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Examples of coarse expanding conformal maps

Peter Häıssinsky and Kevin M. Pilgrim

October 30, 2010

Abstract

In previous work, a class of noninvertible topological dynamical systems f : X →
X was introduced and studied; we called these topologically coarse expanding con-
formal systems. To such a system is naturally associated a preferred quasisymmetry
(indeed, snowflake) class of metrics in which arbitrary iterates distort roundness and
ratios of diameters by controlled amounts; we called this metrically coarse expand-
ing conformal. In this note we extend the class of examples to several more familiar
settings, give applications of our general methods, and discuss implications for the
computation of conformal dimension.
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1 Introduction

The goal of this note is threefold: first, to give further concrete examples of so-
called topologically coarse expanding conformal and metrically coarse expanding
conformal dynamical systems, introduced in [HP2]; second, to apply the general
theory developed there to some recent areas of interest; and lastly, to pose some
problems about the conformal gauges associated with these dynamical systems.

Topologically cxc systems

Let X be a compact, separable, metrizable topological space; for simplicity, we
assume here that X is connected and locally connected. Suppose that f : X → X
is a continuous, open, closed (hence surjective) map which in addition is a degree
d ≥ 2 branched covering in the sense of [Edm]. Let U0 be a finite open cover of X by
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open connected sets, and for n ≥ 0 set inductively Un+1 to be the covering whose
elements are connected components of inverse images of elements of Un.

Definition 1.1 (Topologically cxc) The topological dynamical system f : X →
X is topologically coarse expanding conformal with respect to U0 provided the fol-
lowing axioms hold.

1. [Exp] The mesh of the coverings Un tends to zero as n → ∞. That is, for any
finite open cover Y of X by open sets, there exists N such that for all n ≥ N
and all U ∈ Un, there exists Y ∈ Y with U ⊂ Y .

2. [Irred] The map f : X → X is locally eventually onto near X: for any x ∈ X
and any neighborhood W of x in X, there is some n with fn(W ) ⊃ X.

3. [Deg] The set of degrees of maps of the form fk|Ũ : Ũ → U , where U ∈ Un,

Ũ ∈ Un+k, and n and k are arbitrary, has a finite maximum.

It is easy to see the property of being cxc is preserved under refinement of U0, so
this is indeed an intrinsic property of the dynamical system. Since we have assumed
X to be connected, [Irred] is a consequence of [Exp].

Metrically cxc systems

Suppose now X is a metric space.

Roundness. Let A be a bounded, proper subset of X with nonempty interior.
Given a ∈ int(A), define the outradius of A about a as

L(A, a) = sup{|a− b| : b ∈ A}

and the inradius of A about a as

ℓ(A, a) = sup{r : r ≤ L(A, a) and B(a, r) ⊂ A}.

The roundness of A about a is defined as

Round(A, a) = L(A, a)/ℓ(A, a) ∈ [1,∞).

Definition 1.2 (Metric cxc) The metric dynamical system f : X → X is metri-
cally coarse expanding conformal provided there exist

• continuous, increasing embeddings ρ± : [1,∞) → [1,∞), the forward and back-
ward roundness distortion functions, and

• increasing homeomorphisms δ± : (0,∞) → (0,∞), the forward and backward
relative diameter distortion functions

satisfying the following axioms:

4. [Round] for all n ≥ 0 and k ≥ 1, and for all

U ∈ Un, Ũ ∈ Un+k, ỹ ∈ Ũ , y ∈ U

if
fk(Ũ) = U, fk(ỹ) = y
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then the backward roundness bound

Round(Ũ , ỹ) < ρ−(Round(U, y))

and the forward roundness bound

Round(U, y) < ρ+(Round(Ũ , ỹ))

hold.

5. [Diam] (∀n0, n1, k) and for all

U ∈ Un0
, U ′ ∈ Un1

, Ũ ∈ Un0+k, Ũ ′ ∈ Un1+k, Ũ ′ ⊂ Ũ , U ′ ⊂ U

if
fk(Ũ) = U, fk(Ũ ′) = U ′

then
diamŨ ′

diamŨ
< δ−

(
diamU ′

diamU

)

and
diamU ′

diamU
< δ+

(
diamŨ ′

diamŨ

)
.

Conformal gauges

First, some notation. We denote the distance between two points a, b in a metric
space X by |a− b|. Given nonnegative quantities A,B we write A . B if A < C ·B
for some constant C > 0; we write A ≍ B if A . B and B . A.

A homeomorphism h between two metric spaces is quasisymmetric if there is
distortion function η : [0,∞) → [0,∞) which is a homeomorphism satisfying |h(x)−
h(a)| ≤ t|h(x)−h(b)| =⇒ |h(x)−h(a)| ≤ η(t)|h(x)−h(b)|. For the kinds of spaces
we shall be dealing with, this is equivalent to the condition that the roundness
distortion of balls is uniform. The conformal gauge of a metric space X is the set
of all metric spaces to which it is quasisymmetrically equivalent, and its conformal
dimension is the infimum of the Hausdorff dimensions of metric spaces Y belonging
to the conformal gauge of X .

The principle of the Conformal Elevator shows [HP2, Thm. 2.8.2]:

Theorem 1.3 A topological conjugacy between metric cxc dynamical systems is
quasisymmetric.

Two metrics d1, d2 are snowflake equivalent if d2 ≍ dα1 for some α > 0. We have
[HP2, Prop. 3.3.11]:

Theorem 1.4 If f : X → X is topologically cxc, then for all ε > 0 sufficiently
small, there exists a metric dε such that:

1. the elements of Un, n ∈ N, are uniformly round;

2. their diameters satisfy diamU ≍ exp(−εn), U ∈ Un, n ∈ N.

3. if f |Bε(x, 4r) is injective, then f is a similarity with factor eε on B(x, r).
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Any two metrics satisfying (1), (2), (3) are snowflake equivalent. The conformal
gauge G of (X, dε) depends only on the topological dynamical system f : X → X.

It follows that the conformal dimension of (X, dε) is an invariant of the topolog-
ical conjugacy class of f , so it is meaningful to speak of the conformal dimension of
the dynamical system determined by f .

The two theorems above have extensions to cases where X is disconnected; we
refer the reader to [HP2] for details.

Examples of metrically cxc systems include the following:

1. hyperbolic, subhyperbolic, and semihyperbolic rational maps, acting on their
Julia sets equipped with the spherical metric;

2. quasiregular maps on Riemannian manifolds whose iterates are uniformly quasireg-
ular;

3. smooth expanding maps on smooth compact manifolds, when equipped with
certain distance functions.

In §2, we show that certain invertible iterated function systems in the plane,
equipped with the Euclidean metric, naturally yield metrically cxc systems. Com-
bined with Theorem 1.3, this yields an extension of a recent result of Eroǧlu et
al.

In §3, we consider skew products of shift maps with coverings of the circle. These
arise naturally as subsystems of dynamical systems on the 2-sphere. We build, by
hand, metrics for which they are cxc.

In §4, we give examples of metrically cxc systems on the Sierpiński carpet and
on the Menger curve.

In §5, we show how a so-called Lattès example can be perturbed to yield a
continuous one-parameter family of topologically cxc maps on the sphere, and we
pose some problems regarding the associated gauges.
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2 Iterated function systems

In this section, we apply our technology to the setup of Eroǧlu, Rohde, and Solomyak
[ERS].

For λ ∈ C, 0 < |λ| < 1 let F0(z) = λz, F1(z) = λz + 1. The maps F0, F1

determine an iterated function system possessing a unique compact attractor Aλ =
F0(Aλ)∪F1(Aλ). The set Aλ is invariant under the involution s(z) = −z+(1−λ)−1.
Bandt [Ban] observed that if λ belongs to the set

T = {λ : F0(Aλ) ∩ F1(Aλ) = a singleton, {oλ}},
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then F0 and F1 ◦s are inverse branches of a degree two branched covering qλ : Aλ →
Aλ.

In this case, Aλ is also known to be a dendrite, i.e. compact, connected, and
locally connected [BK], and the unique branch point oλ of the map qλ is a cut-point
of Aλ and is nonrecurrent [BR, Thm. 2]. The complement of oλ in Aλ is a disjoint
union A0

λ, A
1
λ where qλ(oλ) ∈ A1

λ. Associated to qλ is a combinatorial invariant,
the kneading sequence, defined as the itinerary of oλ with respect to the partition
{{oλ}, A0

λ, A
1
λ} of Aλ.

It follows immediately that there exists a covering U0 by small open connected
subsets of Aλ such that qλ is topologically cxc with respect to U0. It is easy to
show that the Euclidean metric satisfies conditions (1)-(3) in Theorem 1.4. We
conclude that the Euclidean metric is snowflake equivalent to the metric given by
this theorem, and that the metric dynamical system given by qλ is metrically cxc.

The metrics produced by Theorem 1.4 are obtained as visual distances on the
boundary of a Gromov hyperbolic graph. The discussion in the preceding paragraph
shows that at least in this case, they admit more down-to-earth descriptions.

Now suppose fc(z) = z2 + c is a quadratic polynomial for which the Julia set
is a dendrite. There is a standard way to partition the Julia set into three pieces
J0
c , J

1
c , {0} such that c ∈ J1

c , and one defines analogously the kneading sequence
of fc to be the itinerary of the origin with respect to this partition. In the case
when the orbit of oλ under iteration of qλ is finite, Kameyama [Kam] showed that
qλ is topologically conjugate to a unique quadratic polynomial fcλ(z) = z2 + cλ
acting on its Julia set Jcλ . Since such polynomials are metrically cxc with respect to
the Euclidean metric, Theorem 1.3 implies this conjugacy is quasisymmetric. This
recovers the first half of [ERS, Theorem 1.1], but does not yield the existence of an
extension of this conjugacy to the Riemann sphere, which requires more work.

More generally, Eroǧlu et. al. establish

Proposition 2.1 [ERS, Prop. 5.2] Suppose λ ∈ T and c ∈ C is a parameter
such that Jc is a dendrite. If the kneading sequences of qλ and fc are identical, then
(Aλ, qλ) and (Jc, pc) are topologically conjugate.

Suppose now that qλ and fc satisfy the hypotheses of this proposition. Since
recurrence is a topological condition, the critical point of fc at the origin is non-
recurrent. Since the Julia set Jc is a dendrite, the map fc cannot have parabolic
cycles. By [HP2, Thm. 4.2.3], the map fc is metrically cxc with respect to the
Euclidean metric. The map qλ is also metrically cxc with respect to the Euclidean
metric. Applying Theorem 1.3 to the topological conjugacy given by the preceding
proposition, we obtain a stronger conclusion:

Theorem 2.2 Suppose λ ∈ T and c ∈ C is a parameter such that Jc is a dendrite.
If the kneading sequences of qλ and fc are identical, then (Aλ, qλ) and (Jc, pc) are
quasisymmetrically conjugate.

Question 2.3 Is the conformal dimension of Aλ equal to 1?

Tyson and Wu [TW] show, for example, that the conformal dimension of the
standard Sierpiński gasket is equal to 1 (but not realized) by exhibiting a family of
explicit quasiconformal deformations through IFSs. Can their techniques be adapted
for the above IFSs?
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3 Skew products from Thurston obstructions

In this section, we show that, associated to a certain combinatorial data, there
exists a metric cxc dynamical system realizing the conformal dimension. The type
of combinatorial data arises naturally when considering topologically cxc maps f :
S2 → S2 possessing combinatorial obstructions, in the sense of Thurston, to the
existence of an invariant quasiconformal (equivalently, conformal) structure; see
[DH], [HP1].

Here is the outline.

1. We begin with a directed multigraph G with weighted edges satisfying certain
natural expansion and irreducibility conditions.

2. From this data, and a snowflake parameter α > 0, we define an associated map
g : I1 → I0, I1 ⊂ I0 on a family of Euclidean intervals whose inverse branches
constitute a so-called graph-directed Markov (or iterated function) system; the
associated repellor (attractor, in the language of IFSs) is a Cantor set, C.

3. Snowflaking the Euclidean metric by the power α, the Hausdorff dimension s
of C becomes independent of α.

4. We take a skew product with covering maps on the Euclidean circle T to define
a topologically cxc covering map f : X1 → X0, X1 ⊂ X0 on a family of annuli;
the associated repellor is C × T.

5. The map f becomes a local homothety, and hence is metrically cxc.

6. A theorem of Tyson [Hei, Theorem 15.10] implies that this metric realizes the
conformal dimension, Q, of the cxc system f : X1 → X0.

One motivation for this construction is that if one can find subsystems of a topo-
logically cxc map F : S2 → S2 conjugate to such a map f : C × T → C × T, then
the conformal dimension of F is bounded below by that of f ; cf. [HP1].

Let G be a directed multigraph (that is, loops of length one and multiple edges
are allowed) with vertices {1, 2, . . . , n} and weighted edges defined as follows. Given

(i, j) ∈ {1, 2, . . . , n}2, denote by Eij the set of edges i
e→ j. For each edge e,

suppose e is weighted by a positive integer d(e). We assume that G satisfies the No
Levy Cycle condition: in any cycle of edges e0, e1, . . . , dp−1 with ek ∈ Eikik+1 mod p

,
(1) d(e0)d(e1) . . . d(ep−1) > 1, and (2) for some k ∈ {0, . . . p − 1}, #Eikik+1

≥ 2.
Furthermore, we assume that G is irreducible: given any pair (i, j), there exists a
directed path from i to j.

Let α > 0, and let Aα be the matrix given by

(Aα)ij =
∑

e∈Eij

d(e)−1/α.

The assumptions imply that as a function of α, the spectral radius λ(Aα) is strictly
monotone increasing and satisfies limα→∞ λ(Aα) ≥ 2 and limα→0+ λ(Aα) = 0; see
[HP1] and [MW].

Fix α for which λ(Aα) < 1. From the theory of nonnegative matrices, it follows
that there exists a vector w = (w1, . . . , wn) with each wi > 0 such that Aαw < w.
For i = 1, . . . , n let Ii be an open Euclidean interval of length wi, and denote by
I0 = I1 ⊔ . . . ⊔ In the disjoint union of these intervals. Given an ordered pair (i, j)
and e ∈ Eij let Je be an open Euclidean interval of length wjd(e)

−1/α. Denote by

6



Iij = ⊔e∈Eij
Je the disjoint union of these intervals, and by I1 = ⊔n

i=1 ⊔n
j=1 Iij . The

assumption on w and the definitions imply that for each i, there is an embedding
⊔n
j=1Iij →֒ Ii giving rise to an embedding I1 →֒ I0 satisfying the following prop-

erties: (i) it is an isometry on each interval; (ii) the closure of the image of I1 is
contained in the interior of I0; (iii) the closures of the images of distinct subintervals
do not intersect. We fix such an embedding, and henceforth identify I1 as a subset
of I0.

We extend the Euclidean metric on the intervals comprising I0 to a distance
function d(·, ·) on all of I0 by setting d(x, y) = D whenever x, y belong to different
components of I0, where D > 1

2
max{w1, . . . , wn} is a fixed positive constant; the

lower bound guarantees that the triangle inequality is satisfied.
Define g : I1 → I0 by setting, for e ∈ Eij , the restriction g|Je

to be either of
the two Euclidean affine homeomorphisms sending Je onto Ij . It follows that g|Je

is a Euclidean similarity with ratio d(e)1/α ≥ 1. The inverse branches of these
restrictions define a so-called graph-directed Markov (or iterated function) system.
The No Levy Cycle condition and the irreducibility condition imply that this system
possesses a unique attractor (repellor, in the language of [HP2, §2.2]), C, which is
a Cantor set. Furthermore, there exists a unique positive number δ ≤ 1 such that
λ(Aα/δ) = 1, and δ coincides with the Hausdorff dimension of C with respect to the
metric d; see [MW].

Let dα = dα be the snowflaked metric on I0. Then the Hausdorff dimension
of C with respect to dα is s := δ/α, which is the unique positive parameter for
which λ(A1/s) = 1. Thus, while dα depends on an arbitrary real parameter α, the
Hausdorff dimension of C does not. Furthermore, for each edge e, the restriction
g|Je

scales ratios of distances with respect to dα by the factor d(e), which is also
independent of α.

Let T = R/Z be equipped with the Euclidean metric dT, and equip X0 = I0 ×T

with the product metric d = dα × dT, so that d((x1, t1), (x2, t2)) = dα(x1, x2) +
dT(t1, t2). Define X1 similarly. Then X0 is a family of right open Euclidean cylinders,
and X1 is a family of open, pairwise disjoint, essential, right subcylinders compactly
contained in X0. Define f : X1 → X0 by setting, for e ∈ Eij , the restriction f |Je×T

to be given by
f |Je×T(x, t) = (g(x), d(e)t).

By construction, the restriction f |Je×T scales distances with respect to d by the
factor d(e). Since f acts as a homothety in this metric, a covering U0 of X by
small balls in X0 will have the property that upon setting Un to be the covering
obtained by components of preimages of U0 under f−n, axioms (1) - (5) in the
definition of metric cxc will be satisfied. It follows that f : X1 → X0 is metrically
coarse expanding conformal in the sense of [HP2, §2.5] with disconnected repellor
X = C × T. By construction, the Hausdorff dimension of X is 1 + s. The system
f : X1 → X0 again defines a unique conformal gauge and has an associated conformal
dimension (technically, it is necessary to require that the conjugacies extend to the
ambient spaces X0,X1; we refer to [HP2, §2] for details). By a theorem of Tyson
[Hei, Theorem 15.10], the metric d realizes the conformal dimension of f .
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4 Sierpiński carpets, gaskets, and Menger spaces

Recall that the Sierpiński carpet, S, is the metric space obtained by starting with the
unit square, subdividing into nine squares, removing the middle square, repeating
with the remaining squares, and continuing; see below for an alternative description.

On the one hand, it is well-known that there exist hyperbolic rational maps
whose Julia set is homeomorphic to S (see the Appendix by Tan Lei in [Mil]). In
fact, there are many (see e.g. [BDL+]). Similarly, there exist limit sets of convex
compact Kleinian groups homeomorphic to S. Such examples provide a large class
of metric spaces homeomorphic to S and supporting a rich collection of maps which
are either locally (in the case of maps) or globally quasisymmetric (in the case of
groups).

On the other hand, the S is quite rigid: Bonk and Merenkov [BM] show that
the group of quasisymmetric self-maps of S consists of the eight dihedral Euclidean
symmetries and nothing else. Therefore, S cannot be quasisymmetrically equivalent
to the boundary at infinity of any hyperbolic group.

In contrast, Stark [Sta, Theorem 2.2] showed that S, and more generally the
so-called Menger spaces, admit (in our terminology) metrically cxc maps which,
away from a thin branch locus, are homotheties with constant expansion factor.
In the remainder of this section, we briefly review Stark’s construction, pose some
questions, and comment on some related constructions.

Menger spaces

The following construction, and its properties, are found in [Sta]. Let n ≥ 0 be a
nonnegative integer and let k ≥ 2n+1; Ik denotes the k-cell [0, 1]k ⊂ Rk. Let G de-
note the subgroup of isometries of Rk generated by reflections in the faces of Ik, and
r : Rk → Ik the quotient map. Let s : Rk → Rk be given by s(x) = 3x. Then s in-
duces a map f : Ik → Ik on the quotient space, given by the formula f(x) = s(r(x)).
Let U1 = {(x1, . . . , xk) ∈ Ik : 1/3 < xi < 2/3 for at least n+ 1 of 1, 2, . . . , k}. Set
Y0 = Ik \ U1 and inductively put Yl = Yl−1 \ f−1(Yl−1). Then X = ∩l≥0Yl is, by a
characterization theorem of Bestvina [Be, p. 2], the Menger universal n-dimensional
space. The restriction f : X → X of f to X defines an open, closed, and finite-to-one
map which is easily seen to be a branched covering satisfying axiom [Exp]. Since
iterates of s are all unramified, the ramification of iterates of f : X → X is uniformly
bounded by the ramification of r, so axiom [Deg] is satisfied. Given any point x ∈ X ,
there is a neighborhood V of x such that |f(x) − f(y)| = 3|x − y|, which implies
immediately that the roundness and diameter distortion axioms are satisfied. Thus
f : X → X is metrically cxc. Note that f is ramified: e.g. when n = 1, k = 3 the
branch locus is the set of points in X for which exactly one coordinate lies in the
set {1/3, 2/3}.

One may generalize the preceding construction. Suppose 3 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn

are integers. Replace s : x 7→ 3x with s : (x1, . . . , xk) 7→ (λ1x1, . . . , λnxn), put
f = r ◦ s as before, set ǫi = log 3/ logλi, and put d(x, y) = maxi |xi − yi|ǫi . Then
away from the branch locus, f : Ik → Ik is again locally a homothety with factor
3, now with respect to the snowflaked metric d. Defining X as before, we get a
metrically cxc dynamical system whose conformal gauge a priori may depend on the
choice of expansion factors λi. By replacing the middle cell U1 with other suitable
collections of finite cells whose closures are disjoint from each other and from the
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boundary of Ik, one obtains similar examples, with different combinatorics.

Question 4.1 Given a degree m ≥ 2 and a conformal gauge G of carpet or Menger
space as above, how many topological conjugacy classes of metrically cxc maps f :
X → X,X ∈ G, are there with deg(f) = m?

Sierpiński carpets

By taking n = 1, k = 3, and restricting to a face in a coordinate plane, one obtains
a branched, metrically cxc map on S.

Question 4.2 Is there an unbranched metrically cxc map on the standard Sierpiński
carpet?

If S is quasisymmetrically equivalent to the Julia set of a hyperbolic rational
map, then the answer is “yes”. If one weakens the hypothesis so as to replace S
with a compact metric space locally homeomorphic to S, then the answer is “yes”:
take n = 1, k = 3, and replace the group G above by the group of integer translations
in the coordinate directions so that the quotient space R3/Z3 is the three-torus T 3.
Then the construction above produces a set X ⊂ T 3 such that f : X → X is again
metrically cxc with respect to the induced Euclidean metric. The set X (by [Sta,
Thm. 2.1]) is locally homeomorphic to the Menger space of topological dimension
1, and the restriction of f to the intersection of X with the image of a coordinate
plane under the natural projection yields a metric cxc system on a space Z locally
homeomorphic to S. The space Z, however, cannot be embedded in plane, since the
image of e.g. a coordinate axis under the natural projection will be a nonseparating
simple closed curve in Z.

Sierpiński gasket

The Sierpiński gasket is obtained by starting with an equilateral triangle, subdi-
viding into four congruent equilateral triangles, removing the open middle triangle,
and repeating. Metrically cxc maps do exist on the Sierpiński gasket. Kameyama
[Kam] shows that the three Euclidean 1/3-similitudes defining the standard trian-
gular Sierpiński gasket may be composed with rotations so that the resulting maps
extend, in the manner of §2, as the inverse branches of a continuous branched cov-
ering map of the gasket to itself with three branch points; it follows easily that
this yields a metrically cxc dynamical system. Kameyama further shows that this
map, restricted to the gasket, is topologically conjugate to the rational function
z 7→ z2 − 16

27z on its Julia set [Kam, Example 1]. By Theorem 1.3, this conjugacy
is quasisymmetric. As mentioned in §1, the conformal dimension of the standard
Sierpiński gasket is equal to one, so we conclude that the conformal dimension of
the Julia set of z 7→ z2 − 16

27z is equal to one, but not realized. To our knowledge,
this is the first nontrivial computation of a conformal dimension of a Julia set.

This example also generalizes. Other well-known fractals, such as the hexagasket
and other polygaskets, arise as repellors of piecewise affine maps with branching as
above; see e.g. [ERS].
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Comment on “flap spaces”

We remark that Sierpiński carpets also arise naturally when the so-called “flaps” are
excised from the “flap spaces” discussed by Bonk [Bon]. However, the restriction
of the dynamics to these carpets is not cxc, as this restriction fails to be an open
map: points on the boundaries of “holes” have neighborhoods which map to “half-
neighborhoods”. Thus, while of natural dynamical origin and of inherent interest
(cf. [Mer]), the associated dynamics lies outside the scope of the framework we
develop in [HP2].

5 A one-parameter family of topologically cxc maps

Let R2 denote the Euclidean plane. Consider the plane wallpaper group G =
{(x, y) 7→ ±(x, y) + (m,n)|m,n ∈ Z} < Isom+(R2). The closure of a funda-
mental domain is the rectangle R = [0, 1/2] × [−1/2, 1/2]. The quotient space
O = R2/G = R/ ∼ is homeomorphic to the two-sphere. Away from the fixed-points
of the elements of G, the Euclidean metric descends to a Riemannian metric on the
quotient. The completion of this metric yields a length metric ρ on O such that the
four “corners” (the images of the points (0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2)) become
cone points at which the total angle is π. We think of O as a square pillowcase; in
particular, it has a natural cell structure given by the vertices, edges, and faces of
the two squares. The involution j : O → O induced by the map (x, y) 7→ (x,−y) on
the plane descends to a map of O which we also denote suggestively by p 7→ p. In
R, this involution is reflection in the segment α indicated in Figure 1.

Figure 1: The sphere as a square pillowcase.

In particular, away from the corners, O inherits the coarser structure of a
piecewise-affine real manifold with an orientation-reversing symmetry.

In this section, we show the existence of a one-parameter family fa : O → O, a ∈
[0, 1/8] of maps of the sphere to itself with the following properties.
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1. The map a 7→ fa is continuous from [0, 1/8] to C0(O,O).

2. For all a, the map fa

(a) is symmetric, i.e. commutes with the involution j;

(b) is a piecewise-affine branched covering of degree 4 for which f◦2
a is uni-

formly expanding with respect to ρ;

(c) has postcritical set given by

Pfa = {(0, 0), (1/2, 0), (0, 1/2), ((1− a)/2, 1/2)} ∪ {(τ◦n(a), 0)|n ≥ 0}

where τ : [0, 1
2
] → [0, 1

2
] is the full tent map given by the formula

τ(x) =
1

2
− 2|x− 1/4|;

(d) is postcritically finite if and only if a ∈ Q ∩ [0, 1/8];

(e) is topologically cxc.

3. The map f0 coincides with the integral Lattès map F induced by (x, y) 7→
2(x, y).

4. If a 6= b then the maps fa, fb are not topologically conjugate by any homeo-
morphism commuting with the involution j.

5. For a 6= 0, the map fa is not topologically conjugate to a rational function.
Let α = {(x, 0)|0 ≤ x ≤ 1/2}/ ∼ and β = {(x, 1/2)|0 ≤ x ≤ 1/2}/ ∼ be the
bottom and top edges, respectively, of O regarded as a square pillowcase. If
a > 0, the map fa has an obstruction Γ = {γ} where γ = {(x, 1/4) : 0 ≤ x ≤
1/2}/ ∼ ∪{(x,−1/4) : 0 ≤ x ≤ 1/2}/ ∼ is a “horizontal” simple closed curve
avoiding α ∪ β.

6. For all a, there exists a homeomorphism ha : O → O such that ha◦fa = fa◦ha,
and ha is isotopic relative to the set O − {α ∪ β} to the second iterate of a
Dehn twist about the curve γ.

7. The 1-skeleton is forward-invariant under fa; in particular, for each a ∈ Q ∩
[0, 1/8], the map fa is the underlying map in a finite subdivision rule on the
sphere in the sense of [CFP].

Remark: Since (x, y) 7→ 2(x, y) commutes with any linear map, the map f0 admits
many automorphisms which do not commute with j. We do not know how to rule
out in general the existence of a non-symmetric conjugacy h between fa and fb.

Definition of family fa. The essential ingredient is a piecewise-linear map

R̃a : [0, a]× [0, a] = ∆1 ∪∆2 ∪∆3 → ∆′
1 ∪∆′

2 ∪∆′
3 = [0, a]× [0, a]

defined as follows. Referring to Figure 2, set

R̃a|∆i
= Ti, i = 1, 2, 3

where each Ti is linear, and where

• T1 is the unique linear map sending the triangle ∆1 with vertices (0, 0), (a, 0), (a, a/2)
to the triangle ∆′

1 with vertices (0, 0), (a, 0), (a, a), respectively;

11



Figure 2: Definition of R̃a

Figure 3: The subdivision of the front face under the action of f6

1/8 is shown. The
image is rotated by 90 degrees for convenience; circle packings are used to approximate
the true conformal shape if all tiles (components of preimages of interiors of faces) are
conformally equivalent to Euclidean squares (image by William Floyd).

12



• T2 is the unique linear map sending the triangle ∆2 with vertices (0, 0), (a, a/2), (a, a)
to the triangle ∆′

2 with vertices (0, 0), (a, a), (a/2, a);

• T3 is the unique linear map sending the triangle ∆3 with vertices (0, 0), (a, a), (0, a)
to the triangle ∆′

3 with vertices (0, 0), (a/2, a), (0, a).

With respect to the standard Euclidean basis, the matrices are given by

T1 =

(
1 0
0 2

)
, T2 =

(
1 1/2
1 1

)(
1 1
1/2 1

)−1

, T3 =

(
1/2 0
0 1

)
.

Recall that the singular values of a real matrix T are the eigenvalues of
√
TT t, and

that the largest singular value is the Euclidean operator norm. The singular values
of the three matrices above are given by

{1, 2}, {1/2, 2}, {1/2, 1},

respectively. It follows that in the search for expansion, the worst that can happen
is that some Ti contracts the length of a tangent vector by the factor 1/2.

Recall that F : O → O is the integral Lattès map induced by (x, y) → 2(x, y).
We will define fa = Ra ◦ F where Ra : O → O is symmetric with respect to p 7→ p.
The map Ra will be the identity outside Qa ∪Qa, where

Qa = [1/2− a, 1/2]× [1/2− a, 1/2].

By symmetry, it is enough to define Ra on Qa. Set

Ra = T ◦ R̃a ◦ T−1

where T : [0, a]× [0, a] → Qa is given by the translation (x, y) 7→ (x + 1/2− a, y +
1/2− a). This completes the definition of the family fa, 0 ≤ a ≤ 1/8.

The remainder of this section is devoted to verification of Properties 1-6.
1, 3, 7. The first two are obvious; while the latter follows immediately from the
definitions given in [CFP].
2. Property (a) holds by definition; we now prove (b). Since the smallest singular
value of a Ti that arises is 1/2 and F is a Riemannian homothety with expansion
factor 2, the differential dfa does not decrease the length of tangent vectors. More-
over, f−1

a (Qa) ∩ Qa = ∅. Hence the second iterate f◦2
a expands the length of every

tangent vector by a factor of at least two.
To prove (c), note that fa(α ∪ β) ⊂ α and fa|α : α → α via (x, 0) 7→ (τ(x), 0)

which is independent of a. The critical points (1/2,±1/2) both map under fa to
(1/2 − a/2, 1/2) which in turn maps to (a, 0) ∈ α. For all a, the fate of the other
critical points is the same for fa and for F . In particular, there are no recurrent or
periodic critical points.

(d) The formula for τ shows that τ(p/q) ≡ ±2p/q modulo 1. Hence a ∈ Q iff the
orbit of a under τ is eventually periodic.

(e) Let U0 be a finite covering of O by small Jordan domains. Expansion of f◦2
a

implies that Axiom [Exp] holds. This in turn implies that the backward orbit of any
point is dense in all of O, and so fa satisfies Axiom [Irred]. The absence of recurrent
or periodic critical points implies Axiom [Deg] is satisfied, so fa is topologically cxc.

4. A topological conjugacy h between fa and fb which commutes with the
involution j must send the dynamically distinguished forward-invariant set α to
itself. Hence h|α conjugates τ to itself, h|α = id, and a = b.
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5. The horizontal simple closed curve γ has two preimages, each mapping by
degree two, and each homotopic to γ relative to the postcritical set of fa. If a 6= 0,
this gives a so-called Thurston obstruction to the map fa being equivalent to a
rational map, as was proved by Thurston for the postcritically finite case and by
McMullen in general; see [DH], [McM].

6. Consider the two disjoint closed horizontal annuli Ã1, Ã2 where Ã1 = [0, 1/2]×
[1/8, 3/16]∪[0, 1/2]× [1/8, 3/16] and Ã2 = [0, 1/2]×[5/16, 3/8]∪[0, 1/2]× [5/16, 3/8]
in the fundamental domain R. Since a ≤ 1/8 the definition of fa shows that fa|Ã1∪Ã2

is independent of a, and that each annulus Ã1, Ã2 maps as a double cover of the
annulus A = [0, 1/2]× [1/4, 3/8]∪ [0, 1/2]× [1/4, 3/8].

Let h0 : O → O be the second power of a right Dehn twist supported on A; there
is a unique such h0 if we require that it preserves the affine structure of A. It follows
that h0 lifts to a homeomorphism h1 : O → O which is a single right Dehn twist on
each Ãi and is the identity elsewhere. It follows that h0 is homotopic to h1 relative
to the top and bottom edges α∪ β of the pillowcase, which contains the postcritical
set Pfa . Let ht, 0 ≤ t ≤ 1, be a homotopy joining h0 and h1. By induction and
homotopy lifting, we obtain a continuous family ht, t ≥ 0, of homeomorphisms such
that ht ◦ fa = fa ◦ ht+1. By expansion, this family is Cauchy, hence converges to a
map ha : O → O which commutes with fa. By applying the same construction to
h−1
0 , we conclude that ha is a homeomorphism.

Smooth versions. A C∞ smooth family may be constructed with similar prop-
erties as follows. Consider a small Euclidean (cone) neighborhood Q of (1/2, 1/2).
Instead of R̃a, use a C∞ smooth symmetric homeomorphism S̃a : Q → Q sending
(1/2, 1/2) to (1/2−a/2, 1/2) and which is the identity off Q; in suitable coordinates,
one simply mollifies a small translation. One can do this so that the differential S̃a

has singular values bounded from below by a constant independent of a. When Q
is small, the first return time to Q is large. Hence, if a is sufficiently small, there is
some iterate N such that f◦N

a is uniformly expanding.

We do not know to what extent conjugacy classes of topologically cxc maps on
manifolds contain smooth, or nearly smooth, representatives.

Question 5.1 Suppose f : S2 → S2 is topologically cxc. Is there a smooth (smooth
away from branch points, piecewise smooth, piecewise affine, . . . ) representative in
the topological conjugacy class of f?

Variation of conformal dimension

The set of postcritically finite cxc maps f : S2 → S2, up to topological conjugacy,
is countable; hence so is the set of their corresponding conformal dimensions. Given
positive integers m ≥ n, by looking at a map on a sphere induced by the map
(x, y) 7→ (mx, ny) on the torus, and snowflaking in one direction, one can produce
an example realizing the conformal dimension 1 + logm

logn .
Beyond the postcritically finite maps, the above family shows that there ex-

ist continuous, hence uncountable, families of topologically cxc maps. How might
their conformal dimensions vary? In the above family, all maps fa, a ∈ (0, 1/8)
are obstructed. For each such map, up to homotopy Γ is the only obstruction: a
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homotopically distinct obstruction Γ′ would have nontrivial geometric intersection
number with Γ, and there is always an obstruction disjoint from all other obstruc-
tions [Pil, Thm. 1]. The combinatorics of this obstruction is encoded by the matrix
(1/2 + 1/2) = (1), which is constant in a. In [HP1] it is shown that in general, the
associated snowflaked Thurston matrices as in §3 give lower bounds on the Ahlfors
regular conformal dimension (the corresponding infimum over all metric spaces of
positive and finite Hausdorff measure in their Hausdorff dimension) of the associated
metric dynamical system. As a warmup, one might try to answer the following.

Question 5.2 Does there exist a continuous, one-parameter family of obstructed
cxc maps ft : S

2 → S2, 0 ≤ t ≤ 1, such that f0, f1 are (i) not topologically conjugate,
and (ii) the sets of combinatorics of obstructions arising from f0 and from f1, as
encoded by weighted directed graphs, are distinct?
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