ỹn; Q̃(Js, tKn)]

:= N [yn−ỹn; Ĉγ1 (Js, tKn;Bp)]+N [yn−ỹn; C0
1(Js, tKn;Bγ′,p)]+N [Kn−K̃n; C2γ

2 (Js, tKn;Bp)].

Remember that owing to the results of Section 3, we can rely on the uniform control

N [yn; Ĉγ1 (J0, 1Kn;Bp)] +N [yn; C0
1(J0, 1Kn;Bγ′,p)] +N [Kn; C2γ

2 (J0, 1Kn;Bp)] ≤ cx,ψ,

with an equivalent result for ỹn. The proof of Theorem 2.12 now leans on the two
following lemmas:

Lemma 5.1. For all µ̃ > 1 and κ > 0, there exists a constant c = cµ̃,κ such that if
s < t ∈ Πn,

‖Jnts − J̃nts‖Bγ′,p
≤ c

{

|t− s|κ + |t− s|µ̃−γ
′

}

{

N [δ̂(Jn − J̃n); Cκ3 (Js, tKn;Bγ′,p)] +N [δ̂(Jn − J̃n); Cµ̃3 (Js, tKn;Bp)]
}

and

‖Jnts − J̃nts‖Bp ≤ c |t− s|µ̃N [δ̂(Jn − J̃n); Cµ̃3 (Js, tKn;Bp)].

Proof. It suffices to follow the lines of the proof of Lemma 3.2. �

Lemma 5.2. Set µ̃ := inf(γ + γ′, 3γ). Then for any s < t ∈ Πn,

N [δ̂(Jn − J̃n); Cµ̃3 (Js, tKn;Bp)] ≤ cx,x̃,ψ,ψ̃

{

N [yn − ỹn; Q̃(Js, tKn)] + ‖x− x̃‖γ
}

(48)

and

N [δ̂(Jn − J̃n); Cγ3 (Js, tKn;Bγ′,p)] ≤ cx,x̃,ψ,ψ̃

{

N [yn − ỹn; Q̃(Js, tKn)] + ‖x− x̃‖γ
}

. (49)
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Proof. This is the same type of arguments as in the proof of Lemma 4.2. For (48), we
resort to the decomposition (30) and notice for instance that

‖Xx,i
tu

(
∫ 1

0

dr f ′
i(y

n
s + r(δyn)us) ·K

n
us

)

− X̃x,i
tu

(
∫ 1

0

dr f ′
i(ỹ

n
s + r(δỹn)us) · K̃

n
us

)

‖Bp

≤ c ‖Xx,i
tu − X̃x,i

tu ‖L(Bp,Bp)‖K
n
us‖Bp + ‖X̃x,i

tu ‖L(Bp,Bp)

‖

∫ 1

0

dr f ′
i(y

n
s + r(δyn)us) ·K

n
us −

∫ 1

0

dr f ′
i(ỹ

n
s + r(δỹn)us) · K̃

n
us‖Bp

≤ cx,x̃,ψ |t− s|3γ ‖x− x̃‖γ + cx̃ |t− u|γ
{

‖

∫ 1

0

dr [f ′
i(y

n
s + r(δyn)us)− f ′

i(ỹ
n
s + r(δỹn)us)] ·K

n
us‖Bp

+‖

∫ 1

0

dr f ′
i(ỹ

n
s + r(δỹn)us) ·

[

Kn
us − K̃n

us

]

‖Bp

}

≤ c1x,x̃,ψ |t− s|3γ ‖x− x̃‖γ + c2x,x̃,ψ |t− s|3γ N [yn − ỹn; Q̃(Js, tKn)],

where we have used the continuous inclusion Bγ′,p ⊂ B∞. (49) can be proved likewise,
with the same kind of estimates as in the proof (46).

�

Proof of Theorem 2.12. Following the same procedure as in the proof of Theorem 2.11,
we first deduce

N [yn − ỹn; Q̃(J0, T2Kn)]

≤ c1
x,x̃,ψ,ψ̃

{

T γ2 N [yn − ỹn; Q̃(J0, T2Kn)] + ‖ψ − ψ̃‖Bγ′,p
+ ‖x− x̃‖γ

}

.

Indeed, one has for instance, if 0 ≤ s < t ≤ T2,

‖Xx,i
ts [fi(y

n
s )− fi(ỹ

n
s )]‖Bp ≤ cx |t− s|γ ‖yns − ỹns ‖Bp

≤ cx |t− s|γ
{

‖δ̂(yn − ỹn)s0‖Bp + ‖ψ − ψ̃‖Bγ′,p

}

≤ cx |t− s|γ
{

T γ2 N [yn − ỹn; Q̃(J0, T2Kn)] + ‖ψ − ψ̃‖Bγ′,p

}

.

Then we take of course T2 such that c1
x,x̃,ψ,ψ̃

T γ2 = 1
2
so as to retrieve

N [yn − ỹn; Q̃(J0, T2Kn)] ≤ 2 c1
x,x̃,ψ,ψ̃

{

‖ψ − ψ̃‖Bγ′,p
+ ‖x− x̃‖γ

}

.

Repeating the procedure on [T2, 2T2], [2T2, 3T2],..., leads to the uniform control

N [yn − ỹn; Ĉγ1 (J0, 1Kn;Bp)] +N [yn − ỹn; C0
1(J0, 1Kn;Bγ′,p)]

≤ cx,x̃,ψ,ψ̃

{

‖ψ − ψ̃‖Bγ′,p
+ ‖x− x̃‖γ

}

. (50)

To conclude with, let us introduce, for all s < t ∈ [0, 1], two sequences sn < tn ∈ Πn

such that sn decreases to s and tn increases to t, and write (for instance) successively

‖δ̂(y − ỹ)ts‖Bp ≤ ‖δ̂(y − ỹ)ttn‖Bp + ‖δ̂(y − ỹ)tnsn‖Bp + ‖δ̂(y − ỹ)sns‖Bp,

‖δ̂(y − ỹ)tnsn‖Bp ≤ ‖δ̂(y − yn)tnsn‖Bp + ‖δ̂(yn − ỹn)tnsn‖Bp + ‖δ̂(ỹ − ỹn)tnsn‖Bp.

The control (50), together with the approximation result (47), then provides (24).
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�

6. Appendix A: a useful algorithm

We give here the description and a brief analysis of the algorithm used in the proofs
of Lemmas 3.2, 4.1 and 5.1.

Consider a generic partition {0, 1, 2, . . . , N}. We remove the inner points of this partition
({1, 2, . . . , N − 1}) one by one according to the following procedure (see Figure 6):

• At step 1, we successively remove, from the right to the left, every two points, starting
from N (excluded) until 0 (also excluded). Then, still at step 1, we take off the point
of the (updated) partition between 0 (excluded) and the last removed point, if such a
middle point exists.

• We repeat the procedure with the remaining points (steps 2,3,...) until the partition
is empty.

We denote by:

• M the number of steps necessary to empty the partition.
• (km)m∈{1,...,N−1} the sequence of successively removed points.
• k+m the point of the partition (at ’time’ m of the algorithm) that follows km (when
reading from the left to the right), k−m the point that precedes it.

• Ar the total number of points that have been taken off at the end of step r. We
also set A0 := 0.

×××××××××××××××××××
k1k2k19

××××××××××
k20k29 k24 k+24k−24k+29

× × × × ×
k34

× ×
k36

×
k37

Figure 1. The algorithm for N = 38. Each lign corresponds to one step.
Thus, M = 5, A1 = 19, A2 = 29, A3 = 34, A4 = 36.
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Lemma 6.1. For every r ∈ {0, 1, . . . ,M},

0 ≤ Ar −N

(

1−
1

2r

)

≤ 1.

In particular,
∣

∣Ar − Ar−1 −
N
2r

∣

∣ ≤ 1 et 2M−1 ≤ N ≤ 2M+1.

Proof. This stems from a straightforward iteration procedure based on the formula
Ar+1 = Ar +

⌊

N−Ar+1
2

⌋

, r ∈ {0, 1, . . . ,M − 1}, where ⌊.⌋ stands for the integer part. �

Proposition 6.2. Let µ > 1, 0 < γ′ < 1 and κ > 0. Then

M−1
∑

r=1







∣

∣

∣

∣

∣

1−
k−Ar−1+1

N

∣

∣

∣

∣

∣

κ

+
1

Nµ

Ar
∑

m=Ar−1+2

∣

∣

∣

∣

1−
k+m
N

∣

∣

∣

∣

−γ′
∣

∣k+m − k−m
∣

∣

µ







≤ cκ,µ,γ′ , (51)

for some finite constant cκ,µ,γ′ independent of N .

Proof. We actually use the following explicit expressions: at step r (r ∈ {1, . . . ,M−1}),
if N − Ar−1 is even, one has, for every m ∈ JAr−1 + 1, ArK,

k+m = N − 2r(m− Ar−1) + 2r, (52)

k−m = N − 2r(m−Ar−1), (53)

while if N −Ar−1 is odd, Formulas (52) and (53) remain true for m ∈ JAr−1+1, Ar−1K,
but k−Ar

= 0 and k+Ar
= k+Ar−1 = N − 2r(Ar−Ar−1 − 1)+ 2r. From these expressions, we

first deduce
M−1
∑

r=1

∣

∣

∣

∣

∣

1−
k−Ar−1+1

N

∣

∣

∣

∣

∣

κ

=
1

Nκ

M−1
∑

r=1

(2r)κ ≤ c1κ

(

2M

N

)κ

≤ c2κ,

according to Lemma 6.1. Then, if N − Ar−1 is even, one has

Ar
∑

m=Ar−1+2

∣

∣

∣

∣

1−
k+m
N

∣

∣

∣

∣

−γ′
∣

∣k+m − k−m
∣

∣

µ
=

(2r)µ−γ
′

N−γ′

Ar−Ar−1−1
∑

m=1

m−γ′

≤ c3γ′
(2r)µ−γ

′

N−γ′
(Ar − Ar−1 − 1)1−γ

′

.

Besides, if N −Ar−1 is odd,

Ar
∑

m=Ar−1+2

∣

∣

∣

∣

1−
k+m
N

∣

∣

∣

∣

−γ′
∣

∣k+m − k−m
∣

∣

µ

≤ c3γ′
(2r)µ−γ

′

N−γ′
(Ar − Ar−1 − 1)1−γ

′

+

∣

∣

∣

∣

1−
k+Ar

N

∣

∣

∣

∣

−γ′

(k+Ar
)µ

≤ c3γ′
(2r)µ−γ

′

N−γ′
(Ar − Ar−1 − 1)1−γ

′

+
(2r)−γ

′

N−γ′
(Ar −Ar−1 − 2)−γ

′

(N − 2r(Ar − Ar−1 − 2))µ

≤ c3γ′
(2r)µ−γ

′

N−γ′
(Ar − Ar−1 − 1)1−γ

′

+
(2r)−γ

′

N−γ′
(N − 2r(Ar − Ar−1 − 2))µ.
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since, in that case, Ar − Ar−1 ≥ 3. Thanks to Lemma 6.1, we now easily deduce

1

Nµ

M−1
∑

r=1

Ar
∑

m=Ar−1+2

∣

∣

∣

∣

1−
k+m
N

∣

∣

∣

∣

−γ′
∣

∣k+m − k−m
∣

∣

µ
≤

c3γ′

Nµ−1

M−1
∑

r=1

(2r)µ−1+
c4µ

Nµ−γ′

M−1
∑

r=1

(2r)µ−γ
′

≤ cµ,γ′ .

�

7. Appendix B

This section is devoted to the proof of Proposition 2.9. To this end, we will resort to
the two following lemmas, respectively borrowed from [13] and [1]:

Lemma 7.1. Fix a time T > 0. For every α, β ≥ 0, p, q ≥ 1, there exists a constant c
such that for any R ∈ C2([0, T ];Bα,p),

N [R; Cβ2 ([0, T ];Bα,p)] ≤ c
{

Uβ+ 2

q
,q,α,p(R) +N [δ̂R; Cβ3 ([0, T ];Bα,p]

}

,

where

Uβ,q,α,p(R) =

[

∫

0≤u<v≤T

(

‖Rvu‖Bα,p

|v − u|β

)q

dudv

]1/q

.

Lemma 7.2. For every p ≥ 2, the Burkholder-Davies-Gundy inequality holds in Bp. In
other words, for any T > 0, if B is a one-dimensional Brownian motion and H is an
adapted process with values in L2([0, T ];Bp), then for any q ≥ 2, there exists a constant
c independent of H such that

E

[

sup
0≤t≤T

∥

∥

∥

∫ t

0

Hu dBu

∥

∥

∥

q

Bp

]

≤ cE

[

(
∫ T

0

‖Hu‖
2
Bp
du

)q/2
]

. (54)

Proof of Proposition 2.9. On the whole, this is the same identification procedure as in
the proof of Proposition 2.8. The only difference lies in the fact that the direct estimates
of the integrals at stake (as in (22)) are here replaced with a joint use of Lemmas 7.1
and 7.2.

We denote by y the (Itô) solution of (21), with initial condition ψ ∈ Bη,p. Let us fix
γ ∈ (1/3, 1/2) such that γ+η > 1 and 2γ > η. If one refers to [14] (for instance), one can

assert that y ∈ C0
1([0, 1];Bη,p) a.s, and one even knows that supt∈[0,1]E

[

‖yt‖
q
Bη,p

]

< ∞

for any q ∈ N. Then, since (δ̂y)ts =
∫ t

s
Stu dx

i
u fi(yu), one has, thanks to Lemma 7.2,

E

[

‖

∫ t

s

Stu dx
i
u fi(yu)‖

q
Bp

]

≤ cE

[

(
∫ t

s

‖Stufi(yu)‖
2
Bp
du

)q/2
]

≤ c |t− s|q/2−1

∫ t

s

E
[

‖Stufi(yu)‖
q
Bp

]

du

≤ c |t− s|q/2 , (55)
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and consequently, with the notations of Lemma 7.1,

E
[

Uγ+ 2

q
,q,0,p(δ̂y)

]

≤





∫∫

0≤u<v≤1

E
[

‖(δ̂y)vu‖
q
Bp

]

|v − u|γq+2 dudv





1/q

≤

(∫∫

0≤u<v≤1

|v − u|q(
1

2
−γ)−2 dudv

)1/q

<∞

by picking q > 1/(1
2
− γ). Together with the result of Lemma 7.1, this yields y ∈

Ĉγ1 ([0, 1];Bp) a.s.

As far as Ky is concerned, we already know that δ̂Ky = Xx,iδ(fi(y)), which leads to

δ̂Ky ∈ C2γ
3 ([0, 1];Bp) a.s. Then, from the expression Ky

ts =
∫ t

s
Stu dx

i
u δ(fi(y))us, we

deduce, as in (55), E
[

‖Ky
ts‖

q
Bp

]

≤ c |t− s|q, and accordingly, thanks to Lemma 7.1,

Ky ∈ C2γ
2 ([0, 1];Bp) a.s.

Finally, for Jy, we first lean on the decomposition (30) of δ̂Jy to assert that δ̂Jy ∈
Cγ+η3 ([0, 1];Bp) a.s. Then we appeal to the expression of Jy we have exhibited in the

proof of Proposition 2.8, namely Jyts =
∫ t

s
Stu dx

i
uM

i
us where M i is given by (23), to

show that E
[

‖Jyts‖
q
Bp

]

≤ c |t− s|q(
1

2
+η). Together with Lemma 7.1, those results clearly

provide the expected regularity, ie Jy ∈ Cµ2 ([0, 1];Bp) a.s, with µ = γ + η > 1.

The control of the regularity of Jy as a process with values in Bη,p stems from the same

reasoning. Indeed, we first deduce from (29) that δ̂Jy ∈ Cγ3 ([0, 1];Bη,p) a.s, since for

instance ‖Xx,i
tu fi(yu)‖Bη,p ≤ cx,f,y |t− u|γ and

‖Xx,i
tu (δx

j)usFij(ys)‖Bη,p ≤ cx |t− s|2γ−(η− 1

2
) ‖Fij(yu)‖B1/2,p

≤ cx,f,y |t− s|γ .

We can then write Jy as Jyts =
∫ t

s
Stu dx

i
u δ(fi(y))us − Xxx,ij

ts Fij(ys) to easily obtain

E
[

‖Jyts‖
q
Bη,p

]

≤ cx,f,y |t− s|q/2, hence Jy ∈ Cγ2 ([0, 1];Bη,p) a.s.

�
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