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Nonintrusive reduced-order modeling of parametrized
time-dependent partial differential equations
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Abstract

We propose a non-intrusive reduced-order modeling methsddon the notion of space-time-
parameter proper orthogonal decomposition for approxirgalie solution of non-linear parame-
trized time-dependent partial differential equations. wo4devel proper orthogonal decompo-
sition method is introduced for constructing spatial amdgeral basis functions with special
properties such that the reduced-order model satisfiesdbedary and initial conditions by
construction. A radial basis function approximation metisused to estimate the undetermined
coefficients in the reduced-order model without resortm@alerkin projection. This nonintru-
sive approach enables the application of our approach tergeproblems with complicated
nonlinearity terms. Numerical studies are presented ®iptirametrized Burgers’ equation and
a parametrized convection-reaction-diffusion problena d&monstrate that our approach leads
to reduced-order models that accurately capture the bahaithe field variables as a function
of the spatial coordinates, the parameter vector and time.

Keywords: Reduced-order model; physics-based surrogate modekd@pendent
parametrized partial differential equation; proper ogiweal decomposition; radial basis
functions

1. Introduction

Parametrized partial differential equations (PDESs) arisenumber of important application
areas, including design optimization, uncertainty arig)ysptimal control and inverse param-
eter estimation. The computational cost associated wihettapplications can be exorbitant,
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particularly when the underlying PDE model is required tosblved with high accuracy using
a fine spatial mesh and small time-steps. In order to solviéeciygng problems on a limited

computational budget, there is a need for efficient numenethods for constructing approxi-
mation models (also commonly known as surrogates or emms)atb parametrized PDEs. Such
technigues enable the PDE solution to be efficiently appnatéd at any point in the param-
eter space, thereby leading to significant computationstl savings in applications requiring
multiple evaluations of the PDE solution over the paramspearce of interest. This has moti-
vated a number of researchers to investigate numericaladettor approximating the solution
of parametrized PDEs.

Reduced-order modeling (ROM) has emerged as a powerfubappifor tackling parametrized
PDEs and a number of formulations based on this idea has Wepoged in the literature. The
basic idea underlying ROM is to approximate the solutiomgsin appropriate set of basis vec-
tors/functions and subsequently estimate the undetethdoefficients in the expansion using
Galerkin projection or an error minimization scheme. Hrgtapproaches include methods
based on Lagrange, Hermite or Taylor subspace and progeygmbal decomposition (POD)
strategies; see references [1, 2, 3] for an overview. Howewest of the work on this topic
has focused on parametrized steady-state PDEs [4, 5, 6,97,a8d very little work has been
done on developing general computational methods for ROkhté-dependent parametrized
nonlinear PDEs. This can be primarily attributed to the itadole computational difficulties that
arise when it is sought to approximate the PDE solution asetiion of the spatial coordinates,
time and the parameter vector.

In [10], we proposed a principal component analysis (PCAthodology to construct ROMs
of steady-state parametrized PDEs. The key idea was to B@pWyto a training dataset obtained
by solving the fine solver at a set of design points chosergusdesign of computer experiments
(DoCE) algorithm to derive a set of spatial and parametacsasis functions. A greedy adap-
tive algorithm was developed to ensure that the methodswead# to high-dimensional problems
that may necessitate a large number of runs of the fine sdbetailed numerical studies were
presented to demonstrate that this approach allows forahgtiuction of highly accurate ROMs
with modest computational effort.

Time-dependent parametrized PDEs are much more chalgrgimpared to steady-state
problems, particularly when the boundary conditions vasyaafunction of time and the pa-
rameter space. The main difficulty arises from the requirdroéconstructing a reduced-order
approximation model that satisfies the initial and boundanditions at all points in the param-
eter space. Gunzburger et al. [11], studied this problera fgpecial class of parametrized PDE
models, where only the boundary conditions are parameirielowever, this approach cannot
be readily extended to problems where the governing equatice also parametrized. Hay et
al. [12] proposed sensitivity-based approaches for coasirg reduced-order models of unsteady
PDEs over parametrized geometries. Both these approaehieased on Galerkin projection due
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to which they can be difficult to implement for problems witbneplicated nonlinearity terms.
It is worth mentioning here that the reduced basis methodiedtuin [13] has been applied to
the unsteady Burgers’ equation in one space dimensioragrubteriorierror bounds were de-
rived for the approximation. The so-called discrete engplrinterpolation method [14] is also
a very interesting approach that has been applied for appatixg the solution of nonlinear
parametrized PDEs.

In this paper, we present a general non-intrusive methoddnstructing reduced-order ap-
proximations to the solution of time-dependent parametrizonlinear PDEs, where the gov-
erning equations, the boundary and initial conditions aeametrized. The methodology pre-
sented here can be considered to be a generalization of dubB§2d method for steady-state
parametrized PDEs. Our goal is to construct a ROM that cantealy be used to approxi-
mate the PDE solution at a huge number of points in the pasarapace very efficiently. The
key idea underpinning the proposed method is to split theaed-order approximation into two
terms. The first term is defined as the solution of an auxilmabolic linear parametrized PDE
— this is to guarantee that the ROM satisfies the boundary ritidl iconditions by construc-
tion. The second term in the approximation is composed offi@ali combination of a tensor
product of physical space and temporal domain empiricgh@rorthogonal modes. We pro-
pose a two-level POD approach for constructing the spatidit@mporal basis functions starting
from an ensemble of solution snapshots obtained by solViegotiginal PDEs at a finite set
of points in the parameter space. The undetermined coefficie the approximation are esti-
mated using a non-intrusive approach based on radial hasitiédn approximation (in contrast
to Galerkin projection), thereby enabling the straightfard application of our methodology
to parametrized PDEs with complicated nonlinearity teriiée present numerical studies for
a model parametrized Burgers’ equation and a parametrama 6f the convection-reaction-
diffusion problem to illustrate the accuracy of the progbapproach.

The remainder of this paper is organized as follows: In $a@i we outline the central ideas
used in the proposed formulation. In the section that fadlome show how spatial and temporal
basis functions that obey certain conditions can be cottgitiwsing a two-level POD method.
Subsequently, in Section 4, we present a nonintrusive mielased on radial basis function
approximation to estimate the undetermined coefficienthénreduced-order approximation.
Section 5 focuses on approximating the solution of the &uryilparametrized parabolic PDE
so that the ROM can be evaluated at any point in the paramgdeesn real-time. Section 6
is devoted to numerical studies for a parametrized Burgeggation. Eventually, numerical
results are presented in Section 7 for a more complex paraegtonvection-reaction-diffusion
problem. Section 8 concludes the paper and outlines sonsthpmslirections for further work
on this topic.



2. Problem statement and methodology

Consider the parametrized time-dependent PDE model gigkeb

(9U‘9 0 9 0 ;
5 T WL V) = inQx (0,T], @)

where@ €]0,1[° (p = 1) is a vector ofp parameterst € (0, T] denotes time and is the
physical domain over which the PDE operator is defined witjula boundaryQ. We denote
by .4 (u?, vu?) a nonlinear parametrized operatef. is the field variable which we seek to
approximate as a function of the physical coordinatebe parameter vectérand timet. The
governing equations are supplemented by parametrizeddaoyiiand initial conditions of the
form

u(-,t) g’(.t) onoQ x (0, T], (2)

ul ud(x) in Q. (3)

lt=0

For any value o9, it is assumed that (1-3) is well-posed in a usual Hilbertepaade of regular
functions — typicallyH!(Q) ® L?(0, T) — meaning that}, f andg? are smooth enough related
to the nonlinearity term/4(-).

Our objective is to construct a reduced-order approxinaifdhe solution of (1-3) as a func-
tion of x, @ andt. One straightforward approach to tackle this problem wdaltb work with the
finite-dimensional representation of (1-3) obtained afpetial discretization with mesh spacing
h and an appropriate time-stepping scheme. Then for eachitistent of interest, saty, the
field variable can be approximated as a function of spesnr@dd using the methodology outlined
in [10] for steady-state parametrized PDEs. Even thoughethproach is easy to implement, it is
computationally not very attractive due to the need for tmiesing a ROM at each time step. We
shall not pursue this approach any further and instead fonuteveloping numerical schemes
that deal with time as a continuous variable.

In order to ensure that the approximation i8¢x, t) satisfies the boundary and initial condi-
tions for any value ob, we propose aansatzof the form:

K M
T, =V )+ D ann(B)e (€M) (4)

k=1 m=1

whereaym, k = 1,...,K, m = 1,..., M denote a set of undetermined coefficients in the ap-
proximation, andg*(x) and&£™(t) are spatial and temporal basis functions with the follayin
properties:

K = 0, vk=1,...,K,

0, Vm=1,...,M. (5)
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The above conditions essentially state that all the spladisis functiong® are zero on the
boundarypQ, while all the temporal basis functiog® are zero at = 0. Due to these properties
of the spatial and temporal basis functions, we now only rieezhoose the tern#’(x, t) such
that the parametrized boundary and initial conditions) 28 satisfied by construction. For the
special case when the boundary conditions do not vary asctidmrof time, we can set the first
term in (4) as/(x,t) = uf(x). Due to the properties of our basis functions stated ini{5pn be
easily seen that far= 0, we have

T(x,0) = uf(x),
and in addition
ﬁfm = ug\()g = go'
Therefore, it follows that for the above choicevd{x, t), the initial and boundary conditions are
automatically satisfied by the approximation (4).

However, the choice for(x, t) is not that obvious for the more general case when the bound-
ary conditions are time-dependent. In this paper, we p@gusidea that solution of the follow-
ing auxiliary parabolic linear PDEcan be chosen to be the first term in the approximation (4)

%—f—A\ﬁzomQx(O,T], (6)
V(1) = ¢’(.t) onaQ x (0, T1, (7)
v =uinQ. (8)

It can be clearly seen that due to the prescribed propertisecchosen spatial and temporal
basis functions (5) and the above choicefbfour approximation will automatically satisfy both
initial and boundary conditions.

In the next section, we shall delve into details of how basigfions with properties (5) can
be constructed using a two-level POD method. After an apjatgpset of basis functions have
been constructed, the approximation problem eventuallg down to estimation of the undeter-
mined coefficientsym in (4). A commonly used approach in ROM construction is thée@én
method, wherein the approximation (4) is substituted ih driginal nonlinear parametrized
equations (1-3) and the residual error is made orthogonthl meispect to the approximating
space of basis functions. This approach, however, is naigstiforward to implement when the
nonlinear parametrized termd” (u?, Vu?) has a complicated structure [21]. In the present work,
we propose a general nonintrusive approach that circuravbigt difficulty. Subsequently, we
outline the steps involved in numerical solution of the éary PDE model to approximate the
termV? so that the reduced-order approximation (4) can be evaluiatesal-time at any point

INote that this auxiliary PDE model is a linear initial boungsalue heat equation with parametrized boundary and
initial conditions.
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in the parameter space. We will also discuss in the nextaethie limitations of the proposed
methodology, namely which parametrized PDE models can trectty approximated with such
an approach.

3. Construction of spatial and temporal basis functions

In this section, we focus on constructing the spatial andoteal basis functions, namely
*(x) and&™(t), that satisfy (5). The key idea underpinning our approadoiemploy a two-
level POD procedure on data obtained by solving the origits (fine solver) at a set of points
in the parameter space.

To illustrate, consider the following space-filling set @sijn points within the parameter
space
#'=16,€0,1[Pi=1,...,1}. (9)

Such a space-filling set of design points can be obtainedyusatin Hypercube sampling or
minimum discrepancy sequences such as Sobol, Halton amd Baguences [15, 16]. The fine
solver (i.e., a high-fidelity solver for the original nordiar PDES) can be run at thelspoints to
generate a training dataset that is eventually used in dewe-POD procedure to construct the
spatial and temporal basis functions that satisfy the ¢mmdi outlined earlier in (5).

Next, we introduce a coarse sampling of the spatial doman, i
ZI={xj€n j=1,...,3), (10)

whereQ;, denotes the discretized computational domain with thexitdeferring to the spatial
mesh diameter. Similarly, a coarse sampling of the templmadain can be written in the form

N = {t,, O=ty <---<ty=T}. (11)

Consider the following set of shifted snapshots obtainedubying the fine solver (1-3) and
the auxiliary PDE model (6-8) at a point (séy within the set (9):

SN ={u () -V t).n=1,... N} (12)

Note that the shifted snapshots are computed at all timntesitsdefined in the coarse temporal
domain sampling (11). Itis also worth emphasizing that weehere a subscripfor the snapshot
setﬁ’j“ to highlight the fact that we compute a set of shifted snatssioo each pointin the set (9).

Consider the spatial Gram matrix defined below
M ix)nm = (U@i (tn) - v (> tn), uf (> tm) = VA (¢ tm))LZ(Qh)’ nm=1...N,
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where thel 2-scalar product is defined as

(U, V)20, = fﬂ u(x)v(x)dx.

.....

A= > 22,20

We assume that the spectrum of the Gram matrix decays rapilligh is typically the case
for a large class of elliptic and parabolic PDEdn other words, for a given small threshold
€ > 0, there exists an integ&' = Ki(&) with K'/N small enough such that

Ki
2.
k=1

N
2.
k=1

meaning that the solutions of the considered PDE problews &grincipal direction property.
The firstK' eigenfunctionsg)y associated with the firg¢' eigenvaluesl, provide the orthog-
onal principal directions of the setN. If r*! = (rk'), denotes théth eigenvector oM}, thekth
eigenfunctions*' can be computed as

>1-¢

N
G009 = D0 (U 0 t) = V(X 1)) (13)
n=1

and then normed in the?(Q,)-sense.

In summary, what we have done so far is to carry out PCA of th@fshifted snapshots

,,,,,

details concerning the POD method (also referred as Pah€pmponent Analysis (PCA) or
Karhunen-Loeve decomposition), we refer the reader tp18719].

.....

.....

.....

temporal POD modeg ) 1w, from the set

‘?iJ ={u0i(Xj,-)—Ugi(Xj),j =1,...,J} (14)

2\We wish to highlight here that this assumption may not hotcherbolic problems where the Gram matrix spec-
trum decay can be very slow. In addition, hyperbolic proldesften involve discontinuous solutions which are poorly
approximated by POD-type methods.
7



and then apply a second PCA @) to get the temporal basis functions.
The following proposition holds:

Proposition 1. Let.#N (resp. .7”) be the spatial (resp. temporal) snapshot sets given by (12)
(resp. (14)). Then the spatial and temporal basis functighand ¢™ satisfy the properties
(5), meaning that the RORF given by (4) satisfies both the boundary and initial condisidy
construction.

Proof. To prove this result, we use the expansion (13)'dfas a linear combination of shifted
spatial snapshots, and exploit a property of the “snapslethod” developed by Sirovich [17].
By construction, since® (-, tn),,, = V%' (., tn);,, = 9% (-, tn) we deduce that

Gt =0, Vk=1,.. K.
Applying a PCA to all the basis setg()x; then leads to spatial modegx-1.._k that are also
linear combinations ofif¢')y;. Consequently the mode also vanish odQ.

Similar arguments can be used to establish the stated piespef the temporal basis func-
tions&™ since we have

J
€M) = > (™) (06, 1) - ug (). (15)
=1
wheres™ = (s™): denotes thenth eigenvector of the temporal Gram mathi¥ defined as
j g p
MY = (U (xj,-) - Ugi (X)), U (xjr, ) — Ugi XiDeegory, BI'=1....3

Since we have
foy=0,vi=1,...,1,¥ym=1,...,M

it follows thaté&™(0) = 0,Ym=1,..., M. O

4. Estimation of the undetermined ROM coefficients

In this section, we look at how the undetermined coefficients of the ROM (4) can be
computed for any design poifit We proceed as follows. In the first step, we compute the
coefficientsaym, for each design poire; € #'. Considering the space-filling se&s” and#N,
we have, for a fixed value @,

K M
T (), tn) = VI (X3, ) + Y > @an(8)6(x)) €7(tn), (16)
k=1 m=1
Yi=1,...,J3,¥n=1,...,N. For a fixed index, the preceding equation can be written in the
compact form
U=V+paé, a7
8



whereU e .y with coefficients T)jn = T (X,tn), V' € .#jn with coefficients ¥')j, =
Vi(xj,tn), ¢ € 3k with coefficients @) = ¢*(xj), @ € .#m with coefficients &')m =
axm(8;), andé€ € . with coefficients €)nm = £M(tn).

The undetermined coefficients can be computed by solving
u=v+pade (18)

whereu' e .#;y denote the extracted elements of the fine solutions, that &y (Ji),-n =
u’%(xj,t,). Since the columns g and¢ are orthonormal, we deduce the coefficiemtdy the
relations

o = (U - V) (19)

The final step involves approximating the coefficiemis(6) as a function ob so that they
can be evaluated at any arbitrary point in the parameteesgiéiciently. For fixeck, m, we first
expand the undetermined coefficients using Radial Basistleuns (RBFs) as follows

|
0 -0,
akm(8) = Z YA (u) (20)
= o
Settingf = 6, in (20) fori’ = 1,...,1, leads to
|
D AEA™ = aknlB), (21)
i=1

where the symmetric interpolation matxis such thatA;; = @ (“’f;”‘) We give more details

about the choice ol ando later in Section 7.3. The preceding equation can be rewritte
compact form as
A’)/km — bkm, (22)

whereb™Mis a vector of length defined by B™); = axm(6;). The unknown coefficientg“™ can
be calculated by solving the following penalized normalans (again with a small regular-
ization parameteut > 0)

(ATA + pl)y<m = ATpkM, (23)
Given the solution of the above matrix system of equatidrespindetermined coefficients can be
efficiently computed at any point in the parameter spaceguif).

5. Enabling real-time predictions using the ROM

5.1. Motivation

We now look at how the ROM (4) can be employed in a real-timeligteon framework.
There are essentially two options available to the user df suROM, depending on the time-

dependent PDE model which is under consideration.
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In the first case, let us consider the scenario when the ROM! lie tevaluated at a limited
number of points in the parameter space. Then wedigattly use the expansion (4) to get
approximate solutiong’ for different values of. Once the spatial and temporal mog&sand
&M have been computed through the two-level PCA proceduresSsetion 3), we can compute
the coefficientsrm(#) using the methodology described in Section 4: use (19}, saxe (23)
and then use (20). To complii®, the final step involves computing (i.e., the solution of the
auxiliary parabolic linear PDE (6-8)).

The second case involves the scenario where it is requiredrtgputel at a large number
of points in the parameter space. In principle, the stepknedtearlier can still be employed;
however, the main computational obstacle arises from ceatipn of the term/ while making
predictions at any point in the parameter space. This isusecdirect numerical simulations of
(6-8) cannot be done efficiently (say in real-time), evenutitothe auxiliary PDE modelis linear.
Consequently one needs to construct an adapted ROM for, (8F8¢h is not an obvious task
since the boundary conditions are time-dependent. Thiddvenable faster online evaluations
of the reduced-order model at the expense of additionaheffiomputations (due to the step of
constructing an approximation model to enable efficienluataon of the term/?).

In this section we focus on efficient numerical solution & #uxiliary parabolic PDE (6-8).
We take advantage of the linear nature of this equation tarsgp this PDE into two simpler
ones: an initial value problem with homogeneous boundanditions and a boundary value
problem with zero initial conditions. The solutiefi of (6-8) can be split according to

V=w+7 (24)
wherew? andZ are, respectively, solutions of the following PDEs
6(3—“5—AM:0ian(O,T], (25)
wW(, 1) =00nadQ x (0, T], (26)
W =ufinQ, (27)
and
%—Az”:Oian(O,T], (28)
2,0 =d.t)ondQ x (0,T], (29)
;";O =0inQ. (30)

Note that the first PDE (25-27) is a linear heat equation withdgeneous boundary con-
ditions, while the second PDE (28-30) is a linear heat eqoatith zero initial conditions. We

now move on to how the component termfsandz’ can be efficiently computed.
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5.2. Resolution of the auxiliary PDE with homogeneous BC

In order to approximate the solutions of (25-27) by a lowesnthodel, we can use a classical
POD-Galerkin approach provided the initial conditigfhis smooth enough. In other words, the
termw?, which is parametrized through the initial value, is apjmeted as

Kiv

W 1) = 3 a) efy (), (31)
k=1

Wherea{f(t) denote a set of undetermined coefficients which is an intglinction of 6. We
denote byp'l‘v (x) a set of basis functions obtained via the POD method, iyeapiplying PCA to
the following snapshot dataset

Wi te)i=1....1.n=1....N}. (32)

Now, for a fixed value of the parameter vectyithe undetermined coefficients in (31) can
be computed by solving the following (small) system of cadplinear ordinary differential

equations
6
da’ +Ra’ =0,
dt (33)
aﬁ(O) = (Ug, ‘;0||(\/)L2(Qh)

where the stiffness matrix is defined as
Ra= [ Vil (074l 09 o
h

anda’ = (&%, ...,a,)".

It is worth noting here that since the stiffness matrix is adtinction ofé, it can be pre-
computed once for all. Hence, the solution of (33) can be adatgpefficiently for a given value
of 6. Given the solution of (33), the termf (x,t) can be computed for any arbitrary valueéof
using (31).

5.3. Resolution of the auxiliary PDE with zero initial cotidn

We need to exercise particular care while solving (28-3®esihe boundary functiogf(-, t)
is time-dependent. Once again, we take advantage of therlfieature of this PDE. A POD
Petrov-Galerkin projection scheme appears to be suitdtsicase. To begin with, let us consider
a set of boundary conditiong (9Q)-valued snapshots

Uy =" () i=1..1), (34)

wheret, belongs to aoarsetemporal discretization.
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The idea behind using the set (34) is to identify the prinlcgeanponents related to the BC
and to lower the dimension of the representative space dfrtfteedependent BC. Once a PCA
is performed on the se#!, the firstKgc POD modesj*(-,tn) € L?(0Q) associated witl#/!
are stored. This procedure is performed for all coarse tims@ntst,,n = 1,...,N. From a
computational point of view, the previous procedure is eciible since th&l PCA calculations
can be run independently of each other in parallel. Moreaberstorage requirements of the
correspondingl Kec modesj¥ is reasonable sindégc is expected to be smal is not too large
since it corresponds to the size of a coarse temporal gritlalso becausg areL?(0Q)-valued
functions.

For a fixed instant timg let us now denote byg? the projection of the trace functiaf(-, t)

onto the linear vector space spanned by the fa{vyﬂy,t), e nKBC(~,t)}:
Kec
g (,1) = > kO 7Y (35)
k=1
with
c(®) = (90756 D) oy - (36)

Next, we then define the functiafl ~

Kac

2(x,1) = D et £x. 1), (37)
k=1

Where{gl(-, t),...,&88(, t)} are the solutions of the followini§gc secondary equations that are
independent of:

k
%—Agkzomﬂx(O,T], (38)
EC,1) = 7*(,t) ondQ x (0, T], (39)
§|‘sz =0inQ, (40)

fork=1,...,Kgc. The following proposition holds:

Proposition 2. Let? be defined by (36-37) an@*) by (38-40). Ther® is the solution of the
problem

@—Azﬂ—%'e(t)gkingx(o T] (41)
ot = K v

Z(-,t) = nd?(-,t) onAQ x (0, T], (42)
Z =0inQ. (43)

12



Proof. In Q x (0, T] we have, from (37):

iy % _ S NS k S 01} &K
- A7 = kZ:;ck(t)(E - A¢ )+k§=;ck(t)f
Ksc
= Z e (t) £ from (38)
k=1

Eq. (42) directly follows from (39):

Kec Kec

2 = dme, = =g
k=1 k=1

and eq. (43) from (40):

Kec

2 = Z cf(0)&, = 0.
k=1
O

In our ROM, we propose to us# defined by (37) as an approximation @ the solution
of the original equation (28-30). We theoretically justifys approximation later in Section 5.4,
where we provide an upper bound f§e? — Z)(-, )l 2.

We now discuss different computational aspects of such &adetogy, showing that the
computations at every step can be carried out efficienthgt Bf all, it has to be noted that both
n* andé* have to be known on the fine temporal grid because of (37) 8)d kBwever, it seems
impossible to directly computg on the fine temporal grid since it would require us to perform
a PCA for each time instant which would be computationalbhitive. Therefore we propose
the following strategy: oncg< are computed on a coarse temporal grid as described préyious
we deduce its values on a fine grid using temporal intergati More precisely, for any point
xj € 277 N dQn we interpolate the set of valugg = 7*(x;,tn),n = 1...,N}, using classical
one-dimension interpolation functions (such as lineandnicspline interpolators).

Once the;* are known on the fine temporal grid, we have to solve the probl(88-40).
These problems can be solved in parallel for egchince they are independent of each other.
Moreover, since these problems do not depend,dhe dual basi%fl, e ,g—‘KBC} can be precom-
puted once and for all and used as the low-order basis to ippaite the solutions of (28-30).

We next examine an important aspect of our methodologytaetta data storage complexity.
From a computational point of view, it is not always feasitiekeep in memorKgc spatio-
temporal modeg® that are needed to expand the solutrfsee (37)). To overcome this dif-
ficulty, we propose a second-level ROM with low-dimensioregiresentation by projectingf
onto low-order spatial/temporal POD modes, for example:

Lk MK

001 = > Blax™ 0954, (44)

1=1 m=1



Using the second-level ROM (44) allows us to stéfg(LKMK + LK(N,)? + MXN,) values,
instead ofKgc(N,)N; ones if we directly store the® values on the fine spatial/temporal grids
(respectively of sizeN,)? andN,). Both (/*'); and ¢*™), can be obtained by applying PCA to
&4(x, 1) using a standard snapshot method for dataset generaton; Bndt, belonging to the
coarse spatial/temporal discretizations (10) and (11)wite, fork =1, ..., Kgc

Lk MK

Exjstn) = D, D Al ()6 (k).

1=1 m=1

The preceding equation can be rewritten in the compact form
£ = XM (45)
where we denoté® e .#;y with coefficients £€4)jn = €4(x;, tn), ¥ € .« with coefficients

i = X)), B € A with coefficients B)m = A< andg® € .y with coefficients
(%)nm = ¢¥™M(t,). Solving (45) with the penalized minimization problems

min - (1€~ ¥ B TI + B, (46)
By

whereu > 0 is a small regularization parameter, leads to the Eulgrdrege equations
(0H ) B (697 6¥) + uB* = ()T 6~ (47)

We can reshape (47) as a linear algebraic system of equatizais’ x M as shown below

(DX +ul)B* = d (48)
where
b11(s*)T¢* | ... | bu(¢")T6
D* = : : (49)
blLk(S'k)TS‘k bLkLk(S'k)TS'k

with bij = ((@*)"x*)i;, and where the rows ¢ (resp. of the rhs of (47)) are put in the vector
,gk (resp. ind¥). Recall that a similar approach was previously used in tis¢-litvel ROM to
estimate the undetermined coefficieaig(0); see Section 4.

5.4. Error estimation of the auxiliary problem with zerotial condition

We give here an error estimate betwer(i’e., the solution of (41-43)) and (i.e., the
solution of the original equation (28-30)).

Proposition 3. Let Q be a bounded subset BF. Let d be a boundary function such thaf g
and ﬁa—%g € C°([0, T]; L2(69)), ¥ €]0, 1[°. If Z is the solution of (28-30) an# is the solution of
(41-43), then the following error estimate holds:

I = 2)(- Ollizey < AD) + tBexp(— (50)

t
2Cp(9)2)
14



where G(€2) > Ois the Poincaé constant, &) is a function of time which can be arbitrary small
depending on K¢, ({ and&X, and B is a constant depending (ﬁ] KandT.

Proof. As a first step, we give the weak formulation of (28-30). Besgaof its nonhomogeneous

BC, we formally defing? = Z g, with g%, = Z che®. Itis easy to check thaf, is an extension
k>1
of ¢’ to the whole domai, and that/ is the solution of

oy’

E—Ay":b" inQx(0,T], (51)
Y(-,t) = 00ndQ x (0, T], (52)
¥, =0inQ, (53)

0 6
with b? = Ag?, - % The weak form of (51-53) then reads

d
d—t(YH»SD)LZ(Q) + (VY. V)2 = (0%, @)12(), Yo € HH(Q). (54)
We follow the same procedure for the problem (41-43). We deffn= # — (rg?)q where
Kec
(ng®)q = Z cié¥is the extension ofg? to the whole domai, so thay? is the solution of
k=1

oy’

E—AVQ:Oian(O,T], (55)
#(-,t) =00ndQ x (0, T], (56)
¥ =0inQ. (57)
The weak form of (55-57) is given by
& ey + (V9. Ve = 0, Vo < HY(@). (59

Subtracting (58) to (54), and taking= 7 — Z as a test function, leads to

dﬂt(uoﬂ -9, t)uﬁzm)) Y = ) Oy = 0% = Pz

Using Poincaré and Cauchy-Schwarz’'s inequalities (s8e242]) then gives
d - 1 - 1
d_t(”(yy - yg)(',t)”Lz(Q)) + m”(yg ) llz) < §||b0||L2(Q)
or, integrating over [(X]:

o 1 1 ! o
16 =)Dl < 5 [ 10 9oy ds= i [ 107 =906 Il s
15



Using the integral form of the Gronwall lemma (see [25]), mee the following inequality

. 1 t t-s
Y = ), DllLz) < alt) - mﬁ a(s) eXp(—m) ds
t
wherea(t) = % f Ib%(, 9)llL2) ds Sincea is a positive and nondecreasing function, we get
0

. t
1Y = T Dl < alt) eXp(—m)-
Coming back to the definition of andy?, we have
N
k>Kgc

which yields

I(Z = Z) (. Yllizg) <

> doey|, raverl-ms) 69

k>KBC

We then estimaté\(t) =

Z cﬁ(t)gk(~,t)H . For this, we invoke the maximum princi-
k>Kgc L@
ple property related to the heat problem (41-43). Sigtee C°([0,T]; L?(0Q)) for all 6;,

we deduce that* also belong tac®([0, T]; L2(0Q)), Yk = 1,...,Kgc, by linearity of the
POD modes with respect to the snapshots. As a consequenagetvim (35) thatrg?
C°([0,T]; L2(0Q)), VKgc. By virtue of the maximum principle, the solutiaf 6f (41-43) be-

longs toC%([0, T]; L%(Q)), YKgc. It follows that the serie# Z cﬁ(t)gk(-,t)“
k>1 ()

meaning thaf\(t) can be arbitrary small provided thiggc is large enough.

converges,

The last step involves estimating the functieft) which appears in (59). By construction,
we have

o _ o 9% _ of kO 0k ok
= Agh -~ Tt = D k| |- e = - ke
k>1 k>1 k>1
which leads to L
oft) = Eﬁ ||b0(', S)|||_2(Q)dSS'[B
with

1
B== sup
2 «[0T]

PRACTAEE (60)
k>1

L2@)
We justify the convergence of the series in (60) as followsing the Cauchy-Schwarz’s inequal-
ity, we have YKgc:

Kac 2 Kac
S ASECI[, < 1NN iy 1€ Il (61)
k=1 L@ ko1

16



We first prove that
sup [I€4(, iz < +o0, Yk = 1,..., Kac. (62)
se[0,T]

Sincerk € C°([0, T]; L?(0Q)), we deduce from the maximum principle applied to (38-4@)t
& e ([0, T]; LA(Q)), meaning that (62) holds. We then need to show that

sup [€X(9)] < +oo0, Vk=1,...,Kgc. (63)
s€[0,T]

Sinceci(s) = (°(, 9, (-, 91200 by definition, using the Cauchy-Schwarz’s inequality, we

have .
0
i(., 9

-0
<
IC(9)] < ot

F) 0
=0 S)HLzm)”"k(" Iz + 197 lizony (64)

L2(6Q)
In (64), I9°(:, 9ll2pq) < +oo sinceg? e CO([0, T1; LA(Q)), and|l7*(, 9llzaq) = 1 sincen® are
L2 normalized POD modes. We finally use the second assumpticortolude: sincé%%g €
CO([0, T]; L%(69)), V6 €]0,1[P, we deduce thaf@ﬁltk € CY([0,T]; L2(6Q)), by linearity of the
POD modes with respect to the snapshots. This allows us mwibathe proof since

Kec

PILERE Iy <

holds,¥s e [0, T], YKgc. O

5.5. Overview of the proposed methodology

Gathering all the previous steps of the ROM methodology,etaeqgs. (4), (31), (37) for the
first-level ROM, and (44) for the second-level ROM, the apjirate solutiort® can be written
as

Kiv Kac Lk Mk

Tt = > a0+ (01D 400 D) D AT
k=1 1 1=1 m=1

k=

M
+2° an(®)¢ £ ). (65)

K
k=1 m=1

The different steps of the proposed ROM methodology are saned in Algorithms 1 and
2, wheref denotes any design parameter point. Algorithm 1 outlinesthps involved in com-
puting the ROM solution of the full non-linear problem, given by (65). Algorithm 2 outlines
the steps involved in computing the ROM solution of the daxji parabolic linear PDE?, cor-
responding to the two first terms of (65).

17



Algorithm 1 ROM algorithm for general time-dependent parametrized $DE

1:
: ROM methodology (full non-linear initial model) :

© For each design poirk, compute the spatial and temporal POD mogé$)f', and ¢™)M .
: Compute the common POD basig)_, and ¢™M , using PCA.

. Carry out parameter-space analysis to compute the coefficie.(6)):

:fori=1tol do

e e S S e
S A wWwhR O

© ® N O U A WD

Apply DoCE to generate a set of poirits}!_, and compute the fine solution$ at these points.

Compute ¢m(8i))km Using (19)

: end for
: for k=1toK do

for m=1toM do
solve the linear system (23) to compgt€&’
Computeaym(6) using (20)

end for

. end for
: Assemble the third term of (65) usingi(6))km, (©*)x and ™).
: Final assembling: Computeél using (65) and”’ computed using Algorithm 2.

Algorithm 2 ROM algorithm for the auxiliary parabolic linear PDE

1: ROM for Initial Value :

o O b~ WN

~

: From the snapsho<szv"i (- tn)} of solutions of (25-27), compute the spatial mod,ésm‘i.

: Solve the ODE system (33) to compui§t) on the fine temporal grid.

: Assemblen? on the fine temporal grid using (31).

: ROM for Boundary Conditions:

: From theL?(0Q)-valued snapshotg/' (see (34)), compute thiggc spatial POD modes;((-,tn))lfff,

for each coarse timg, n=1,...,N.

. Interpolaten® on the fine temporal grid using classical one-dimensiortatfiolation.

8: for k=1 toKgc do

10:
11:
12:
13:
14:
15:
16:
17:

solve (38-40) to generate the spatial snapsktist,) and temporal snapshat¥(x;, )
Compute the spatial and temporal (second-level) POD moﬁé)ﬁ( and (;Km)mil
end for
for k= 1toKgc do
Compute and store the coefficieng i m obtained by solving the linear system (48)
end for
Foreackk =1,..., Kge, assemble&)lfff on the fine temporal grid using (44).
Assemblez” according to (37).
Final assembling: Computé?” as the sum o’ andZ, corresponding to the two first terms of (65).

18



6. Numerical test-case (1d-x 1d 1d-t)

6.1. Definition of the test-case

To illustrate the proposed methodology, we first considerftilowing unsteady Burgers’
equation inQ2 x [0, T]

0 0
%it +u96a—ux —0inQ=[-22],
W(-2,1) = u (6), W(2.1) = Ur(6), (66)
0 _ 0
u\t:o - uO

where the continuous initial data is given by
u@=1+010 xe[-2,-4a],

W(x) = _”LT(f’ xe[-aal (67)

UR(6) = —uL(6) xe[a?2]

with a €]0, 2[. The non-linear problem (66-67) is inspired from [26] wéna randomly parametrized
Burgers’ equation with an initial shock is studied. The $ioluof (66-67) is continuous for time
t € [0,a/u (8)[ and is given by

u () x<0
uw(x,t) = L@ x< (68)
ur(d) x>0
for timest > a/u. (), sincel’ is a shock solution travelling with the spee@) = %(uL(e) +
ur(0)) = 0. In our numerical experiments, we will consider an intégratimeT < a/mgax|uL(9)|
in order to study the transient phase, namely before thekshymears.

6.2. Numerical results

Since the boundary conditions in (66) do not vary as a funatictime, the ROM (4) boils
down to

K M
T(x, 1) = ud(x) + Z Z akm(B)e*(NEM(1) (69)

k=1 m=1
meaning that we don’t need to solve an auxiliary PDE of thenf¢8-8). This simple test-case
allows us to validate the first level of our ROM methodologgatéed in Sections 3 and 4.

In our numerical experiments, we take= 1, T = 0.8s andd € [-2,2]. We consider a set
of I = 20 design point®; uniformly spread in {2, 2] for the parameter-space sampling and a
19



uniform spatial grid made dfly = 100 points. For the coarse temporal sampling, weNise51
points in [Q T] to generate the spatial snapshots. We consider a coarsal spash ofJ = 50
pointsx; and a time-stept = 4.25x 1073 to generate the temporal snapshots, corresponding to
a grid of N; = 201 points.

In order to compute the spatial and temporal basis functibmsdé™ needed in the expan-
sion (69), we first compute, for each design param@ter 7', K' spatial modeg*' and M!
temporal modeg™, by applying PCA methods. Using thresholdseof 1073, we get a total
of Zi'zl K' =105 andzi'=1 M! = 105 POD modes. By applying another PCA method on these
different sets of modes with thresholds ©of= 1072, we finally retain a set of common POD

..........

For the estimation of the coefficienign(6), we use a Gaussian radial basis functiin) =
I‘2 . . . . . . . . .
e z with oo = 0.13in (20). This optimal value far has been numerically obtained by minimiz-
ing the distance betweenm(6;) given by (19) and their RBF approximations (20).

As afirst illustration, we compare on Figure 1 the approxa®®M solutiori¥ to the exact
solutionu? for 6 = 2.0, which is the maximal value of the parameter space inter@ale can
see a good agreement between the two solutions, even if esadlations appears in the ROM
approximation at the final timé.

For a more systematic comparison, we plot on Figure 2 difitdré errors between the exact
and the ROM solutions when the parameétbelongs to a fine grid made of 200 points uniformly
spread in {2, 2]. For each design parameter, we represent the maxifredror

max |[i°(-, tn) — u’(: 7
tnE[Oa,.T] |r00( ’ tn) u ( ’ tn)”LZ(Q) ( 0)

and the relative.2 error

1 i T(, t) = (., )iz
Ny & IU9(-, t)llLzoy

showing a good level of accuracy of the ROM (69).

(71)

7. Numerical test-case (2d-x 3d 1d-t)

7.1. Definition of the test-case

To illustrate the whole ROM approach described in Sectigrsdhd 5, we consider a more
complex parametrized model test-case, where the paras@eteinvolved within the initial value,
the boundary conditions and the governing equation of theehdn this case, we will consider
the ROM in its more advanced form (65), where we approximaesplit solution (24) of the
auxiliary PDE problem using the second-level ROM (44).
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Figure 1: Comparison of the exact and ROM solutiongfer2.0.

7.1.1. Parametrization of the equations

Toillustrate the application of the proposed methodolagyconsider the following unsteady

convection-reaction-diffusion problem{a x [0, T]

2
6u+v.( u

at 2

—
U, = Ug

-
u= g% onT (upper BC)
u=00n9Q\Tl,

) —vAu = f%in Q =]0, 1%,

(72)



loglO (error)
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maximalL? errors (70) relative.? errors (71)

Figure 2:L2 errors in log scale between the ROM and the exact solutiorgfdefined on a fine parameter space grid.

with 3 parameters: one in the reactive tefiy) (one in the BC#,) and one in the initial condition
(83). Herev denotes the viscosity(x, y) is a rotating field defined by

1 -(y-1/2)
X,y) = 73
Iy 12x- 172 [ ‘12 79
and the reactive term is given by
£ =0.1-0.016, uul. (74)

This model is an extension of the steady-state parametfipEimodel studied in [10].

7.1.2. Parametrization of the BC

We justify here the chosen form of the parametrized BC, stheee exists many possible
choices for the functio?. First of all g must satisfy the conditiog?(-,0) = 0, because of
egs. (29-30). Moreover, considering an usual expressiogfonamely as the product of a
temporal function and a spatial one, is restrictive. It igtwaoting that ifg?(x, t) = a(t)8%(x),
then it can be seen from (34) that for different timgst t,, the snapshots o, and%, are
colinear since ¢
%g"‘(~,tm),vi =1,...1.

Therefore we get the same eigenfunctiq@@ by performing a PCA on the se®&. or #. In

order to consider the most general case, namely time-depeRDD modeg'éc, we use the
22
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following expression fog?
g’ (x.t) = aa(H)BY(X) + a5(t) (75)
with a1(0) = @4(0) = 0 sinceg’(-,0) = 0.

In our numerical simulations we take

() = sin(%), (76)
“(x) =1- 6, sin(Zn(x— %)) (77)

and
o) = 2. (78)

7.1.3. Parametrization of the initial value

For parametrization afp, we consider some perturbations of a known functiamthe form
ud(x) = U(x) + 6c(x), (79)

with uy,, = ¢,, = 0, because of the homogeneous BC of the heat problem (25T2g)rela-
tion (79) can be viewed as a simplified representation of Kaein-Loéve expansions used for
modeling random fields in a stochastic framework (see [22f)ereu’is a deterministic mean
function andd are random variables.

In our numerical simulation8 = 83 anduis taken as an harmonic function that satisfies the
Poisson problem

-Au=finQ,
(80)
u=00ndQ,
with f = 1. We choose
1 1 1 1
c(x)_/l(x+§)(x—§)(y+ 5)(y—§), (81)

. 8 _ . ) _
with 1 = 5 man|u| so that the maximal amplitude ofrepresent a tenth onm:M.

7.2. Numerical results: approximation of the auxiliary PDE

In order to validate the methodology presented in SectioveSjrst present numerical results
for approximation of the auxiliary PDE model (6-8). The BGhddions and the initial value are
defined by (75-78) and (79-81), respectively, meaning tleatensider a two-parameter problem.
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Figure 3: Computation o,ﬂ‘v : spectrum of the Gram matrix in lggscale. We retairK;y = 6 spatial modes.

After presenting the different parameters chosen for thigsalations, we will compare the ROM
solution

Kiv
V(1) = ) a0 ¢l (x)
k=1
Kac Lk MK
(01 C0) g D DB 006 ). (82)
k=1 I=1 m=1

which corresponds to the two first terms of (65), to the sohwf2% obtained by directly solving
(6-8) with a precise implicit Euler scheme.

We choose the following parameters for our simulatiohs: 2s,Ny = 20 points per spatial
direction, and a time-steft = 0.002 for the fine Euler resolution. For the heat problem ragmiu
with homogeneous BC (see 85.2), we thke 51 points for the temporal sampling, half of them
being uniformly spread in [@.2] to capture the unsteady behavior of the solutiéh Applying
PCA with a threshold o = 10712 leads toK;y = 6 spatial mode&'l‘v (see Figure 3). Figure 4
shows the time history of each coefficieaﬂt(t) of the expansion (31). It can be seen that each
coefficient converges towards 0, which is consistent withfdct that we analyze the solution
with respect to its initial value dependency.

Concerning the heat problem with null initial value (see3§5we sample the parameter
24
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Figure 4: Time history of the coefficienuf(t), k=1,..., Kiv in log;g scale. It can be seen that all the coefficients

vanish for large times.

with | = 7 values uniformly spread in [@]. Applying PCA with a threshold of = 107 leads
to Kgc = 2 spatial modes® (see Figure 5(a)).

For the second-level ROM (44) we store, for e&ch 1, .. ., Kgc, Nt = N spatial snapshots
(€%, tn))n and Ny = 200 temporal series(x;, -)); wherex; belongs to a coarse spatial grid
uniformly spread i2. Applying PCA methods with thresholds ef= 10°° in both cases leads
to LX = 7 spatial modeg*'(x) andMk = 8 temporal modes*™(t), for eachk (see Figures 5(b)
and 5(c)).

For#, = 0.2 andd; = 0.1 we now compare the approximate ROM solution to the fine
Euler solution. The results presented in Figures 6 and 7 shgaod agreement between the
approximated and fine Euler solutions. The mearelative error is

1 V2% (-, ty) = V2% (-, 1)l 2o

N & [IV¥28(, tn)llL2(0)

~747x 1072
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Figure 5: (a) — Computation af : spectrum of the Gram matrix in legscale. We retaifKgc = 2 spatial modes. (b) —
Computation of*' : spectrum of the Gram matrix in Iggscale. We retain = 7 spatial modes. (c) — Computation of
§km: spectrum of the Gram matrix in lggscale. We retaiM = 8 temporal modes.

It is worth noting that on the upper BIG the solution is better approximated:

1o V25 1) = V2 )l

N & [IVP2 9 (-, t)llL2qry

~ 4.99x% 1072

The L? relative errors over the whole domaihand the upper boundaiyas a function of
time is shown in Figures 8(a) and 8(b), respectively. It cambted that the quality of the ap-
proximated solution is not affected by the size of the terapooarse grid used for the modes
7¥. We maintain the same level of accuracy using a temporalrsadepling, with a coarse grid
made of only 21 points. Figures 9(a) and 9(b) compare thedeahpvolution of the solution at
a fixed point in the interior and boundary for the ROM and threctiEuler solution.
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Figure 6: First few snapshots of the direct implicit Eulelution V293 (-, t,), n=1,..., 12, forg, = 0.2 andfs = 0.1.

We would like to point out that computation and storage of R@D modes/*(-, t,) on the
coarse temporal grid require a numerical post-processigce these modes are obtained for
different timest,, it is possible to generate discontinuities, because e&xars in the PCA
methods are defined up to the sign. A simple procedure is hegeged to detect the possible
changes of sign and has been used in our simulations.

7.3. Numerical results: full non-linear problem

We present now numerical results corresponding to the éultimear problem (72), with the
parametrization described in Sections 7.1.1, 7.1.2 an@.7Hor our numerical simulations we
takev = 0.05 andT = 5s. The fine spatial grid is made of 200 points and the coarse onel$
344 points uniformly spread i€, including the upper BC. For the temporal discretizatior, w
takeN = 101 points to generate the spatial snapshots (12Napgl= 501 for the snapshots time
series (14), half of them being uniformly spread inQ®]. For the parameter-space discretization
we use a regular grid df= 5% = 125 design points.
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Figure 7: First few snapshots of the ROM solufiéd®3 (-, t,), n = 1,...,12 given by eq. (82), fo#> = 0.2 anddz = 0.1.

We proceed as follows to construct the spatial and tempasastunctionsy andé™, needed
in the expansion (4). For each design param@ter#’', K' spatial modeg*' andM' temporal
modest™ are computed by applying PCA methods. Using thresholderngisely ofe = 107
ande = 1075, we get a total off)}_, K' = 500 andy|_; M' = 375 POD modes. From these
different sets of POD modes linked to each design paramstededuce common spatial and
temporal basis sets applying PCA once again on the families

and

,,,,,

,,,,,

matrices are shown in Figure 10, showing a quick decay offiketsa. The spatial and temporal
modes are depicted in Figures 11 and 12. It can be seen froaneFi that the conditions
£M(0) = 0 are satisfied by the temporal basis functions.
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Figure 9: (a) — For a fixed point in the interior & trajectory of the ROM and direct solutions. (b) — For a fixeihp
on the upper BC, trajectory of the ROM and direct solutions.
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In our simulations we using the Gaussian radial basis fanai(r) = e‘5 with o = 0.15.
This optimal value of- is numerically obtained by minimizing the maximal distabe¢éween the
known coefficientsrm(6;) given by (19), and their RBF estimations given by (20). Sacfalue
of o leads to a maximal difference of3F x 10-4. The condition number of the interpolation
matrix involved in (22) is around 18 for the chosen value of the scaling parameter
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Figure 10: (a) — Computation gf: spectrum of the Gram matrix in Iggscale. (b) — Computation gf™: spectrum of

the Gram matrix in log, scale.

Figure 11: First 9 spatial basis functiog.
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Figure 12: First 4 temporal basis functioff8, with £™(0) = 0.

Concerning the initial value part of the ROM, we consider shene temporal sampling in
[0, T] used for the non-linear snapshots generation, to get thestrots of the heat problem with
null BC (N = 101). This leads us to considir, = 4 modespk,. For the BC part of the ROM,
we consider 20 values @ uniformly spread in [01] in order to perform PCA on the set (34).
This leads us to retaigc = 2 POD modeg*. The spatio-temporal mode$ are not computed
exactly but are approximated by (44), wthk = LX = 5, foreactk = 1, ..., Kgc.

Figures 13 and 14 show some temporal snapshots of the sotlitectly obtained by an im-
plicit Euler scheme at the beginning and at the end of thelsition. We consider the parameter
vectorfy = (0.27,0.92, 0.23)", which is not included in our snapshot generation procezsaid
(14). The temporal snapshots approximated by the ROM fosdinge paramet# are shown in
Figures 15 and 16. It can be seen that the reduced-order mamédles a very accurate approx-
imation of the full direct solution during all time-instarin the interval [05]. It is to be noticed
that the snapshots directly generated by a fine Euler schesmabtained wittN2 x Nt = 40400
unknowns, while the ROM snapshots requitg + Zl'fji LkMK + KM = 90 unknowns, once all
the POD basis are generated. In addition, we represent iné-iy’ the normalizet? errors

0% (-, tn) — U (-, th)llL2o

max|iu® (-, to)llLz (o)

&) = (83)

showing the ability of the ROM to reproduce accurately tHedirect solution as a function of
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time. As another illustration, we give in Figures 18 and 1Bra¢-dimensional representation of
these two solutions at initial and final time-instants, simgithe good agreement between each
other.

To illustrate the accuracy of the ROM at other points in thepeeter space, we use the mean
L2 error defined below

N
E0) = < " 8. (84)
n=1

where&(t,) is the normalized.? error at time instant, defined earlier in (83). Figure 20 shows
the mearl? errors (84) represented for the 125 design points of the D#Q&n be seen from
these results that the mean value of these errors is aboli09 with a maximum error equal to
0.0123, showing that the ROM provides good accuracy.

0.075
0.057
0.038
0.019

0

0.077
0.058
0.039
0.019

0

0.087
0.065
0.044

0.022

8. Concluding remarks

In this paper, we proposed a hon-intrusive method for redhacder modeling of parametrized
time-dependent PDEs where the governing equations, thial iahd time-dependent boundary
conditions are parametrized. The key idea was to reprelsemetuced-order model as the sum
of two terms. The first term was chosen as the approximatg¢isolaf an auxiliary parabolic

32



..,101.

Figure 15: A few snapshots of the ROM solutigf (-, t,) on Q x [0, 5] for 6 = (0.27,0.92,0.23) , n=1,...,12.
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Figure 16: A few snapshots of the ROM solutigf (-, t,) on Q x [0, 5] for 6o = (0.27,0.92,0.23)", n=90,...,101.

Figure 17: Normalized.? error &(ty) in log; o Scale between the ROM and direct solutionséigr= (0.27,0.92, 0.23)",
n=1,...,N.

linear PDE which enforces satisfaction of the boundary aitthl conditions, while the second
term is a linear combination of a tensor product of adaptadiapand temporal basis functions
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uo(-, 0) T (-,0)

Figure 18: 3D representation of the direct solution (lefeiand of the ROM one (right side) at tihe: 0.

UBO(‘,T) UGO(',T)

Figure 19: 3D representation of the direct solution (lefe3iand of the ROM one (right side) at tihe T.

obtained using a two-level POD method. The ability of thipra@ch to accurately reproduce
the solutions has been numerically validated for unsteadgmetrized Burgers’ and convection-
reaction-diffusion models. We also provide an error estinfiar the reduced-order model used
to approximate the solution of the auxiliary parabolic PDE.
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Figure 20: MearL? errorsE(6) (eq. (84)) in log, scale, ford belonging to the DoCE.

It would be of interest to develop greedy versions of the pegjal approach to improve com-
putational efficiency further (see [10] for a detailed exfios of the ROM-greedy algorithm for
stationary parametrized problems, and [27, 28] for moresgrconsiderations on greedy ap-
proaches). It is also of interest to investigate the apfitioaof the proposed numerical schemes
to solve PDEs that are randomly parametrized (see [29] fgoimg work on this topic). We
would like to mention here that the method proposed in thjgep&an be directly applied to
randomly parametrized PDEs since the final reduced-ordeoapnation given by (65) can be
efficiently postprocessed to estimate the statistical msnaf the solution given the joint prob-
ability density function of the parameters. The error eataprovided in this work only applies
for the approximation to the auxiliary parabolic PDE andthetoriginal parametrized PDE. Fur-
ther work is required to establish error estimates for thlenton-linear problem. Furthermore,
it could be useful to study numerically the influence of thiéedent ROM parameters (number
of modes, size of the samplings, etc) on the level of accuphtlye approximate solution. It is
also expected that the proposed ROM method may find aplitatd optimal control theory
problems with complex time-dependent boundary conditions
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Nomenclature

physical space® c R¢

boundary of the physical domain

upper boundary of2

dimension of the parameter space

spatial coordinates

time,t € [0, T]

vector of parameters,€]0, 1[°

source term of the PDH, = f(u, 6)

inhomogeneous Dirichlet boundary conditiogs= g?(x, t)
initial value functionuf = uf(x)

discretized domain with polygonal boundary

L2-scalar product

exact solutionu? = u?(x, t) of the non-linear PDE problem
under consideration

Reduced-Order Model

approximate ROM solution

solution of the auxiliary linear PDE

solution of the auxiliary linear PDE with homogeneous
boundary conditions

solution of the auxiliary linear PDE with zero initial cotidins
approximate ROM solution af

Design of Computer Experiments

number of fine simulations to perform the DoCE
sampled design parameter vector

set of design vecto®, i = 1,...,1

spatial coordinates belonging to a subsampling cloud
set of point;, i =1,...,J

instant time belonging to a coarse sampling

set of time instantg,, n=1,...,N

spatial POD modes of the full non-linear problems 1,..., K,
linked to6;

common spatial POD modds= 1,...,K

matrix of coefficientsp; = ¢*(x;)

temporal POD modes of the full non-linear problems 1, ..., M',
linked to6;

common temporal POD modes,=1,...,M
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F3 matrix of coefficients,,, = £M(tn)
akm  parameter function in the full ROM decompositi@n(6),
k=1,....K,m=1,...,M

a matrix of coefficients¢' )km = axm(6;)

u' for a fixed®;, matrix of coefficientsyf') j = u’ (xj, tn)

T for a fixed®;, matrix of coefficients§') j = T (xj, tn)

v for a fixed®;, matrix of coefficients\()n = V¥ (xj, tn)

u small regularization parameter for linear system resohgi

RBF Radial Basis Function
() RBF kernel

o scaling factor ofd

A interpolation matrix

y!‘m ith coefficient in the expansion afn,

& thresholds for the choice of the number of POD modes
BC  boundary condition

v initial value

Kiv number of modes related to the auxiliary linear PDE with
homogeneous BC
cp:(V spatial POD modes for the IV treatmekt£ 1,...,Ky)
Ksc number of modes related to the auxiliary linear PDE with
null initial condition
< spatialL?(0Qp)-valued POD modes for the BC treatment,
k= 1, ey KBC
& spatio-temporal POD modes in the expansiopk™= 1, ..., Kgc
kI second-level spatial POD modes to redétd = 1, ..., L¥
gkm  second-level temporal POD modes to redédgen = 1,..., MK

>~
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