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Abstract

We propose a non-intrusive reduced-order modeling method based on the notion of space-time-

parameter proper orthogonal decomposition for approximating the solution of non-linear parame-

trized time-dependent partial differential equations. A two-level proper orthogonal decompo-

sition method is introduced for constructing spatial and temporal basis functions with special

properties such that the reduced-order model satisfies the boundary and initial conditions by

construction. A radial basis function approximation method is used to estimate the undetermined

coefficients in the reduced-order model without resorting to Galerkin projection. This nonintru-

sive approach enables the application of our approach to general problems with complicated

nonlinearity terms. Numerical studies are presented for the parametrized Burgers’ equation and

a parametrized convection-reaction-diffusion problem. We demonstrate that our approach leads

to reduced-order models that accurately capture the behavior of the field variables as a function

of the spatial coordinates, the parameter vector and time.

Keywords: Reduced-order model; physics-based surrogate model; time-dependent

parametrized partial differential equation; proper orthogonal decomposition; radial basis

functions

1. Introduction

Parametrized partial differential equations (PDEs) arisein a number of important application

areas, including design optimization, uncertainty analysis, optimal control and inverse param-

eter estimation. The computational cost associated with these applications can be exorbitant,
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particularly when the underlying PDE model is required to besolved with high accuracy using

a fine spatial mesh and small time-steps. In order to solve challenging problems on a limited

computational budget, there is a need for efficient numerical methods for constructing approxi-

mation models (also commonly known as surrogates or emulators) of parametrized PDEs. Such

techniques enable the PDE solution to be efficiently approximated at any point in the param-

eter space, thereby leading to significant computational cost savings in applications requiring

multiple evaluations of the PDE solution over the parameterspace of interest. This has moti-

vated a number of researchers to investigate numerical methods for approximating the solution

of parametrized PDEs.

Reduced-order modeling (ROM) has emerged as a powerful approach for tackling parametrized

PDEs and a number of formulations based on this idea has been proposed in the literature. The

basic idea underlying ROM is to approximate the solution using an appropriate set of basis vec-

tors/functions and subsequently estimate the undetermined coefficients in the expansion using

Galerkin projection or an error minimization scheme. Existing approaches include methods

based on Lagrange, Hermite or Taylor subspace and proper orthogonal decomposition (POD)

strategies; see references [1, 2, 3] for an overview. However, most of the work on this topic

has focused on parametrized steady-state PDEs [4, 5, 6, 7, 8,9] and very little work has been

done on developing general computational methods for ROM oftime-dependent parametrized

nonlinear PDEs. This can be primarily attributed to the inevitable computational difficulties that

arise when it is sought to approximate the PDE solution as a function of the spatial coordinates,

time and the parameter vector.

In [10], we proposed a principal component analysis (PCA) methodology to construct ROMs

of steady-state parametrized PDEs. The key idea was to applyPCA to a training dataset obtained

by solving the fine solver at a set of design points chosen using a design of computer experiments

(DoCE) algorithm to derive a set of spatial and parameter-space basis functions. A greedy adap-

tive algorithm was developed to ensure that the method scales well to high-dimensional problems

that may necessitate a large number of runs of the fine solver.Detailed numerical studies were

presented to demonstrate that this approach allows for the construction of highly accurate ROMs

with modest computational effort.

Time-dependent parametrized PDEs are much more challenging compared to steady-state

problems, particularly when the boundary conditions vary as a function of time and the pa-

rameter space. The main difficulty arises from the requirement of constructing a reduced-order

approximation model that satisfies the initial and boundaryconditions at all points in the param-

eter space. Gunzburger et al. [11], studied this problem fora special class of parametrized PDE

models, where only the boundary conditions are parametrized. However, this approach cannot

be readily extended to problems where the governing equations are also parametrized. Hay et

al. [12] proposed sensitivity-based approaches for constructing reduced-order models of unsteady

PDEs over parametrized geometries. Both these approaches are based on Galerkin projection due
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to which they can be difficult to implement for problems with complicated nonlinearity terms.

It is worth mentioning here that the reduced basis method studied in [13] has been applied to

the unsteady Burgers’ equation in one space dimension anda posteriorierror bounds were de-

rived for the approximation. The so-called discrete empirical interpolation method [14] is also

a very interesting approach that has been applied for approximating the solution of nonlinear

parametrized PDEs.

In this paper, we present a general non-intrusive method forconstructing reduced-order ap-

proximations to the solution of time-dependent parametrized nonlinear PDEs, where the gov-

erning equations, the boundary and initial conditions are parametrized. The methodology pre-

sented here can be considered to be a generalization of our PCA based method for steady-state

parametrized PDEs. Our goal is to construct a ROM that can eventually be used to approxi-

mate the PDE solution at a huge number of points in the parameter space very efficiently. The

key idea underpinning the proposed method is to split the reduced-order approximation into two

terms. The first term is defined as the solution of an auxiliaryparabolic linear parametrized PDE

– this is to guarantee that the ROM satisfies the boundary and initial conditions by construc-

tion. The second term in the approximation is composed of a linear combination of a tensor

product of physical space and temporal domain empirical proper orthogonal modes. We pro-

pose a two-level POD approach for constructing the spatial and temporal basis functions starting

from an ensemble of solution snapshots obtained by solving the original PDEs at a finite set

of points in the parameter space. The undetermined coefficients in the approximation are esti-

mated using a non-intrusive approach based on radial basis function approximation (in contrast

to Galerkin projection), thereby enabling the straightforward application of our methodology

to parametrized PDEs with complicated nonlinearity terms.We present numerical studies for

a model parametrized Burgers’ equation and a parametrized form of the convection-reaction-

diffusion problem to illustrate the accuracy of the proposed approach.

The remainder of this paper is organized as follows: In Section 2, we outline the central ideas

used in the proposed formulation. In the section that follows, we show how spatial and temporal

basis functions that obey certain conditions can be constructed using a two-level POD method.

Subsequently, in Section 4, we present a nonintrusive method based on radial basis function

approximation to estimate the undetermined coefficients inthe reduced-order approximation.

Section 5 focuses on approximating the solution of the auxiliary parametrized parabolic PDE

so that the ROM can be evaluated at any point in the parameter space in real-time. Section 6

is devoted to numerical studies for a parametrized Burgers’equation. Eventually, numerical

results are presented in Section 7 for a more complex parametrized convection-reaction-diffusion

problem. Section 8 concludes the paper and outlines some possible directions for further work

on this topic.
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2. Problem statement and methodology

Consider the parametrized time-dependent PDE model given below:

∂uθ

∂t
+N (uθ,∇uθ) = f θ in Ω × (0,T], (1)

whereθ ∈]0, 1[p (p ≥ 1) is a vector ofp parameters,t ∈ (0,T] denotes time andΩ is the

physical domain over which the PDE operator is defined with regular boundary∂Ω. We denote

by N (uθ,∇uθ) a nonlinear parametrized operator;uθ is the field variable which we seek to

approximate as a function of the physical coordinatesx, the parameter vectorθ and timet. The

governing equations are supplemented by parametrized boundary and initial conditions of the

form

uθ(·, t) = gθ(·, t) on∂Ω × (0,T], (2)

uθ
|t=0
= uθ0(x) in Ω. (3)

For any value ofθ, it is assumed that (1-3) is well-posed in a usual Hilbert space made of regular

functions – typicallyH1(Ω) ⊗ L2(0,T) – meaning thatuθ0, f θ andgθ are smooth enough related

to the nonlinearity termN (·).

Our objective is to construct a reduced-order approximation of the solution of (1-3) as a func-

tion of x, θ andt. One straightforward approach to tackle this problem wouldbe to work with the

finite-dimensional representation of (1-3) obtained afterspatial discretization with mesh spacing

h and an appropriate time-stepping scheme. Then for each timeinstant of interest, saytn, the

field variable can be approximated as a function of spacex andθ using the methodology outlined

in [10] for steady-state parametrized PDEs. Even though this approach is easy to implement, it is

computationally not very attractive due to the need for constructing a ROM at each time step. We

shall not pursue this approach any further and instead focuson developing numerical schemes

that deal with time as a continuous variable.

In order to ensure that the approximation foruθ(x, t) satisfies the boundary and initial condi-

tions for any value ofθ, we propose anansatzof the form:

ûθ(x, t) = vθ(x, t) +
K∑

k=1

M∑

m=1

αkm(θ)ϕk(x)ξm(t) (4)

whereαkm, k = 1, . . . ,K, m = 1, . . . ,M denote a set of undetermined coefficients in the ap-

proximation, andϕk(x) and ξm(t) are spatial and temporal basis functions with the following

properties:

ϕk
|∂Ω
= 0, ∀k = 1, . . . ,K,

ξm(0) = 0, ∀m= 1, . . . ,M. (5)
4



The above conditions essentially state that all the spatialbasis functionsϕk are zero on the

boundary∂Ω, while all the temporal basis functionsξm are zero att = 0. Due to these properties

of the spatial and temporal basis functions, we now only needto choose the termvθ(x, t) such

that the parametrized boundary and initial conditions (2-3) are satisfied by construction. For the

special case when the boundary conditions do not vary as a function of time, we can set the first

term in (4) asvθ(x, t) = uθ0(x). Due to the properties of our basis functions stated in (5),it can be

easily seen that fort = 0, we have

ûθ(x, 0) = uθ0(x),

and in addition

ûθ
|∂Ω
= uθ0|∂Ω

= gθ.

Therefore, it follows that for the above choice ofvθ(x, t), the initial and boundary conditions are

automatically satisfied by the approximation (4).

However, the choice forvθ(x, t) is not that obvious for the more general case when the bound-

ary conditions are time-dependent. In this paper, we propose the idea that solution of the follow-

ing auxiliary parabolic linear PDE1 can be chosen to be the first term in the approximation (4)

∂vθ

∂t
− ∆vθ = 0 inΩ × (0,T], (6)

vθ(·, t) = gθ(·, t) on∂Ω × (0,T], (7)

vθ
|t=0
= uθ0 in Ω. (8)

It can be clearly seen that due to the prescribed properties of the chosen spatial and temporal

basis functions (5) and the above choice ofvθ, our approximation will automatically satisfy both

initial and boundary conditions.

In the next section, we shall delve into details of how basis functions with properties (5) can

be constructed using a two-level POD method. After an appropriate set of basis functions have

been constructed, the approximation problem eventually boils down to estimation of the undeter-

mined coefficientsαkm in (4). A commonly used approach in ROM construction is the Galerkin

method, wherein the approximation (4) is substituted into the original nonlinear parametrized

equations (1-3) and the residual error is made orthogonal with respect to the approximating

space of basis functions. This approach, however, is not straightforward to implement when the

nonlinear parametrized termN (uθ,∇uθ) has a complicated structure [21]. In the present work,

we propose a general nonintrusive approach that circumvents this difficulty. Subsequently, we

outline the steps involved in numerical solution of the auxiliary PDE model to approximate the

term vθ so that the reduced-order approximation (4) can be evaluated in real-time at any point

1Note that this auxiliary PDE model is a linear initial boundary value heat equation with parametrized boundary and

initial conditions.
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in the parameter space. We will also discuss in the next section the limitations of the proposed

methodology, namely which parametrized PDE models can be correctly approximated with such

an approach.

3. Construction of spatial and temporal basis functions

In this section, we focus on constructing the spatial and temporal basis functions, namely

ϕk(x) andξm(t), that satisfy (5). The key idea underpinning our approach is to employ a two-

level POD procedure on data obtained by solving the originalPDEs (fine solver) at a set of points

in the parameter space.

To illustrate, consider the following space-filling set of design points within the parameter

space

W
I
= {θi ∈]0, 1[p, i = 1, . . . , I } . (9)

Such a space-filling set of design points can be obtained using Latin Hypercube sampling or

minimum discrepancy sequences such as Sobol, Halton and Faure sequences [15, 16]. The fine

solver (i.e., a high-fidelity solver for the original nonlinear PDEs) can be run at theseI points to

generate a training dataset that is eventually used in a two-level POD procedure to construct the

spatial and temporal basis functions that satisfy the conditions outlined earlier in (5).

Next, we introduce a coarse sampling of the spatial domain, i.e.,

X
J
= {x j ∈ Ωh, j = 1, . . . , J}, (10)

whereΩh denotes the discretized computational domain with the index h referring to the spatial

mesh diameter. Similarly, a coarse sampling of the temporaldomain can be written in the form

Y
N
= {tn, 0 = t1 < · · · < tN = T}. (11)

Consider the following set of shifted snapshots obtained byrunning the fine solver (1-3) and

the auxiliary PDE model (6-8) at a point (sayθi) within the set (9):

S
N

i =
{
uθi (·, tn) − vθi (·, tn), n = 1, . . . ,N

}
. (12)

Note that the shifted snapshots are computed at all time-instants defined in the coarse temporal

domain sampling (11). It is also worth emphasizing that we use here a subscripti for the snapshot

setS N
i to highlight the fact that we compute a set of shifted snapshots for each point in the set (9).

Consider the spatial Gram matrix defined below

(M i
x)nm =

(
uθi (·, tn) − vθi (·, tn), u

θi (·, tm) − vθi (·, tm)
)
L2(Ωh), n,m= 1, . . . ,N,
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where theL2-scalar product is defined as

(u, v)L2(Ωh) =

∫

Ωh

u(x)v(x)dx.

Let us denote by (λi
n)n=1,...,N the positive eigenvalues ofM i

x arranged in descending order

λi
1 ≥ λ

i
2 ≥ · · · ≥ λ

i
N ≥ 0.

We assume that the spectrum of the Gram matrix decays rapidly, which is typically the case

for a large class of elliptic and parabolic PDEs.2 In other words, for a given small threshold

ε > 0, there exists an integerK i
= K i(ε) with K i/N small enough such that

K i∑

k=1

λi
k

N∑

k=1

λi
k

≥ 1− ε

meaning that the solutions of the considered PDE problems have a principal direction property.

The firstK i eigenfunctions (ϕk,i)k associated with the firstK i eigenvaluesλi
k, provide the orthog-

onal principal directions of the setS N
i . If r k,i

= (r k,i)n denotes thekth eigenvector ofM i
x, thekth

eigenfunctionϕk,i can be computed as

ϕk,i(x) =
N∑

n=1

(r k,i)n

(
uθi (x, tn) − vθi (x, tn)

)
(13)

and then normed in theL2(Ωh)-sense.

In summary, what we have done so far is to carry out PCA of the set of shifted snapshots

S N
i , to compute a set of basis functions (ϕk,i)k=1,...,K i , whereK i is a (small) number. For more

details concerning the POD method (also referred as Principal Component Analysis (PCA) or

Karhunen-Loève decomposition), we refer the reader to [17, 18, 19].

After the basis sets (ϕk,i)k=1,...,K i have been computed for all parameter space pointsθi ∈ W I ,

we apply, as in [20], a second PCA to all the families of spatial modes previously computed, to

construct a set of common POD modes (ϕk)k=1,...,K .

A similar two-level POD method can be employed to construct temporal basis functions

(ξm)m=1,...,M. For each parameter space pointθi ∈ W I and x j ∈ X J, we first constructMi

temporal POD modes (ξm,i)m=1,...,Mi , from the set

T
J

i =
{
uθi (x j, ·) − uθi0 (x j), j = 1, . . . , J

}
(14)

2We wish to highlight here that this assumption may not hold for hyperbolic problems where the Gram matrix spec-

trum decay can be very slow. In addition, hyperbolic problems often involve discontinuous solutions which are poorly

approximated by POD-type methods.
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and then apply a second PCA on (ξm,i)m,i to get the temporal basis functions.

The following proposition holds:

Proposition 1. Let S N
i (resp. T J

i ) be the spatial (resp. temporal) snapshot sets given by (12)

(resp. (14)). Then the spatial and temporal basis functionsϕk and ξm satisfy the properties

(5), meaning that the ROM̂uθ given by (4) satisfies both the boundary and initial conditions by

construction.

Proof. To prove this result, we use the expansion (13) ofϕk,i as a linear combination of shifted

spatial snapshots, and exploit a property of the “snapshot method” developed by Sirovich [17].

By construction, sinceuθi (·, tn)|∂Ω = vθi (·, tn)|∂Ω = gθi (·, tn) we deduce that

ϕk,i(·, tn)|∂Ω = 0, ∀k = 1, . . .K i .

Applying a PCA to all the basis sets (ϕk,i)k,i then leads to spatial modes (ϕk)k=1,...,K that are also

linear combinations of (ϕk,i)k,i. Consequently the modesϕk also vanish on∂Ω.

Similar arguments can be used to establish the stated properties of the temporal basis func-

tionsξm since we have

ξm,i(t) =
J∑

j=1

(sm,i) j

(
uθi (x j , t) − uθi0 (x j)

)
, (15)

wheresm,i
= (sm,i) j denotes themth eigenvector of the temporal Gram matrixM i

t defined as

(M i
t) j j ′ =

(
uθi (x j, ·) − uθi

0 (x j), uθi (x j′ , ·) − uθi0 (x j′)
)
L2([0,T]) , j, j′ = 1, . . . , J.

Since we have

ξm,i(0) = 0,∀i = 1, . . . , I ,∀m= 1, . . . ,Mi

it follows thatξm(0) = 0,∀m= 1, . . . ,M.

4. Estimation of the undetermined ROM coefficients

In this section, we look at how the undetermined coefficientsαkm of the ROM (4) can be

computed for any design pointθ. We proceed as follows. In the first step, we compute the

coefficientsαkm for each design pointθi ∈ W I . Considering the space-filling setsX J andY N,

we have, for a fixed value ofθi ,

ûθi (x j, tn) = vθi (x j, tn) +
K∑

k=1

M∑

m=1

αkm(θi)ϕ
k(x j) ξ

m(tn), (16)

∀ j = 1, . . . , J, ∀n = 1, . . . ,N. For a fixed indexi, the preceding equation can be written in the

compact form

ûi
= vi
+ ϕαi ξT , (17)
8



where ûi ∈ MJN with coefficients (̂ui) jn = ûθi (x j, tn), vi ∈ MJN with coefficients (vi) jn =

vθi (x j, tn), ϕ ∈ MJK with coefficients (ϕ) jk = ϕ
k(x j), αi ∈ MKM with coefficients (αi)km =

αkm(θi), andξ ∈MNM with coefficients (ξ)nm = ξ
m(tn).

The undetermined coefficientsαi can be computed by solving

ui
= vi
+ ϕαi ξT (18)

whereui ∈ MJN denote the extracted elements of the fine solutions, that is to say (ui) jn =

uθi (x j, tn). Since the columns ofϕ andξ are orthonormal, we deduce the coefficientsαi by the

relations

αi
= ϕT(ui − vi)ξ. (19)

The final step involves approximating the coefficientsαkm(θ) as a function ofθ so that they

can be evaluated at any arbitrary point in the parameter space efficiently. For fixedk,m, we first

expand the undetermined coefficients using Radial Basis Functions (RBFs) as follows

αkm(θ) =
I∑

i=1

γkm
i Φ

(
|θ − θi |

σ

)
. (20)

Settingθ = θi′ in (20) for i′ = 1, . . . , I , leads to

I∑

i=1

A i′i γ
km
i = αkm(θi′ ), (21)

where the symmetric interpolation matrixA is such thatA i′i = Φ
(
|θi′−θi |

σ

)
. We give more details

about the choice ofΦ andσ later in Section 7.3. The preceding equation can be rewritten in

compact form as

Aγkm
= bkm, (22)

wherebkm is a vector of lengthI defined by (bkm)i = αkm(θi). The unknown coefficientsγkm can

be calculated by solving the following penalized normal equations (again with a small regular-

ization parameterµ > 0)

(ATA + µI )γkm
= ATbkm. (23)

Given the solution of the above matrix system of equations, the undetermined coefficients can be

efficiently computed at any point in the parameter space using (20).

5. Enabling real-time predictions using the ROM

5.1. Motivation

We now look at how the ROM (4) can be employed in a real-time prediction framework.

There are essentially two options available to the user of such a ROM, depending on the time-

dependent PDE model which is under consideration.
9



In the first case, let us consider the scenario when the ROM is to be evaluated at a limited

number of points in the parameter space. Then we candirectly use the expansion (4) to get

approximate solutionŝuθ for different values ofθ. Once the spatial and temporal modesϕk and

ξm have been computed through the two-level PCA procedures (see Section 3), we can compute

the coefficientsαkm(θ) using the methodology described in Section 4: use (19), next solve (23)

and then use (20). To computêuθ, the final step involves computingvθ (i.e., the solution of the

auxiliary parabolic linear PDE (6-8)).

The second case involves the scenario where it is required tocomputêuθ at a large number

of points in the parameter space. In principle, the steps outlined earlier can still be employed;

however, the main computational obstacle arises from computation of the termvθ while making

predictions at any point in the parameter space. This is because direct numerical simulations of

(6-8) cannot be done efficiently (say in real-time), even though the auxiliary PDE model is linear.

Consequently one needs to construct an adapted ROM for (6-8), which is not an obvious task

since the boundary conditions are time-dependent. This would enable faster online evaluations

of the reduced-order model at the expense of additional offline computations (due to the step of

constructing an approximation model to enable efficient evaluation of the termvθ).

In this section we focus on efficient numerical solution of the auxiliary parabolic PDE (6-8).

We take advantage of the linear nature of this equation to separate this PDE into two simpler

ones: an initial value problem with homogeneous boundary conditions and a boundary value

problem with zero initial conditions. The solutionvθ of (6-8) can be split according to

vθ = wθ + zθ (24)

wherewθ andzθ are, respectively, solutions of the following PDEs

∂wθ

∂t
− ∆wθ = 0 inΩ × (0,T], (25)

wθ(·, t) = 0 on∂Ω × (0,T], (26)

wθ
|t=0
= uθ0 in Ω, (27)

and

∂zθ

∂t
− ∆zθ = 0 inΩ × (0,T], (28)

zθ(·, t) = gθ(·, t) on∂Ω × (0,T], (29)

zθ
|t=0
= 0 inΩ. (30)

Note that the first PDE (25–27) is a linear heat equation with homogeneous boundary con-

ditions, while the second PDE (28–30) is a linear heat equation with zero initial conditions. We

now move on to how the component termswθ andzθ can be efficiently computed.
10



5.2. Resolution of the auxiliary PDE with homogeneous BC

In order to approximate the solutions of (25-27) by a low-order model, we can use a classical

POD-Galerkin approach provided the initial conditionuθ0 is smooth enough. In other words, the

termwθ, which is parametrized through the initial value, is approximated as

wθ(x, t) =
KIV∑

k=1

aθk(t) ϕk
IV (x), (31)

whereaθk(t) denote a set of undetermined coefficients which is an implicit function of θ. We

denote byϕk
IV (x) a set of basis functions obtained via the POD method, i.e., by applying PCA to

the following snapshot dataset

{
wθi (·, tn), i = 1, . . . , I , n = 1, . . . ,N

}
. (32)

Now, for a fixed value of the parameter vectorθ, the undetermined coefficients in (31) can

be computed by solving the following (small) system of coupled linear ordinary differential

equations 

daθ

dt
+ R aθ = 0,

aθk(0) = (uθ0, ϕ
k
IV )L2(Ωh)

(33)

where the stiffness matrix is defined as

Rkl =

∫

Ωh

∇ϕk
IV (x)∇ϕl

IV (x) dx

andaθ = (aθ1, . . . , aKIV )T .

It is worth noting here that since the stiffness matrix is nota function ofθ, it can be pre-

computed once for all. Hence, the solution of (33) can be computed efficiently for a given value

of θ. Given the solution of (33), the termwθ(x, t) can be computed for any arbitrary value ofθ

using (31).

5.3. Resolution of the auxiliary PDE with zero initial condition

We need to exercise particular care while solving (28-30) since the boundary functiongθ(·, t)

is time-dependent. Once again, we take advantage of the linear feature of this PDE. A POD

Petrov-Galerkin projection scheme appears to be suited in this case. To begin with, let us consider

a set of boundary conditionsL2(∂Ω)-valued snapshots

U
I

n =
{
gθi (·, tn), i = 1, . . . , I

}
, (34)

wheretn belongs to acoarsetemporal discretization.
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The idea behind using the set (34) is to identify the principal components related to the BC

and to lower the dimension of the representative space of thetime-dependent BC. Once a PCA

is performed on the setU I
n , the firstKBC POD modesηk(·, tn) ∈ L2(∂Ω) associated withU I

n

are stored. This procedure is performed for all coarse time instantstn, n = 1, . . . ,N. From a

computational point of view, the previous procedure is achievable since theN PCA calculations

can be run independently of each other in parallel. Moreover, the storage requirements of the

correspondingNKBC modesηk is reasonable sinceKBC is expected to be small,N is not too large

since it corresponds to the size of a coarse temporal grid, and also becauseηk areL2(∂Ω)-valued

functions.

For a fixed instant timet, let us now denote byπgθ the projection of the trace functiongθ(·, t)

onto the linear vector space spanned by the family
{
η1(·, t), . . . , ηKBC(·, t)

}
:

πgθ(·, t) =
KBC∑

k=1

cθk(t) η
k(·, t) (35)

with

cθk(t) =
(
gθ(·, t), ηk(·, t)

)
L2(∂Ω)

. (36)

Next, we then define the function ˜zθ

z̃θ(x, t) =
KBC∑

k=1

cθk(t) ξk(x, t), (37)

where
{
ξ1(·, t), . . . , ξKBC(·, t)

}
are the solutions of the followingKBC secondary equations that are

independent ofθ:

∂ξk

∂t
− ∆ξk = 0 inΩ × (0,T], (38)

ξk(·, t) = ηk(·, t) on∂Ω × (0,T], (39)

ξk
|t=0
= 0 inΩ, (40)

for k = 1, . . . ,KBC. The following proposition holds:

Proposition 2. Let z̃θ be defined by (36-37) and(ξk) by (38-40). Theñzθ is the solution of the

problem

∂z̃θ

∂t
− ∆z̃θ =

KBC∑

k=1

ċθk(t) ξk in Ω × (0,T], (41)

z̃θ(·, t) = πgθ(·, t) on∂Ω × (0,T], (42)

z̃θ
|t=0
= 0 in Ω. (43)
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Proof. In Ω × (0,T] we have, from (37):

∂z̃θ

∂t
− ∆z̃θ =

KBC∑

k=1

cθk(t)

(
∂ξk

∂t
− ∆ξk

)
+

KBC∑

k=1

ċθk(t) ξk

=

KBC∑

k=1

ċθk(t) ξk from (38).

Eq. (42) directly follows from (39):

z̃θ
|∂Ω
=

KBC∑

k=1

cθk(t) ξ
k
|∂Ω
=

KBC∑

k=1

cθk(t) η
k
= πgθ

and eq. (43) from (40):

z̃θ|t=0
=

KBC∑

k=1

cθk(0)ξk|t=0
= 0.

In our ROM, we propose to use ˜zθ defined by (37) as an approximation forzθ, the solution

of the original equation (28-30). We theoretically justifythis approximation later in Section 5.4,

where we provide an upper bound for||(zθ − z̃θ)(·, t)||L2(Ω).

We now discuss different computational aspects of such a methodology, showing that the

computations at every step can be carried out efficiently. First of all, it has to be noted that both

ηk andξk have to be known on the fine temporal grid because of (37) and (39). However, it seems

impossible to directly computeηk on the fine temporal grid since it would require us to perform

a PCA for each time instant which would be computationally prohibitive. Therefore we propose

the following strategy: onceηk are computed on a coarse temporal grid as described previously,

we deduce its values on a fine grid using temporal interpolations. More precisely, for any point

x j ∈ X J ∩ ∂Ωh we interpolate the set of values{yk j
= ηk(x j, tn), n = 1 . . . ,N}, using classical

one-dimension interpolation functions (such as linear or cubic spline interpolators).

Once theηk are known on the fine temporal grid, we have to solve the problems (38-40).

These problems can be solved in parallel for eachξk since they are independent of each other.

Moreover, since these problems do not depend onθ, the dual basis
{
ξ1, . . . , ξKBC

}
can be precom-

puted once and for all and used as the low-order basis to approximate the solutions of (28-30).

We next examine an important aspect of our methodology, related to data storage complexity.

From a computational point of view, it is not always feasibleto keep in memoryKBC spatio-

temporal modesξk that are needed to expand the solution ˜zθ (see (37)). To overcome this dif-

ficulty, we propose a second-level ROM with low-dimensionalrepresentation by projectingξk

onto low-order spatial/temporal POD modes, for example:

ξk(x, t) =
Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x)ςk,m(t). (44)
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Using the second-level ROM (44) allows us to storeKBC(LkMk
+ Lk(Nx)d

+ MkNt) values,

instead ofKBC(Nx)dNt ones if we directly store theξk values on the fine spatial/temporal grids

(respectively of size (Nx)d andNt). Both (χk,l)l and (ςk,m)m can be obtained by applying PCA to

ξk(x, t) using a standard snapshot method for dataset generation. For x j andtn belonging to the

coarse spatial/temporal discretizations (10) and (11), wewrite, for k = 1, . . . ,KBC

ξk(x j, tn) =
Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x j)ς
k,m(tn).

The preceding equation can be rewritten in the compact form

ξk
= χkβk(ςk)T (45)

where we denoteξk ∈ MJN with coefficients (ξk) jn = ξ
k(x j, tn), χk ∈ MJLk with coefficients

(χk) jl = χ
k,l(x j), β

k ∈ MLkMk with coefficients (βk)lm = β
k
lm andςk ∈ MNMk with coefficients

(ςk)nm = ς
k,m(tn). Solving (45) with the penalized minimization problems

min
βk∈MLkMk

||ξk − χkβk(ςk)T ||2 + µ||βk||2, (46)

whereµ > 0 is a small regularization parameter, leads to the Euler-Lagrange equations
(
(χk)Tχk

)
βk

(
(ςk)Tςk

)
+ µβk

= (χk)Tξkςk. (47)

We can reshape (47) as a linear algebraic system of equationssizeLk × Mk as shown below

(Dk
+ µ I )βk

= dk (48)

where

Dk
=



b11(ςk)Tςk . . . b1Lk(ςk)Tςk

...
. . .

...

b1Lk(ςk)Tςk . . . bLkLk(ςk)Tςk


(49)

with bi j = ((χk)Tχk)i j , and where the rows ofβk (resp. of the rhs of (47)) are put in the vector

βk (resp. indk). Recall that a similar approach was previously used in the first-level ROM to

estimate the undetermined coefficientsαkm(θ); see Section 4.

5.4. Error estimation of the auxiliary problem with zero initial condition

We give here an error estimate between ˜zθ (i.e., the solution of (41-43)) andzθ (i.e., the

solution of the original equation (28-30)).

Proposition 3. LetΩ be a bounded subset ofR
d. Let gθ be a boundary function such that gθ

and ∂g
θ

∂t ∈ C
0([0,T] ; L2(∂Ω)), ∀θ ∈]0, 1[p. If zθ is the solution of (28-30) and̃zθ is the solution of

(41-43), then the following error estimate holds:

||(zθ − z̃θ)(·, t)||L2(Ω) ≤ A(t) + tBexp

(
−

t
2Cp(Ω)2

)
(50)
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where Cp(Ω) > 0 is the Poincaŕe constant, A(t) is a function of time which can be arbitrary small

depending on KBC, cθk andξk, and B is a constant depending onċθk, ξk and T.

Proof. As a first step, we give the weak formulation of (28-30). Because of its nonhomogeneous

BC, we formally defineyθ = zθ−gθ
Ω

with gθ
Ω
=

∑

k≥1

cθkξ
k. It is easy to check thatgθ

Ω
is an extension

of gθ to the whole domainΩ, and thatyθ is the solution of

∂yθ

∂t
− ∆yθ = bθ in Ω × (0,T], (51)

yθ(·, t) = 0 on∂Ω × (0,T], (52)

yθ
|t=0
= 0 inΩ, (53)

with bθ = ∆gθ
Ω
−
∂gθ
Ω

∂t
. The weak form of (51-53) then reads

d
dt

(yθ, ϕ)L2(Ω) + (∇yθ,∇ϕ)L2(Ω) = (bθ, ϕ)L2(Ω), ∀ϕ ∈ H1
0(Ω). (54)

We follow the same procedure for the problem (41-43). We define ỹθ = z̃θ − (πgθ)Ω where

(πgθ)Ω =
KBC∑

k=1

cθkξ
k is the extension ofπgθ to the whole domainΩ, so that ˜yθ is the solution of

∂ỹθ

∂t
− ∆ỹθ = 0 inΩ × (0,T], (55)

ỹθ(·, t) = 0 on∂Ω × (0,T], (56)

ỹθ
|t=0
= 0 inΩ. (57)

The weak form of (55-57) is given by

d
dt

(ỹθ, ϕ)L2(Ω) + (∇ỹθ,∇ϕ)L2(Ω) = 0, ∀ϕ ∈ H1
0(Ω). (58)

Subtracting (58) to (54), and takingϕ = zθ − z̃θ as a test function, leads to

d
dt

(
||(yθ − ỹθ)(·, t)||2L2(Ω)

)
+ ||(yθ − ỹθ)(·, t)||2

H1
0(Ω)
= (bθ, yθ − ỹθ)L2(Ω).

Using Poincaré and Cauchy-Schwarz’s inequalities (see [23, 24]) then gives

d
dt

(
||(yθ − ỹθ)(·, t)||L2(Ω)

)
+

1
2Cp(Ω)2

||(yθ − ỹθ)(·, t)||L2(Ω) ≤
1
2
||bθ||L2(Ω)

or, integrating over [0, t]:

||(yθ − ỹθ)(·, t)||L2(Ω) ≤
1
2

∫ t

0
||bθ(·, s)||L2(Ω) ds−

1
2Cp(Ω)2

∫ t

0
||(yθ − ỹθ)(·, s)||L2(Ω) ds.
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Using the integral form of the Grönwall lemma (see [25]), wehave the following inequality

||(yθ − ỹθ)(·, t)||L2(Ω) ≤ α(t) −
1

2Cp(Ω)2

∫ t

0
α(s) exp

(
−

t − s
2Cp(Ω)2

)
ds

whereα(t) =
1
2

∫ t

0
||bθ(·, s)||L2(Ω) ds. Sinceα is a positive and nondecreasing function, we get

||(yθ − ỹθ)(·, t)||L2(Ω) ≤ α(t) exp

(
−

t
2Cp(Ω)2

)
.

Coming back to the definition ofyθ andỹθ, we have

yθ − ỹθ = zθ − z̃θ −
∑

k>KBC

cθkξ
k

which yields

||(zθ − z̃θ)(·, t)||L2(Ω) ≤

∣∣∣∣∣
∣∣∣∣∣
∑

k>KBC

cθk(t)ξk(·, t)
∣∣∣∣∣
∣∣∣∣∣
L2(Ω)
+ α(t) exp

(
−

t
2Cp(Ω)2

)
. (59)

We then estimateA(t) =
∣∣∣∣∣
∣∣∣∣∣
∑

k>KBC

cθk(t)ξk(·, t)
∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

. For this, we invoke the maximum princi-

ple property related to the heat problem (41-43). Sincegθi ∈ C0([0,T] ; L2(∂Ω)) for all θi ,

we deduce thatηk also belong toC0([0,T] ; L2(∂Ω)), ∀k = 1, . . . ,KBC, by linearity of the

POD modes with respect to the snapshots. As a consequence, weget from (35) thatπgθ ∈

C0([0,T] ; L2(∂Ω)), ∀KBC. By virtue of the maximum principle, the solution ˜zθ of (41-43) be-

longs toC0([0,T] ; L2(Ω)), ∀KBC. It follows that the series
∣∣∣∣∣
∣∣∣∣∣
∑

k≥1

cθk(t)ξ
k(·, t)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

converges,

meaning thatA(t) can be arbitrary small provided thatKBC is large enough.

The last step involves estimating the functionα(t) which appears in (59). By construction,

we have

bθ = ∆gθ
Ω
−
∂gθ
Ω

∂t
=

∑

k≥1

cθk

(
∆ξk −

∂ξk

∂t

)
−

∑

k≥1

ċθkξ
k
= −

∑

k≥1

ċθkξ
k

which leads to

α(t) =
1
2

∫ t

0
||bθ(·, s)||L2(Ω) ds≤ tB

with

B =
1
2

sup
s∈[0,T]

∣∣∣∣∣
∣∣∣∣∣
∑

k≥1

ċθk(s)ξ
k(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(Ω)
. (60)

We justify the convergence of the series in (60) as follows. Using the Cauchy-Schwarz’s inequal-

ity, we have,∀KBC:

∣∣∣∣∣
∣∣∣∣∣

KBC∑

k=1

ċθk(s)ξk(·, s)
∣∣∣∣∣
∣∣∣∣∣
2

L2(Ω)
≤

KBC∑

k,l=1

|ċθk(s)| |ċ
θ
l (s)| ||ξ

k(·, s)||L2(Ω) ||ξ
l(·, s)||L2(Ω). (61)
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We first prove that

sup
s∈[0,T]

||ξk(·, s)||L2(Ω) < +∞, ∀k = 1, . . . ,KBC. (62)

Sinceηk ∈ C0([0,T] ; L2(∂Ω)), we deduce from the maximum principle applied to (38-40) that

ξk ∈ C0([0,T] ; L2(Ω)), meaning that (62) holds. We then need to show that

sup
s∈[0,T]

|ċθk(s)| < +∞, ∀k = 1, . . . ,KBC. (63)

Sincecθk(s) = (gθ(·, s), ηk(·, s))L2(∂Ω) by definition, using the Cauchy-Schwarz’s inequality, we

have

|ċθk(s)| ≤
∣∣∣∣∣
∣∣∣∣∣
∂gθ

∂t
(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(∂Ω)

||ηk(·, s)||L2(∂Ω) + ||g
θ(·, s)||L2(∂Ω)

∣∣∣∣∣
∣∣∣∣∣
∂ηk

∂t
(·, s)

∣∣∣∣∣
∣∣∣∣∣
L2(∂Ω)

. (64)

In (64), ||gθ(·, s)||L2(∂Ω) < +∞ sincegθ ∈ C0([0,T] ; L2(Ω)), and||ηk(·, s)||L2(∂Ω) = 1 sinceηk are

L2 normalized POD modes. We finally use the second assumption toconclude: since∂g
θ

∂t ∈

C0([0,T] ; L2(∂Ω)), ∀θ ∈]0, 1[p, we deduce that∂η
k

∂t ∈ C
0([0,T] ; L2(∂Ω)), by linearity of the

POD modes with respect to the snapshots. This allows us to conclude the proof since

∣∣∣∣∣
∣∣∣∣∣

KBC∑

k=1

ċθk(s)ξk(·, s)
∣∣∣∣∣
∣∣∣∣∣
L2(Ω)

< +∞

holds,∀s ∈ [0,T], ∀KBC.

5.5. Overview of the proposed methodology

Gathering all the previous steps of the ROM methodology, namely eqs. (4), (31), (37) for the

first-level ROM, and (44) for the second-level ROM, the approximate solution̂uθ can be written

as

ûθ(x, t) =

KIV∑

k=1

aθk(t) ϕ
k
IV (x) +

KBC∑

k=1

(
gθ(·, t), ηk(·, t)

)
L2(∂Ω)

Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x)ςk,m(t)

+

K∑

k=1

M∑

m=1

αkm(θ)ϕk(x)ξm(t). (65)

The different steps of the proposed ROM methodology are summarized in Algorithms 1 and

2, whereθ denotes any design parameter point. Algorithm 1 outlines the steps involved in com-

puting the ROM solution of the full non-linear problem,ûθ, given by (65). Algorithm 2 outlines

the steps involved in computing the ROM solution of the auxiliary parabolic linear PDE,̂vθ, cor-

responding to the two first terms of (65).
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Algorithm 1 ROM algorithm for general time-dependent parametrized PDEs
1: Apply DoCE to generate a set of points{θi}

I
i=1 and compute the fine solutionsuθi at these points.

2: ROM methodology (full non-linear initial model) :

3: For each design pointθi , compute the spatial and temporal POD modes (ϕk,i)K i

k=1 and (ξm,i)Mi

m=1.

4: Compute the common POD basis (ϕk)K
k=1 and (ξm)M

m=1 using PCA.

5: Carry out parameter-space analysis to compute the coefficients (αkm(θ)):

6: for i = 1 to I do

7: Compute (αkm(θi))k,m using (19)

8: end for

9: for k = 1 to K do

10: for m= 1 to M do

11: solve the linear system (23) to computeγkm

12: Computeαkm(θ) using (20)

13: end for

14: end for

15: Assemble the third term of (65) using (αkm(θ))k,m, (ϕk)k and (ξm)m.

16: Final assembling: Computêuθ using (65) and̂vθ computed using Algorithm 2.

Algorithm 2 ROM algorithm for the auxiliary parabolic linear PDE
1: ROM for Initial Value :

2: From the snapshots
{
wθi (·, tn)

}
of solutions of (25-27), compute the spatial modes (ϕk

IV )KIV
k=1.

3: Solve the ODE system (33) to computeaθk(t) on the fine temporal grid.

4: Assemblewθ on the fine temporal grid using (31).

5: ROM for Boundary Conditions :

6: From theL2(∂Ω)-valued snapshotsU I
n (see (34)), compute theKBC spatial POD modes (ηk(·, tn))

KBC
k=1 ,

for each coarse timetn, n = 1, . . . ,N.

7: Interpolateηk on the fine temporal grid using classical one-dimensional interpolation.

8: for k = 1 to KBC do

9: solve (38-40) to generate the spatial snapshotsξk(·, tn) and temporal snapshotsξk(x j , ·)

10: Compute the spatial and temporal (second-level) POD modes (χk,l )Lk

l=1 and (ςk,m)Mk

m=1

11: end for

12: for k = 1 to KBC do

13: Compute and store the coefficients (βk
lm)l,m obtained by solving the linear system (48)

14: end for

15: For eachk = 1, . . . ,KBC, assemble (ξk)KBC
k=1 on the fine temporal grid using (44).

16: Assemble ˜zθ according to (37).

17: Final assembling: Computêvθ as the sum ofwθ andz̃θ, corresponding to the two first terms of (65).
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6. Numerical test-case (1d-x 1d-θ 1d-t)

6.1. Definition of the test-case

To illustrate the proposed methodology, we first consider the following unsteady Burgers’

equation inΩ × [0,T] 

∂uθ

∂t
+ uθ

∂uθ

∂x
= 0 inΩ = [−2, 2],

uθ(−2, t) = uL(θ), uθ(2, t) = uR(θ),

uθ
|t=0
= uθ0

(66)

where the continuous initial data is given by

uθ0(x) =



uL(θ) = 1+ 0.1θ x ∈ [−2,−a],

−
uL(θ)

a
x ∈ [−a, a],

uR(θ) = −uL(θ) x ∈ [a, 2]

(67)

with a ∈]0, 2[. The non-linear problem (66-67) is inspired from [26] where a randomly parametrized

Burgers’ equation with an initial shock is studied. The solution of (66-67) is continuous for time

t ∈ [0, a[ and is given by

uθ(x, t) =


uL(θ) x < 0

uR(θ) x > 0
(68)

for timest ≥ a, sinceuθ is a shock solution travelling with the speeds(θ) = 1
2(uL(θ)+uR(θ)) = 0.

In our numerical experiments, we will consider an integration timeT < a in order to study the

transient phase, namely before the shock appears.

6.2. Numerical results

Since the boundary conditions in (66) do not vary as a function of time, the ROM (4) boils

down to

ûθ(x, t) = uθ0(x) +
K∑

k=1

M∑

m=1

αkm(θ)ϕk(x)ξm(t) (69)

meaning that we don’t need to solve an auxiliary PDE of the form (6-8). This simple test-case

allows us to validate the first level of our ROM methodology described in Sections 3 and 4.

In our numerical experiments, we takea = 1, T = 0.85s andθ ∈ [−2, 2]. We consider a set

of I = 20 design pointsθi uniformly spread in [−2, 2] for the parameter-space sampling and a
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uniform spatial grid made ofNx = 100 points. For the coarse temporal sampling, we useN = 51

points in [0,T] to generate the spatial snapshots. We consider a coarse spatial mesh ofJ = 50

pointsx j and a time-stepδt = 4.25× 10−3 to generate the temporal snapshots, corresponding to

a grid ofNt = 201 points.

In order to compute the spatial and temporal basis functionsϕk andξm needed in the expan-

sion (69), we first compute, for each design parameterθi ∈ W I , K i spatial modesϕk,i andMi

temporal modesξm,i , by applying PCA methods. Using thresholds ofǫ = 10−3, we get a total of
∑I

i=1 K i
= 81 and

∑I
i=1 Mi

= 80 POD modes. By applying another PCA method on these dif-

ferent sets of modes with thresholds ofǫ = 10−2, we finally retain a set of common POD modes

(ϕk)k=1,...,K and (ξm)m=1,...,M, with K = 9 andM = 7.

For the estimation of the coefficientsαkm(θ), we use a Gaussian radial basis functionΦ(r) =

e−
r2

2σ with σ = 0.13 in (20). This optimal value forσ has been numerically obtained by minimiz-

ing the distance betweenαkm(θi) given by (19) and their RBF approximations (20).

As a first illustration, we compare on Figure 1 the approximate ROM solution̂uθ to the exact

solutionuθ for θ = 2.0, which is the maximal value of the parameter space interval. One can

see a good agreement between the two solutions, even if smalloscillations appears in the ROM

approximation at the final timeT.

For a more systematic comparison, we plot on Figure 2 different L2 errors between the exact

and the ROM solutions when the parameterθ belongs to a fine grid made of 200 points uniformly

spread in [−2, 2]. For each design parameter, we represent the maximalL2 error

max
tn∈[0,T]

||̂uθ(·, tn) − uθ(·, tn)||L2(Ω) (70)

and the normalizedL2 error

1
Nt

Nt∑

n=1

||̂uθ(·, tn) − uθ(·, tn)||L2(Ω)

||uθ(·, tn)||L2(Ω)
(71)

showing a good level of accuracy of the ROM (69).

7. Numerical test-case (2d-x 3d-θ 1d-t)

7.1. Definition of the test-case

To illustrate the whole ROM approach described in Sections 3, 4 and 5, we consider a more

complex parametrized model test-case, where the parameters are involved within the initial value,

the boundary conditions and the governing equation of the model. In this case, we will consider

the ROM in its more advanced form (65), where we approximate the split solution (24) of the

auxiliary PDE problem using the second-level ROM (44).
20



-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

x

ROM

EXACT

Solutions at t=0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

x

u0

ROM

EXACT

Solutions at t=T
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Figure 1: Comparison of the exact and ROM solutions forθ = 2.0.

7.1.1. Parametrization of the equations

To illustrate the application of the proposed methodology,we consider the following unsteady

convection-reaction-diffusion problem inΩ × [0,T]


∂u
∂t
+ ∇ ·

(
τ

u2

2

)
− ν∆u = f θ1 in Ω =]0, 1[2,

u = gθ2 onΓ (upper BC),

u = 0 on∂Ω\Γ,

u|t=0 = uθ30

(72)
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Figure 2:L2 errors in log10 scale between the ROM and the exact solution forθ defined on a fine parameter space grid.

with 3 parameters: one in the reactive term (θ1), one in the BC (θ2) and one in the initial condition

(θ3). Hereν denotes the viscosity,τ(x, y) is a rotating field defined by

τ(x, y) =
1

||(−(y− 1/2), x− 1/2)||


−(y− 1/2)

x− 1/2

 (73)

and the reactive term is given by

f θ1 = 0.1− 0.01θ1 u |u|. (74)

This model is an extension of the steady-state parametrizedPDE model studied in [10].

7.1.2. Parametrization of the BC

We justify here the chosen form of the parametrized BC, sincethere exists many possible

choices for the functiongθ. First of all gθ must satisfy the conditiongθ(·, 0) = 0, because of

eqs. (29-30). Moreover, considering an usual expression for gθ, namely as the product of a

temporal function and a spatial one, is restrictive. It is worth noting that ifgθ(x, t) = α(t)βθ(x),

then it can be seen from (34) that for different timestn , tm, the snapshots ofU I
n andU I

m are

colinear since

gθi (·, tn) =
α(tn)
α(tm)

gθi (·, tm),∀i = 1, . . . I .

Therefore we get the same eigenfunctionsηk
BC by performing a PCA on the setsU I

n or U I
m. In

order to consider the most general case, namely time-dependent POD modesηk
BC, we use the
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following expression forgθ

gθ(x, t) = α1(t)βθ1(x) + αθ2(t) (75)

with α1(0) = αθ2(0) = 0 sincegθ(·, 0) = 0.

In our numerical simulations we take

α1(t) = sin
(
πt
2T

)
, (76)

βθ21 (x) = 1− θ2 sin

(
2π(x−

1
2

)

)
, (77)

and

αθ22 (t) =
θ2t
T
. (78)

7.1.3. Parametrization of the initial value

For parametrization ofu0, we consider some perturbations of a known function ¯u in the form

uθ0(x) = ū(x) + θc(x), (79)

with ū|∂Ω = c|∂Ω = 0, because of the homogeneous BC of the heat problem (25-27).The rela-

tion (79) can be viewed as a simplified representation of Karhunen-Loève expansions used for

modeling random fields in a stochastic framework (see [22]),whereū is a deterministic mean

function andθ are random variables.

In our numerical simulationsθ = θ3 andū is taken as an harmonic function that satisfies the

Poisson problem 
−∆ū = f in Ω,

ū = 0 on∂Ω,
(80)

with f ≡ 1. We choose

c(x) = λ

(
x+

1
2

) (
x−

1
2

) (
y+

1
2

) (
y−

1
2

)
, (81)

with λ =
8
5

max
Ω

|ū| so that the maximal amplitude ofc represent a tenth of max
Ω

|ū|.

7.2. Numerical results: approximation of the auxiliary PDE

In order to validate the methodology presented in Section 5,we first present numerical results

for approximation of the auxiliary PDE model (6-8). The BC conditions and the initial value are

defined by (75-78) and (79-81), respectively, meaning that we consider a two-parameter problem.
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Figure 3: Computation ofϕk
IV : spectrum of the Gram matrix in log10 scale. We retainKIV = 6 spatial modes.

After presenting the different parameters chosen for thesesimulations, we will compare the ROM

solution

v̂θ2,θ3(x, t) =

KIV∑

k=1

aθ3k (t) ϕk
IV (x)

+

KBC∑

k=1

(
gθ2(·, t), ηk(·, t)

)
L2(∂Ω)

Lk∑

l=1

Mk∑

m=1

βk
lm χ

k,l(x)ςk,m(t), (82)

which corresponds to the two first terms of (65), to the solutionvθ2,θ3 obtained by directly solving

(6-8) with a precise implicit Euler scheme.

We choose the following parameters for our simulations:T = 2s,Nx = 20 points per spatial

direction, and a time-stepδt = 0.002 for the fine Euler resolution. For the heat problem resolution

with homogeneous BC (see §5.2), we takeN = 51 points for the temporal sampling, half of them

being uniformly spread in [0, 0.2] to capture the unsteady behavior of the solutionwθ3. Applying

PCA with a threshold ofε = 10−12 leads toKIV = 6 spatial modesϕk
IV (see Figure 3). Figure 4

shows the time history of each coefficientaθ3k (t) of the expansion (31). It can be seen that each

coefficient converges towards 0, which is consistent with the fact that we analyze the solution

with respect to its initial value dependency.

Concerning the heat problem with null initial value (see §5.3), we sample the parameterθ2
with I = 7 values uniformly spread in [0, 1]. Applying PCA with a threshold ofε = 10−6 leads

to KBC = 2 spatial modesηk (see Figure 5(a)).

For the second-level ROM (44) we store, for eachk = 1, . . . ,KBC, NT = N spatial snapshots

(ξk(·, tn))n and NX = 200 temporal series (ξk(x j, ·)) j wherex j belongs to a coarse spatial grid

uniformly spread inΩ. Applying PCA methods with thresholds ofε = 10−9 in both cases leads
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Figure 4: Time history of the coefficientsaθ3k (t), k = 1, . . . , KIV in log10 scale. It can be seen that all the coefficients

vanish for large times.

to Lk
= 7 spatial modesχk,l(x) andMk

= 8 temporal modesςk,m(t), for eachk (see Figures 5(b)

and 5(c)).

For θ2 = 0.2 andθ3 = 0.1 we now compare the approximate ROM solution to the fine

Euler solution. The results presented in Figures 6 and 7 showa good agreement between the

approximated and fine Euler solutions. The meanL2 relative error is

1
N

N∑

n=1

||̂vθ2,θ3(·, tn) − vθ2,θ3(·, tn)||L2(Ω)

||vθ2,θ3(·, tn)||L2(Ω)
≃ 7.47× 10−2.

It is worth noting that on the upper BCΓ, the solution is better approximated:

1
N

N∑

n=1

||̂vθ2,θ3(·, tn) − vθ2,θ3(·, tn)||L2(Γ)

||vθ2,θ3(·, tn)||L2(Γ)
≃ 4.99× 10−2.

The L2 relative errors over the whole domainΩ and the upper boundaryΓ as a function of

time is shown in Figures 8(a) and 8(b), respectively. It can be noted that the quality of the ap-

proximated solution is not affected by the size of the temporal coarse grid used for the modes

ηk. We maintain the same level of accuracy using a temporal undersampling, with a coarse grid

made of only 21 points. Figures 9(a) and 9(b) compare the temporal evolution of the solution at

a fixed point in the interior and boundary for the ROM and the direct Euler solution.
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Figure 5: (a) – Computation ofηk : spectrum of the Gram matrix in log10 scale. We retainKBC = 2 spatial modes. (b) –

Computation ofχk,l : spectrum of the Gram matrix in log10 scale. We retainLk
= 7 spatial modes. (c) – Computation of

ςk,m : spectrum of the Gram matrix in log10 scale. We retainMk
= 8 temporal modes.

We would like to point out that computation and storage of thePOD modesηk(·, tn) on the

coarse temporal grid require a numerical post-processing.Since these modes are obtained for

different timestn, it is possible to generate discontinuities, because eigenvectors in the PCA

methods are defined up to the sign. A simple procedure is henceneeded to detect the possible

changes of sign and has been used in our simulations.

7.3. Numerical results: full non-linear problem

We present now numerical results corresponding to the full non-linear problem (72), with the

parametrization described in Sections 7.1.1, 7.1.2 and 7.1.3. For our numerical simulations we

takeν = 0.05 andT = 5s. The fine spatial grid is made of 20×20 points and the coarse one ofJ =
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Figure 6: First few snapshots of the direct implicit Euler solution vθ2,θ3 (·, tn), n = 1, . . . ,12, forθ2 = 0.2 andθ3 = 0.1.
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Figure 7: First few snapshots of the ROM solutionv̂θ2,θ3(·, tn), n = 1, . . . , 12 given by eq. (82), forθ2 = 0.2 andθ3 = 0.1.
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Figure 8: (a) –L2 relative errors on the whole domainΩ between direct and ROM solutions, for each timestn. (b) – L2

relative errors on the upper boundaryΓ in log10 scale between direct and ROM solutions, for each timestn.
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on the upper BC, trajectory of the ROM and direct solutions.
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344 points uniformly spread inΩ, including the upper BC. For the temporal discretization, we

takeN = 101 points to generate the spatial snapshots (12) andNf ine = 501 for the snapshots time

series (14), half of them being uniformly spread in [0, 0.5]. For the parameter-space discretization

we use a regular grid ofI = 53
= 125 design points.

We proceed as follows to construct the spatial and temporal basis functions,ϕk andξm, needed

in the expansion (4). For each design parameterθi ∈ W I , K i spatial modesϕk,i andMi temporal

modesξm,i are computed by applying PCA methods. Using thresholds respectively ofǫ = 10−4

andǫ = 10−5, we get a total of
∑I

i=1 K i
= 500 and

∑I
i=1 Mi

= 375 POD modes. From these

different sets of POD modes linked to each design parameter,we deduce common spatial and

temporal basis sets applying PCA once again on the families

{
(ϕk,i)k=1,...,K i

}
i=1,...,I

and {
(ξm,i)k=1,...,Mi

}
i=1,...,I

.

Considering thresholds ofǫ = 10−5 in both cases, we obtain a set of common POD modes

(ϕk)k=1,...,K and (ξm)m=1,...,M, with K = 9 andM = 4. The corresponding eigenvalues of the Gram

matrices are shown in Figure 10, showing a quick decay of the spectra. The spatial and temporal

modes are depicted in Figures 11 and 12. It can be seen from Figure 12 that the conditions

ξm(0) = 0 are satisfied by the temporal basis functions.

In our simulations we using the Gaussian radial basis functionΦ(r) = e−
r2

2σ with σ = 0.15.

This optimal value ofσ is numerically obtained by minimizing the maximal distancebetween the

known coefficientsαkm(θi) given by (19), and their RBF estimations given by (20). Sucha value

of σ leads to a maximal difference of 1.57× 10−4. The condition number of the interpolation

matrix involved in (22) is around 15.8 for the chosen value of the scaling parameterσ.
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Figure 11: First 9 spatial basis functionsϕk.

Concerning the initial value part of the ROM, we consider thesame temporal sampling in

[0,T] used for the non-linear snapshots generation, to get the snapshots of the heat problem with

null BC (N = 101). This leads us to considerKIV = 4 modesϕk
IV . For the BC part of the ROM,

we consider 20 values ofθ2 uniformly spread in [0, 1] in order to perform PCA on the set (34).

This leads us to retainKBC = 2 POD modesξk. The spatio-temporal modesξk are not computed

exactly but are approximated by (44), withMk
= Lk

= 5, for eachk = 1, . . . ,KBC.
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Figure 12: First 4 temporal basis functionsξm, with ξm(0) = 0.

Figures 13 and 14 show some temporal snapshots of the solution directly obtained by an im-

plicit Euler scheme at the beginning and at the end of the simulation. We consider the parameter

vectorθ0 = (0.27, 0.92, 0.23)T, which is not included in our snapshot generation process (12) and

(14). The temporal snapshots approximated by the ROM for thesame parameterθ0 are shown in

Figures 15 and 16. It can be seen that the reduced-order modelprovides a very accurate approx-

imation of the full direct solution during all time-instants in the interval [0, 5]. It is to be noticed

that the snapshots directly generated by a fine Euler scheme are obtained withN2
x × NT = 40400

unknowns, while the ROM snapshots requireKIV +
∑KBC

k=1 LkMk
+ KM = 90 unknowns, once all

the POD basis are generated. In addition, we represent in Figure 17 the normalizedL2 errors

E(tn) =
||̂uθ0(·, tn) − uθ0(·, tn)||L2(Ω)

max
n
||uθ0(·, tn)||L2(Ω)

(83)

showing the ability of the ROM to reproduce accurately the full direct solution as a function of

time. As another illustration, we give in Figures 18 and 19 a three-dimensional representation of

these two solutions at initial and final time-instants, showing the good agreement between each

other.

To illustrate the accuracy of the ROM at other points in the parameter space, we use the mean

L2 error defined below

E(θ) =
1
N

N∑

n=1

E(tn), (84)

whereE(tn) is the normalizedL2 error at time instanttn defined earlier in (83). Figure 20 shows
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the meanL2 errors (84) represented for the 125 design points of the DoCE. It can be seen from

these results that the mean value of these errors is about 9× 10−3 with a maximum error equal to

0.0123, showing that the ROM provides good accuracy.
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Figure 13: A few snapshots of the direct solutionuθ0(·, tn) onΩ × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 1, . . . , 12.
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Figure 14: A few snapshots of the direct solutionuθ0(·, tn) onΩ × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 90, . . . , 101.
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Figure 15: A few snapshots of the ROM solutionûθ0(·, tn) onΩ × [0, 5] for θ0 = (0.27, 0.92,0.23)T , n = 1, . . . , 12.
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Figure 16: A few snapshots of the ROM solutionûθ0(·, tn) onΩ × [0, 5] for θ0 = (0.27, 0.92, 0.23)T , n = 90, . . . , 101.
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Figure 17: NormalizedL2 errorE(tn) in log10 scale between the ROM and direct solutions forθ0 = (0.27, 0.92, 0.23)T ,

n = 1, . . . ,N.
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Figure 18: 3D representation of the direct solution (left side) and of the ROM one (right side) at timet = 0.
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Figure 19: 3D representation of the direct solution (left side) and of the ROM one (right side) at timet = T.

8. Concluding remarks

In this paper, we proposed a non-intrusive method for reduced-ordermodeling of parametrized

time-dependent PDEs where the governing equations, the initial and time-dependent boundary

conditions are parametrized. The key idea was to represent the reduced-order model as the sum
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Figure 20: MeanL2 errorsE(θ) (eq. (84)) in log10 scale, forθ belonging to the DoCE.

of two terms. The first term was chosen as the approximate solution of an auxiliary parabolic

linear PDE which enforces satisfaction of the boundary and initial conditions, while the second

term is a linear combination of a tensor product of adapted spatial and temporal basis functions

obtained using a two-level POD method. The ability of this approach to accurately reproduce

the solutions has been numerically validated for unsteady parametrized Burgers’ and convection-

reaction-diffusion models. We also provide an error estimate for the reduced-order model used

to approximate the solution of the auxiliary parabolic PDE.

It would be of interest to develop greedy versions of the proposed approach to improve com-

putational efficiency further (see [10] for a detailed exposition of the ROM-greedy algorithm for

stationary parametrized problems, and [27, 28] for more general considerations on greedy ap-

proaches). It is also of interest to investigate the application of the proposed numerical schemes

to solve PDEs that are randomly parametrized (see [29] for ongoing work on this topic). We

would like to mention here that the method proposed in this paper can be directly applied to

randomly parametrized PDEs since the final reduced-order approximation given by (65) can be

efficiently postprocessed to estimate the statistical moments of the solution given the joint prob-

ability density function of the parameters. The error estimate provided in this work only applies

for the approximation to the auxiliary parabolic PDE and notthe original parametrized PDE. Fur-

ther work is required to establish error estimates for the full non-linear problem. Furthermore,

it could be useful to study numerically the influence of the different ROM parameters (number

of modes, size of the samplings, etc) on the level of accuracyof the approximate solution. It is

also expected that the proposed ROM method may find applications to optimal control theory

problems with complex time-dependent boundary conditions.
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Nomenclature

Ω physical space,Ω ⊂ R
d

∂Ω boundary of the physical domain

Γ upper boundary ofΩ

p dimension of the parameter space

x spatial coordinates

t time, t ∈ [0,T]

θ vector of parameters,θ ∈]0, 1[p

f θ source term of the PDE,f = f (u, θ)

gθ inhomogeneous Dirichlet boundary conditions,gθ = gθ(x, t)

uθ0 initial value functionuθ0 = uθ0(x)

Ωh discretized domain with polygonal boundary

L2(Ωh) L2-scalar product

uθ exact solutionuθ = uθ(x, t) of the non-linear PDE problem

under consideration

ROM Reduced-Order Model

ûθ approximate ROM solution

vθ solution of the auxiliary linear PDE

wθ solution of the auxiliary linear PDE with homogeneous

boundary conditions

zθ solution of the auxiliary linear PDE with zero initial conditions

z̃θ approximate ROM solution ofzθ

DoCE Design of Computer Experiments

I number of fine simulations to perform the DoCE

θi sampled design parameter vector

W I set of design vectorsθi , i = 1, . . . , I

x j spatial coordinates belonging to a subsampling cloud

X J set of pointsx j, i = 1, . . . , J

tn instant time belonging to a coarse sampling

Y N set of time instantstn, n = 1, . . . ,N

ϕk,i spatial POD modes of the full non-linear problem,k = 1, . . . ,K i ,

linked toθi
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ϕk common spatial POD modes,k = 1, . . . ,K

ϕ matrix of coefficientsϕ jk = ϕ
k(x j)

ξm,i temporal POD modes of the full non-linear problem,m= 1, . . . ,Mi ,

linked toθi

ξm common temporal POD modes,m= 1, . . . ,M

ξ matrix of coefficientsξnm = ξ
m(tn)

αkm parameter function in the full ROM decomposition,αkm(θ),

k = 1, . . . ,K, m= 1, . . . ,M

αi matrix of coefficients (αi)km = αkm(θi)

ui for a fixedθi , matrix of coefficients (ui) jn = uθi (x j, tn)

ûi for a fixedθi , matrix of coefficients (̂ui) jn = ûθi (x j, tn)

vi for a fixedθi , matrix of coefficients (vi) jn = vθi (x j, tn)

µ small regularization parameter for linear system resolutions

RBF Radial Basis Function

Φ RBF kernel

σ scaling factor ofΦ

A interpolation matrix

γkm
i ith coefficient in the expansion ofαkm

ε thresholds for the choice of the number of POD modes

BC boundary condition

IV initial value

KIV number of modes related to the auxiliary linear PDE with

homogeneous BC

ϕk
IV spatial POD modes for the IV treatment (k = 1, . . . ,KIV )

KBC number of modes related to the auxiliary linear PDE with

null initial condition

ηk spatialL2(∂Ωh)-valued POD modes for the BC treatment,

k = 1, . . . ,KBC

ξk spatio-temporal POD modes in the expansion of ˜zθ, k = 1, . . . ,KBC

χk,l second-level spatial POD modes to reduceξk, l = 1, . . . , Lk

ςk,m second-level temporal POD modes to reduceξk, m= 1, . . . ,Mk
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