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Abstract—It is commonly acknowledged that in perfectly-
stirred reverberation chambers the energy density of the electric
field follows a χ2

6 law, as long as the overmoded condition applies.
This concept, never defined properly, is often confused with the
idea of a threshold on the modal density, regardless of the quality
factor of the cavity. This interpretation is here proven to be
inaccurate, as losses play a fundamental role in the nature of the
field statistics and not, as often assumed, just in its scaling. In
particular, it is shown how the overmoded condition should be
stated mathematically, highlighting how the cavity quality factor
and the number of eigenmodes excited cannot be regarded as
quantities intervening independently on the field statistics, but
should rather be considered jointly. These results are derived by
means of a modal analysis, with a limited number of assumptions.
A quantitative relationship is established between average modal
overlapping and the rate of convergence of the electric energy
density towards a χ2

6 law. Rather than setting an arbitrary
threshold on modal overlapping as a necessary condition for
an overmoded behaviour, the statistical uncertainty due to the
limited number of available field samples is shown to affect the
very definition of the overmoded condition. Numerical as well as
experimental results support our conclusions.

I. INTRODUCTION

Current use of reverberation chambers is based on a number
of commonly accepted rules. Among these, the fact that
an overmoded condition is necessary to achieve isotropy,
uniformity and depolarization of the electromagnetic field in
a test volume can be regarded as one of the most fundamen-
tal [1], [2], [3]. It is hence surprising that the study of this
condition has not received much attention: to the best of our
knowledge, no clear definition has yet been given in the field of
Electromagnetic Compatibility, even though a similar criterium
exists in acoustical reverberation chambers [4], albeit unable
to provide an assessment of the rate of convergence of field
statistics to theoretically justified asymptotic laws.

As a matter of fact, going through the literature, it appears
that the concept of an overmoded cavity is somewhat regarded
as related to a threshold value in the modal density [2]. This
likely comes from the fact that the availability of a large
number of modes resonating at the working frequency is
necessary, if the field distribution inside the cavity is to be
complex enough to behave as a random distribution under the
use of a stirring technique, e.g., by rotating an electrically large
mechanical paddle [1], [3]. To the best of our knowledge, no
study has yet clearly defined this threshold level, although the
strong ties between a high modal density and a well-stirred

cavity are known in practice [1]. A significant example of the
low interest the overmoded condition aroused in most previous
works is given in [1], where the overmoded condition is
dismissed as something seemingly trivial, fulfilled as soon as a
cavity is electrically large. Interestingly, Lehman [3] regarded
the assessment of the validity of the overmoded condition as
an open issue.

Fulfilling the requirement for an overmoded cavity allows
the use of simplified models, as the one presented in [5], based
on the description of the electromagnetic field as a continuous
plane-wave spectrum: it links in a straightforward manner the
idea of a well-stirred cavity to field statistics: an environment
where an infinite number of plane waves propagate with the
same probability along all the directions and polarizations,
implies that the electric energy density follows a χ2

6 law, as
a direct consequence of the central-limit theorem [6], [3].
Since this theoretical result is based on the assumption of
a well-stirred cavity, the limited efficiency of the stirring
technique is often regarded as the most likely source of non-
compliancy, especially in the lower frequency range, because
of the statistical correlation of contiguous stirrer positions [7].

But another potential reason of non-compliancy could come
from the inadequacy of the assumption of an infinite num-
ber of propagating plane waves (intrinsically linked to the
use of a continuous plane-wave spectrum) as this condition
is approximatively fulfilled only asymptotically. In practice,
depending on the number of resonant modes excited at the
working frequency, the number of plane waves into which the
field can be decomposed is finite, hence resulting in a non-
perfect matching between a χ2

6 probability law and what is
observed from experimental data about electric energy density.
Users of reverberation chambers widely consider that working
at frequencies above the Lowest Usable Frequency (LUF),
as defined in [8], is a sufficient condition to make a cavity
overmoded. This idea has already been proven to be incor-
rect [9], [10], as the statistical properties of the field generated
at frequencies close to the LUF can be quite different from
the ideal asymptotic case treated in most statistical models
of reverberation chambers. Nevertheless, it is well accepted
that working at frequencies well above the LUF ensures an
overmoded condition.

All these results point to the fact that the occurrence of
a non-compliancy at high frequency is unlikely, as both the
modal density and the stirrer efficiency are expected to be high.
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These facts seem to support again the idea that the overmoded
condition is linked to a threshold in the modal density, without
taking into account the role of losses. Losses are merely
included a posteriori, when computing the efficiency of a
cavity in converting an input power into a high-intensity field.
An exception is the analysis of how increasingly high losses
impact statistical uniformity, presented in [11], where the
requirement for a minimum quality factor was investigated. In
this paper, we deal with configurations that are on the other
end of the scale: as a matter of fact, the reverberation chamber
will always be assumed to be highly resonant, with a quality
factor much higher than one, typically several hundredths.
Additional losses will always be assumed only to affect the
relative bandwidth of resonant modes, with no influence on
the way resonances are established.

Under these conditions, experimental data have been pre-
sented in [12], [13], [14], [15], providing clear clues that the
overmoded condition is actually not based on a threshold level
for the modal density and that losses can have a beneficial
impact on field statistics [12], [13]. A similar conclusion
was also suggested in a study based on a canonical modal
representation [16], though the lack of an analytic approach
hindered the development of predictive/design tools; moreover,
the possibility of non-compliancy above the LUF was not
pointed out. Indeed in [14], [15], no doubt could subsist
about the stirrer efficiency at those frequencies where the
field statistics was shown not to comply with the asymptotic
probability laws predicted by continuous plane-wave spectrum
models, especially because they occurred over a small subset
of scattered frequencies.

This gives room to the idea that the overmoded condition
is not just a matter of having a large number of modes and
an ideally perfect stirrer. An eventual role of losses in field
statistics would also cast some doubts on the often invoked
idea of unstirred components. As soon as field statistics do
not comply with asymptotic ones, this is regarded as due to
a bad stirring. The results shown in this paper prove that
statistical non-compliance can also be explained by a weak
modal overlapping, even though a perfect stirring is assumed
and a large number of resonant modes are potentially available.

This paper proposes a theoretical analysis linking in a
formal way the statistical properties of the electromagnetic
field within a reverberation chamber and two of its most
important quantities: the composite quality factor and the
number of modes excited at the working frequency. It will be
shown that losses must be included into modal representations,
in order to derive a meaningful statistical analysis of the
field within a reverberation chamber. A modal approach is
employed to this effect, staging a finite number of resonant
modes excited at a given frequency. We will not address the
question of statistical uniformity, but rather that of statistical
convergence for the electric energy density measured at a given
position.

The paper is organized as follows: Section II recalls the ba-
sics of modal analysis as derived for metallic enclosures; some
important notations and concepts are introduced for the benefit
of the derivations presented in the rest of the paper. Section III
makes use of this modal representation, applying the concept

of statistical excitation of the chamber, in order to derive the
standardized variance of the electric energy density. Following
these results, it is shown how the composite quality factor and
the modal density of the chamber impact field statistics, and
in particular the fact that the theoretical asymptotic behaviour
predicted in [5] can be disproved. This leads to a quantitative
definition of the overmoded condition in Section IV, as the one
ensuring a limited error with respect to asymptotic statistics.
Section V then seeks to assess how this deviation affects
the probability of rejection in goodness-of-fit tests on field
samples. This is achieved by means of numerical simulations
based on the proposed modal representation. Experimental
results are then presented in Section VI to check the validity
of these ideas.

II. MODAL REPRESENTATION AND NOTATIONS

As we are interested in the statistical properties of the
field excited within a cavity, we will make use of a modal
representation, being an effective tool to this effect. We shall
thus express the electric field as follows [17], [18]

E(r, f) =

∞∑
i=1

γi(f)ei(r, f)ψi(f) , (1)

where r is the position at which the field is being observed and
f the working frequency for a harmonic excitation. Three sets
of modal quantities are involved in (1): 1) the modal weights
{γi(f)}, which depend only on frequency for a given config-
uration of the excitation sources; 2) the modal topographies
{ei(r, f)} describing the spatial dependence of the field for
each mode and 3) the frequency responses {ψi(f)} of the res-
onant modes. The computation of the modal weights requires
a precise knowledge of the modal topographies {ei(r, f)} as
the former are obtained by projecting the equivalent current
distribution of the sources over the modal topographies [17].

As rightfully recalled in [2], though this approach is exact,
in practice it is hardly usable, as the computation of the
modal topographies comes, apart for canonical configurations,
as a computational burden for most numerical codes. This
notwithstanding, the modal approach allows deriving some
fundamental results, as will be proven here. To this end, a
number of simplifications are required, enforced on three sets
of modal parameters.

Let us recall that the {ψi(f)} represent the responses of
second-order systems, defined as follows

ψi(f) =
f

f2i (1 + j/2Qi)2 − f2
, (2)

where fi is the resonance frequency of the i-th mode and Qi its
quality factor. The first set of modal parameters is thus given
by the {fi}. For the sake of simplicity, it is often assumed
that the quality factors are equal for all the modes close to the
frequency of analysis, approximating them with a composite
quality factor [19]. This is, clearly, not physical, as the losses
of each mode strongly depend on the field topography, a
well-known fact in waveguide theory [17]; nevertheless, this
approximation is usually capable of capturing the behaviour
of a cavity and we will make use of a modified version in
Appendix A.
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Fig. 1. A graphical depiction of the modal decomposition of a random
realization of the electric field and some of the notations used. The dots
represent the level of contribution of the three modes dominating the field at
the working frequency f .

We will limit our analysis to a generic position r. Introduc-
ing the following factorization for the modal topographies

ei(r, f) = ei(r, f)ξ̂i(r, f) , (3)

we can hence restate (1) as

E(r, f) =
∞∑
i=1

γ̃i(r, f)ψi(f)ξ̂i(r, f) , (4)

having introduced the equivalent weights

γ̃i(r, f) = γi(f)ei(r, f) . (5)

The second set of parameters is given by the modal weights
{γ̃i}, while the modal polarizations {ξ̂i} are the third and last
set of parameters that we will consider.

The use of (4) allows studying field statistics in a simple
way, as soon as the three modal parameter sets are treated as
random variables. This approach is often used when studying
the asymptotic properties of complex systems, as in [5], a com-
mon practice in statistical mechanics. Under this paradigm, (4)
is entirely defined by the three sets of modal parameters {γ̃i},
{fi}, {ξ̂i} and the composite quality factor Q.

Recalling that the contribution of each mode is weighted by
its frequency response {ψi(f)}, the influence of each mode
is localized around each resonance frequency fi, as shown
in Fig. 1. The extent of the influence of each mode is set by
its quality factor Qi, as the mode can be effectively excited
only for working frequencies at most at a distance |fi − f | <
BM,i from the resonance frequency. The distance BM,i is the
bandwidth covered by each mode, from its peak at fi, to a
reduction of a factor ρ. Typical values of ρ are −3 dB and
−10 dB. For the case of ρ = −3 dB,

BM,i =
fi
Qi

, (6)

a result that will be used later.
As we will show, the introduction of the bandwidths BM,i

is not necessary, nor the definition of a level ρ; nevertheless,
this approach simplifies the mathematical derivation, while
effectively pointing out that it is not necessary to carry out
the sum in (4) over all of the modes, but just over a reduced
subset M

M = {i : |ψi(f)| > ρ|ψi(fi)|} , (7)

where ρ is chosen in order to give a significant contribution
from the modes. Hence, (4) is limited to a number of modes
M = #M , i.e., the cardinality of M , spanning a frequency
bandwidth Be

Be = max
i∈M

BM,i , (8)

hereafter referred to as the equivalent bandwidth of the re-
verberation chamber. This concept will be shown to play an
important role, as it accounts for the fact that a harmonic
signal excites a number of modes that are to be found over
this bandwidth. These concepts are illustrated in Fig. 1, for a
random realization of (1).

III. STATISTICAL MODAL ANALYSIS

Following the previous discussions, we will consider the
simplified model in (9) as the reference for our statistical
analysis

E =
∑
i∈M

γ̃iψiξ̂i , (9)

where the indexes i now span the set M , and having dropped
the spatial and frequency dependencies, as our analysis will
deal with the field statistics at one specific position and
frequency at a time.

We focus our analysis on electric energy density

W (r, f) = ϵ0∥E(r, f)∥2 , (10)

where ϵ0 is the dielectric constant for the medium filling
the cavity, and the electric field is expressed in root-mean-
square units. The model proposed in (9) is fit for studying
any quantity related to the electric field. The rationale for
choosing the electric energy density lies in its asymptotic
convergence to a six-degree-of-freedom chi-square law, thus
with a standardized variance equal to 1/3, as opposed to the
squared amplitude of Cartesian components (directly related to
the received power for polarized electrically small antennas,
such as dipoles) which follow a two-degree chi-square law,
with a standardized variance equal to 1. Although this has
no impact from a theoretical point of view, it makes a big
difference in practice, as the statistical uncertainty affecting
moments estimated from a finite sample population is directly
dependent on the relative statistical dispersion of the samples,
as recalled in Appendix B. The experimental results presented
in Section VI, dealing with the electric energy density, are
indeed already affected by a non-negligible statistical uncer-
tainty; use of single Cartesian components of the electric field
would have resulted in a even higher uncertainty.

The average spatial uniformity properties of W can be
obtained straightforwardly from a continuous modal repre-
sentation, as done in [5], where it is proven that W follows
a six-degree-of-freedom chi-squared probability law, or χ2

6.
Although such approach allows to understand and explain
in a simple way some of the most important properties of
reverberation chambers, it is incapable of providing results but
for asymptotic conditions. As such, it cannot explain why field
statistics can deviate from the asymptotic χ2

6 probability law
in practical scenarios, where the electromagnetic field within
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a reverberation chamber is given by a discrete plane-wave
spectrum.

Let us now consider (9) under a similar statistical viewpoint.
We will consider the three sets of modal parameters as random
variables. The main assumptions required are that: 1) the
modal parameters of different sets are independent and 2) the
parameters within the same set are independent and identically
distributed (iid). Recalling the physical meaning of these
parameters, it is clear that they are not independent, as they are
all related to the position and spatial distribution of the sources.
Nevertheless this approach is commonly regarded as sound,
and it is the foundation for statistical analysis for reverberation
chambers [2].

The modal weights will be regarded as defined by an iid
real and imaginary part

γ̃i = αi + jβi . (11)

No specific assumption is required on the type of law followed
by the {αi} and {βi}. We define

µn = E [|γ̃i|n] , (12)

as the n-th order moment of the modulus of the modal weights
{γi}. These moments are identical for all the modal weights,
following the iid assumption for the modal quantities.

The modal polarizations {ξ̂i} will be considered as uni-
formly distributed over a 4π-steradian angle, as done in [5], so
that all polarizations are equally likely. Resonance frequencies
will be assumed to be distributed uniformly over a bandwidth
Be around the working frequency f . These are best-case
assumptions, as they imply that a perfect stirring is available.
Indeed, in order to meet these requirements, the stirring
technique must be capable of providing perfectly uncorrelated
samples, following exactly the same probability law. Hence,
the following results are not only non-conservative, but rather
optimistic, and they should be regarded as lower-bounds for
any use in error estimation. Such choices are meant to model
a perfect stirring technique, where for each random realization
the frequencies of resonance of the cavity will be modified,
with equal probability of finding them over the bandwidth Be.

Actually, the probability density function for the {fi} should
account for the fact that the probability of finding a resonance
at a given frequency increases with the modal density of the
cavity. As the modal density is not linear with frequency [2],
resonance frequencies cannot, in general, be distributed uni-
formly. But as long as the bandwidth Be over which the
{fi} are observed is small enough (highly-resonant cavity),
the distribution can indeed be approximated as uniform. The
actual problem with the use of simple probability density
functions is that the phenomenon of mode clustering cannot be
modelled properly. For the sake of simplicity this is going to
be neglected in the remainder of this paper; again, this implies
that we are setting our analysis in a best-case configuration,
as mode clustering, would yield a stronger deviation from
asymptotic results.

Modelling the {fi} as random variables leads to having
{ψi(f)} behaving as random functions. Subsequent analysis
will show that their squared modulus play a central role.

Hence, we introduce the moments

νn = E [|ψi(f)|n] , (13)

which, for n = 2, represent the average power of the
modes, and it accounts for how effectively they are made to
resonate on average, as their frequencies of resonance {fi}
are randomly scattered around the working frequency f . This
should be regarded as a sort of available power, as the actual
amount of power in the modes depends on the modal weights
γ̃i. At the same time, ν22 summarizes how power is shared
among the different modes. Indeed the average mutual power
shared by two any modes is

E
[
|ψ⋆

i (f)ψj(f)|2
]
= E

[
|ψi(f)|2

]
E
[
|ψj(f)|2

]
= ν22 ,

(14)
recalling the independence assumption for the resonance fre-
quencies {fi}. As mutual power is a measure of the overlap-
ping of the modes, it has an important place in field statistics.

Let us now consider (10). By introducing the Cartesian unit
vectors ûk, the electric energy density W can be written as

W = ϵ0

3∑
k=1

|E · ûk|2 . (15)

Following (9)

W = ϵ0

3∑
k=1

∣∣∣∣∣ûk ·
∑
i∈M

γ̃iψξ̂i

∣∣∣∣∣
2

= ϵ0

3∑
k=1

{∑
i∈M

|γ̃i|2|ψi|2|ξ̂i · ûk|2 +

+
∑
i∈M

∑
j∈M ,j ̸=i

γ̃iγ̃
⋆
jψiψ

⋆
j (ξ̂i · ûk)(ξ̂

⋆

j · ûk)

}
(16)

which can be restated as

W = ϵ0
∑
i∈M

|γ̃i|2|ψi|2 +

+ ϵ0
∑
i∈M

∑
j∈M ,j ̸=i

γ̃iγ̃
⋆
jψiψ

⋆
j

3∑
k=1

(ξ̂i · ûk)(ξ̂
⋆

j · ûk)(17)

recalling that
3∑

k=1

|ξ̂i · ûk|2 = ∥ξ̂i∥2 = 1 . (18)

This model can be used in order to study the actual
role of losses in electric energy density statistics. To this
end, we propose to compute the first two moments of the
electric energy density, and to check under what conditions
the standardized variance converges to the theoretical results
recalled in [1], [2].

The average electric energy density can be computed by tak-
ing the ensemble average of (17). Recalling the assumption of
independence between the modal weights and the frequencies
of resonance, as well as the fact that the modal weights are
iid random variables, we get

E [W ] = ϵ0Mµ2ν2 , (19)
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having applied (12) and (13).
Getting on with the computation of the variance of the

electric energy density, by squaring (17) and proceeding again
by separating the coherent and incoherent parts of the sum,
yields

E
[
W 2
]

= ϵ20Mµ4ν4 +

+ ϵ20M(M − 1)µ2
2ν

2
2

(
1 +

+ E

[∣∣∣ 3∑
k=1

(ξ̂i · ûk)(ξ̂
⋆

j · ûk)
∣∣∣2]) (20)

The ensemble average in (20) can be simplified taking note
of

3∑
k=1

(ξ̂i · ûk)(ξ̂
⋆

j · ûk) = ξ̂i · ξ̂
⋆

j (21)

and since
E
[
|ξ̂i · ξ̂

⋆

j |2
]
=

1

3
∀ i ̸= j , (22)

equation (20) can be expressed as

E
[
W 2
]
= ϵ20Mµ4ν4 +

4

3
ϵ20M(M − 1)µ2

2ν
2
2 , (23)

so that the standardized variance is given by(
σ

µ

)2

W

=
E
[
W 2
]

(E [W ])2
− 1 =

1

M

µ4

µ2
2

ν4
ν22

+
M − 4

3M
. (24)

Based on the results demonstrated in Appendix A, the fol-
lowing result holds for Q≫ 1 (meaning several hundredths)

ν4
ν22

≃ Be

π

Q

f
, (25)

where Q is the composite quality factor of the cavity. Attention
should be paid about the fact that the definition of this com-
posite quality factor is not the same currently used in EMC,
i.e., as defined in [8], [2]. In fact, this considers the average
efficiency of a reverberation chamber in converting an input
power into an electric energy density. This efficiency being
based on the notion of average electric energy density over
the test volume, it is not suitable for statistical convergence
at a specific position. We rather deal with the average time
constant of the cavity at a given point. Hence, it is a function
of frequency and position, with a non-smooth behaviour in
these variables, presenting a large dynamics of values. The
notion of average is thus applied to the Qi of the dominant
modes at the working frequency f .

From (25)(
σ

µ

)2

W

=
1

π

µ4

µ2
2

Be

M

Q

f
+
M − 4

3M
. (26)

As we anticipated in the beginning of this Section, the
definition of Be is redundant. As a matter of fact, (26) is
approximated as long as we limit the sum in (9) to a finite
number of modes around the working frequency. We should
rather consider a level ρ → 0, leading to Be → ∞ and, as
a consequence, M → ∞, i.e., let all the modes intervene.
Clearly, this implies an increasing number of modes involved

in (9), but with a level of energy getting lower as their
frequency of resonance gets further away from the working
frequency f . This is not in contradiction with our derivation,
as this fact is accounted for by the νn moments. The use of
the limit is valid as long as Q is high enough to have the
dominant modes confined into a narrow bandwidth around f ,
so that the idea of composite Q is still physically acceptable.

Under these conditions, we can introduce the standardized
variance ς2W of the electric energy density, taking the limit
of (26) as

ς2W = lim
ρ→0

(
σ

µ

)2

W

=
1

3
+

1

π

µ4

µ2
2

lim
M→∞

Be

M

Q

f
. (27)

Since for Q≫ 1

lim
M→∞

Be

M
=

1

m(f)
, (28)

where m(f) is the modal density, expressed in Hz−1. Equation
(27) can now be written as

ς2W =
1

3
+

1

π

µ4

µ2
2

1

MM
. (29)

If a resonant mode were centered on f , thus with a −3 dB
bandwidth B3dB = f/Q, then MM = m(f)B3dB would be
equal to the number of modes found on average within this
bandwidth. In other words, MM assesses how strongly the
modes overlap on average.

IV. ON THE OVERMODED CONDITION

The result in (29) must be capable of predicting the asymp-
totic results expected from the theoretical and experimental
analyses presented in [5], [20]. This is the case, as

lim
MM→∞

ς2W =
1

3
, (30)

which is the result expected for a χ2
6 probability distribution

law [6]. Hereafter, we will refer to this asymptotic value as
ς2
χ2
6
.

This asymptotic result is met only when the number of over-
lapped modes increases, as opposed to common understanding,
where modal density is regarded as the actual dominating
parameter. This points to the true conditions that must be
enacted for the cavity to be overmoded: requiring a large
number of resonant modes is a necessary but not sufficient
condition, as long as they are not overlapped. As this last
event is tightly linked to the bandwidth of the mode response,
the overmoded condition is strongly dependent on the losses
experienced in the reverberation chamber.

The roles of the modal density and the composite quality
factor Q are clarified by Fig. 2, where the standardized
variance of the electric energy density ς2W predicted by (29)
is plotted against a varying modal density and quality factor.
These results show how the idea of the overmoded region
as a threshold condition could be easily thought as a correct
definition, since increasing the modal density ultimately leads
to an asymptotic convergence to the standardized variance
expected for a χ2

6 law, i.e., the value 1/3.
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Fig. 2. The standardized variance predicted by (29), for a varying modal
density and composite quality factor. A working frequency f = 1 GHz was
assumed.

It is noteworthy that common understanding looks at modal
density and frequency as being univocally related: this wrong
interpretation has likely originated because of the use of
Weyl’s formula [2], a smooth approximation not accounting
for mode clusters. Actually, modal density broadly increases
with frequency, but it can locally decrease or increase with
respect to the smooth behaviour predicted by Weyl’s formula,
resulting in a non-monotonous function of frequency.

Fig. 2 also shows that an increasing modal density is not
the only way of achieving the convergence in (30), since for a
given modal density a relatively small increase of losses also
leads to convergence.

This phenomenon is not new: in acoustics, this idea is
expressed by Schroeder frequency [4], as the minimum fre-
quency for which three modes are overlapped within their
−3 dB bandwidth. The problem is that this definition is
arbitrary and unable to quantify how strongly the actual elec-
tric energy density statistics will diverge from the asymptotic
results obtained for an infinite number of resonating modes.

As opposed to this approach, we consider the relative error
ϵς2 between the result predicted by (29) and the asymptotic
one

ϵς2 =
ς2W − ς2

χ2
6

ς2
χ2
6

=
3

π

µ4

µ2
2

1

MM
. (31)

The ratio µ4/µ
2
2 is related to the kurtosis κ of the real (or

imaginary) part of the modal weights as

µ4

µ2
2

=
1

2
(κ+ 1) . (32)

In order to compute this error, we need to make some
assumptions on the type of probability law followed by
the modal weights. Although not justified by any physical
phenomenon, they are usually assumed to be normally dis-
tributed [5]. Adopting this same approach µ4/µ

2
2 = 2, yielding

ϵς2 =
6

π

1

MM
. (33)

The ratio µ4/µ
2
2 would not change much with the probability

distribution law; e.g., for the case of uniformly distributed
modal weights µ4/µ

2
2 = 7/5.

The relationship between MM and the divergence from the
asymptotic law is actually intuitive. Chi-squared laws are a
direct consequence of the central-limit theorem, as recalled
in [3], a condition approached as the number of degrees of
freedom increases. For a cavity, modal representations provide
a clear insight, as the number of degrees of freedom is just
the number of modes effectively resonating (on average) at the
working frequency. Clearly, this requires a potentially high
number of modes (modal density), but also the possibility
to make them resonate at the working frequency: this is
directly dependent on the average quality factor of the modes,
the dominant parameter for making a mode accessible when
working at a frequency not equal to the one at which it
resonates. The merit of (33) is that it provides a quantitative
formula, indispensable in order to give a meaningful definition
of the overmoded condition.

Indeed, (33) clearly shows that the overmoded condition is
not given by a universal threshold, but rather dependent on the
admissible error on the standardized variance. This topic will
be the object of a more detailed discussion in Section V. If
we consider a 10 % error ϵς2 on the standardized variance
as acceptable, then at least about 20 modes must overlap
within their average −3 dB bandwidth, centered around the
working frequency. A quick computation allows to check that
this condition if often not met in unloaded chambers, unless
the working frequency is conspicuously higher than the (LUF).
Experimental results supporting this claim are presented in
Section VI.

These conclusions are coherent with the findings reported
in [9], where it was shown that testing against the need of χ2

distribution laws, the minimum frequency for which the test
is passed can be higher than the conventional LUF derived
by applying the standard [8]. In a similar way, experimental
results such as those presented in [15] go in this direction:
they showed that by applying goodness-of-fit tests to the
samples collected in what was considered as an overmoded
cavity (in the sense of standard [8]), the test would fail for
certain frequencies. This implied that the overmoded condition
is not ensured by passing a threshold value, but that it depends
more finely on the properties of the cavity at each frequency.
Indeed, considering the paradigm we have introduced in this
Section, the well-known fact that the composite quality factor
of a cavity follows a frequency trend far from being smooth,
implies that at frequencies where the quality factor increases,
the probability of not passing a goodness-of-fit test can be
expected to be higher. This conclusion is clearly submitted
to the joint variation of the modal density and the composite
quality factor, as the two can compensate each other.

The way (33) is defined implies that a high modal density
can be a sufficient condition, when it goes to infinity, as
required in asymptotic models [5]. But it also proves that for a
given maximum error, the same statistical compliancy can be
attained by controlling the losses within the cavity. As most of
the time the modal density is not a design parameter, (33) can
play an important role in the design of reverberation chambers.
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The attentive Reader should avoid thinking that (33) implies
that increasing losses is a certain and good solution to the
limitations of reverberation chambers. From an energetic point
of view, increasing losses is obviously a non-desirable policy,
as it would impair the ability of a reverberation chamber in
efficiently generating a high-level electromagnetic field.

But at the same time, as demonstrated in Section VI,
increasing losses provide some benefits, speeding up the con-
vergence towards an asymptotic chi-square law. This notwith-
standing, (33) holds true as long as modal-weight statistics
and modal density can be regarded as unaffected by increased
losses. Such condition is realistic if losses have a perturbative
effect, implying a relatively small increase. Actually, this
scenario occurs and is of interest in practice, as the inclusion
of lossy EUTs within a reverberation chamber affects the
statistics of the field the latter generates. The availability of a
theory capable of predicting how the field statistics is modified
should come of use in understanding under what conditions
the behaviour of an unloaded chamber is not too sensitive to
the inclusion of EUTs. This clearly is a matter of practical
concern.

As opposed to the case of a perturbative effect, it has been
highlighted how a strong increase in losses has a negative
impact on field statistics, as in [21]. It is noteworthy that in
that study the quality factor was reduced by a factor up to ten,
thus strongly modifying the reverberation chamber behaviour,
whose relationship with the unloaded configuration should
be questioned. Again, our analysis is incapable of predicting
how a strong reduction of the quality factor affects the modal
description of a cavity, so that this type of effects are out of
the scope of our work.

Attention should be paid to the fact that our analysis is
optimistic, as it is based on the assumption that the stirrer
technique be capable of ensuring that all the dominant modes
will have the same probability to span the −3 dB bandwidth
around the working frequency. This means that in the case of
mode clustering, the actual number of modes required might
be higher.

V. RELATIONSHIP WITH PROBABILITY-LAW TESTING

The results presented so far assess the deviation from a χ2
6

law focusing on the standardized variance. Although this is
a meaningful measure of statistical compliance, it is known
from the “moment problem” that two probability laws can
be expected to be identical only if all their moments are
identical [22]. Hence, from a theoretical point of view, we
cannot draw any conclusion on how close the empirical and
asymptotic laws are, unless all of their moments were avail-
able. Our analysis is limited to the first two moments of the
electric energy density; as the estimation of higher moments
from experimental data is a critical issue [6], we regarded
such approach as practically unfeasible, as the resulting higher
moments would be overwhelmed by statistical uncertainty.

It is nevertheless fundamental to have a clue about how
good (33) is as an estimator of the deviation of the entire
probability law. As the actual (opposed to the asymptotic)
probability distribution law of W cannot be expressed in
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Fig. 3. Scatter plots representing the close relationship existing between
the standardized variance of W and Kolmogorov-Smirnov statistics DKS .
The model (9) was employed with three different values for the quality
factor (300, 1000 and 3000), for 200 values of modal density, spanning
the range from 10−6 Hz−1 to 10−4 Hz−1. For each configuration, 100
independent samples (left column) or 500 independent samples (right column)
were generated, from which the relative error ϵς2 on the standardized variance
and Kilmogorov-Smirnov statistics DKS were computed, and plotted as an
individual point. All results have been computed for a working frequency
f = 1 GHz. Dashed lines represent the threshold associated to Kilmogorov-
Smirnov test, for accepting the null hypothesis of a χ2

6 distribution law with
a 95 % confidence margin.

closed-form, the link between these two quantities must be as-
certained directly studying the electric energy density of field
samples. To this end, we have used (9), generating random
values for the three modal parameter sets (as introduced in
Section III), obtaining a population of random samples for
the electric energy density W , as generated within a per-
fectly stirred cavity. This allowed us to estimate two different
pieces of information: 1) the standardized variance and 2)
the standardized empirical distribution function FW (W ) of
W . From the latter we computed the Kolmogorov-Smirnov
statistic DKS , defined as [23]

DKS = max
W

∣∣∣FW (W )− Fχ2
6
(W )

∣∣∣ , (34)
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Fig. 4. Numerical data generated by (9), from 500-sample populations (as
in Fig. 3), and the approximation (36) obtained by means of a least-squared
linear regression (solid line).

where Fχ2
6
(W ) is the standardized probability distribution

function of the asymptotic χ2
6 law. Standardization of random

variables, and hence of their associated probability distribu-
tions, is a necessary step, in order to apply goodness-of-fit tests
in a meaningful way, as the reference asymptotic distribution
moments are not known and configuration-dependent.

The correlation between ϵς2 and DKS was investigated by
means of scatter plots, as those shown in Fig. 3. These results
show unmistakably that the Kolmogorv-Smirnov statistics is
tightly related to the error on the standardized variance. The
parametric analysis in Fig. 3 proves that an increasing Q
leads to a stronger deviation from the asymptotic χ2

6 law.
The scatter plots are actually parametric curves in the variable
MM , as pointed out in Fig. 3, rather than directly dependent
on variables m, f and Q. Hence, the results in Fig. 3 are not
valid only for a specific configuration, but in general.

The fact that the points in Fig. 3 rather than laying on
a curve are scattered should not be interpreted as a hint of
a partial correlation between DKS and ϵς2 : as a matter of
fact, these two quantities have been estimated from a finite
population, implying that these estimators are affected by
residual statistical uncertainty (see Appendix B). As a matter
of fact, increasing the population from 100 to 500 samples
shows a substantial reduction in the uncertainty of the data
correlation. Hence, we think that the variance error ϵς2 could
be used for assessing the deviation of the entire distribution
law, although it only brings information about the first two
moments of W . The accuracy of this approach is clearly
dependent on the number of available samples.

In any case, the strong link between Kolmogorov-Smirnov
statistics and the standardized variance error validates the idea
of using (33) for predicting how changing losses would affect
the statistical behaviour of a reverberation chamber, thus ex-
tending the purpose of (33) from an analysis tool for meaning-
ful physical understanding, to potentially a prediction/design
tool for practically ensuring the statistical compliance of a
reverberation chamber.

The hypothesis of statistical compliance is based on the

validity of the following condition [23]
√
NDKS < Kα , (35)

where N is the number of independent field samples and Kα

is a threshold value for a significance level equal to α. Typical
values of Kα for α = 0.05 are about 1.15. This means that
for N > 100, the most important region in Fig. 3 is for ϵς2 .
150 %, where the correlation between ϵς2 and DKS is close to
linear. As establishing a closed-form expression linking these
two quantities is likely difficult, we have rather opted for a
simple linear regression model

DKS ≃ η1 + η2ϵς2 ϵς2 ≥ 0 , (36)

which is valid only for ϵς2 . 250 %. The regression param-
eters η1 = 2.6 · 10−2 and η2 = 6.5 · 10−2 refer to the model
showed in Fig. 4.

Plugging (36) into (35) yields the maximum acceptable error
ϵmax ensuring statistical compliance

ϵς2 < ϵmax
Kα

η2
√
N

− η1
η2

. (37)

Apart as a tool for checking the statistical compliance of a
reverberation chamber, (37) is also important in the definition
of the overmoded condition. As a matter of fact (37) states that
in order to pass Kolmogorov-Smirnov test, it is not necessary
to have a negligible error on the standardized variance. The
actual upper-bound ϵmax to apply to ϵς2 can be quite high,
as the number of samples N decreases. This does not mean
that the conclusions in Section IV are incorrect: as a matter
of fact, this higher threshold just accounts for the fact that
the true ϵς2 is not known, having been estimated from a finite
population. Hence, it is pointless to try to enforce a condition
on ϵς2 stronger than the precision with which this quantity is
known.

As an example, using the data shown in Fig. 3, a 500-sample
population would require a relative error ϵς2 < 39 % in order
to accept the hypothesis of an electric energy density following
the asymptotic chi-square distribution. Applying (33), this
maximum error threshold is translated into a need for about
5 overlapped modes, a result well looser than the 20 modes
required by setting a 10 % error on the standardized vari-
ance. As a consequence, the definition of overmoded region
cannot be dissociated from the statistical uncertainty that is
inevitably present when dealing with estimators based on a
finite population of random samples. In other words, it is not
statistically meaningful to set a general and arbitrary threshold
on the number of overlapped modes MM .

Equation (37) can also be used for designing additional
losses aiming at improving the statistics of the electric energy
density. Given a working frequency f and an estimate of the
modal density m, and computing from (37) the maximum
error ϵmax leading to passing the Kolmogorov-Smirnov test, a
maximum composite quality factor Qmax is found

Qmax =
π

6
mfϵmax . (38)

Considering a lower Q would be pointless, as the improve-
ment on statistics would be undetectable, due to unavoidable
statistical uncertainty, while field-strength would degrade.
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Fig. 5. Scatter plots of DKS and ϵς2 as derived from experimental data for
the case of the empty and absorber-loaded chamber. The samples are related
to the entire frequency range 0.7-3 GHz.

These discussions clearly hold as long as (9) is physically
sound, i.e., as additional losses have a perturbative effect on
the field within the cavity. An experimental validation of this
model is presented in the next Section.

VI. EXPERIMENTAL RESULTS

In order to validate our findings, experimental tests were
carried out in Supelec’s reverberation chamber. This cavity,
measuring 13.3 m3, and equipped with a 100-step mechanical
stirrer, has its LUF around 550 MHz. In our setup, a log-
periodic dipole antenna was used as a source exciting the
cavity, over the frequency range 0.7-3 GHz. An optical-link
field probe was used in order to collect data about the three
field components at one position within the test volume of the
chamber, while the stirrer was made to move over its entire
range of rotation.

This approach was used for two configurations, for an empty
cavity and with a small piece of RF absorber, made up of 4
pyramids about 30 cm high, standing in the center of the floor
of the cavity. As the field probe used was phase sensitive,
we were able to compute the composite quality factor for
the cavity over the entire frequency range of test, by post-
processing the frequency-spectrum data in time domain (see
Fig. 6).

The field samples were used in order to compute the electric
energy density samples. The same procedure exposed in the
previous Section was then applied: the aim was to check
whether the same correlation between DKS and ϵς2 was to
be found in practice. The results of this analysis, shown in
Fig. 5, confirm those presented in Fig. 3. As the number of
steps is limited to 100, the statistical uncertainty associated
to the estimations of ϵς2 and DKS is not negligible, as
already discussed in the previous Section and detailed in
Appendix B. Moreover, the actual number of independent
samples generated by the mechanical stirrer is frequency-
dependent, going from about 30 around 700 MHz, to about 100
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Fig. 6. Quality factors for the empty and loaded chambers. The smooth
curves represent the loose majorants used for deriving the maximum-error
results in Fig. 7.

at 3 GHz, thus leading to an even higher statistical uncertainty
in the lower frequency range.

Having validated the close relationship between DKS and
ϵς2 , we went further in our validation by focusing on the
relative error ϵς2 . The next step was to look at how well (33)
allows to predict the maximum deviation of the standardized
variance, knowing a fair estimate of the modal density and the
composite quality factor of a reverberation chamber. Though
the latter can be estimated by means of measurements, modal
density is not something that is routinely measured, although
a solution to this problem has recently been proposed [24].
In the context of this paper, we have stuck to the current
approach consisting in using Weyl’s approximation, and we
have considered the simplest of Weyl’s formulas [2]

m(f) ≃ 8πV f2

c3
. (39)

With no access to a precise estimate of modal density, any
attempt at finely predicting the standardized deviation error is
bound to an error that cannot be estimated easily. For this
reason we rather focused on the ability to provide results
bounding the error, and thus capable of giving a warning about
the global trend of ϵς2 over a given frequency range. Following
this point of view, rather than using the quality factor estimate
obtained from experimental characterization of our chamber,
we considered a smooth majoring curve. The rationale behind
this approach is that, according to (33), the maximum error
occurs when a minimum number of overlapped modes is
present, which in turn occurs when the ratio of the modal
density and the composite quality factor is at a minimum.
The use of a smooth curve is justified by our interest in the
trend of the error, and not its fine modelling. Furthermore, the
information available on the quality factor is often provided
by simple predictive models [2], particularly during a design
phase.

Fig. 6 shows that we did not use a true majorant. The
reason for this is that it would have provided too conservative
results, as a few points higher than average can lead to a
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Fig. 7. Experimentally estimated relative error ϵς2 as a function of frequency:
(a) for the empty cavity and (b) for the one loaded with the small absorber.
The results from (33) have been computed from the smooth curves majoring
the composite Q derived from the experimental data and shown in Fig. 6.
Shaded areas stand for the 95 % statistical uncertainty of the estimated ϵς2 ,
computed for a 95 % confidence margin as shown in Appendix B.

strong overestimation of Q. The approximations we employed
were chosen as a compromise between the need of a majoring
curve and that of not considering a too strongly overestimated
quality factor. As a consequence, for certain frequencies the
relative error ϵς2 can be higher than the estimated upper bound.
This outcome can also be caused by modal depletion, whose
frequencies of occurrence are unknown.

From these data and (39) we computed the curves shown
in Fig. 7, predicting the maximum deviation of the electric
energy density from the asymptotic chi-square law. The actual
error ϵς2 was directly estimated from the experimental data.
The statistical uncertainty associated to these results has been
estimated with a 95 % confidence margin as detailed in
Appendix B, and is shown in Fig. 7 as shaded areas.

Fig. 7 proves that (33) is indeed capable of predicting the
trend of the maximum ϵς2 , as the composite quality factor
and the modal density evolve in frequency, and this for two
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Fig. 8. Estimated average number of overlapped modes MM , for the
unloaded and loaded configurations.

chamber configurations. The comparison between the error ϵς2
in the case of the empty and loaded chamber is especially
interesting as it is clear that the results predicted by (33) are
indeed closely following the global trend of the maximum
deviation of the statistics of the electric energy density. These
results also prove that (33) can be used in practice as a
design tool, as the majorant of the error computed in the
case of inclusion of additional losses correctly predicts the
improvement in the worst-case statistical performance of the
loaded cavity.

follow a χ2
6 distribution law, a residual statistical uncertainty

would be present.
The statistical uncertainty cannot be neglected, as it is the

main reason for the residual error at the higher frequency
range. The procedure proposed in Appendix B allows esti-
mating a residual error of about 46 % on ϵς2 , even though
this latter is expected to be close to zero. This result is
independent of the proposed model, and merely based on
statistical considerations. This statistical uncertainty, present
even when then reverberation chamber is expected to behave
ideally, is the reason of existence of the ambiguity in the
definition of the overmoded condition. It is meaningless to
require an error ϵς2 smaller than this statistical uncertainty,
as the former cannot be measured precisely enough. It is
interesting to notice that this statistical uncertainty appears to
be smaller than the threshold imposed by (37) for accepting
the asymptotic condition (and thus the overmoded condition),
as it would be expected, since they are intimately related.

Looking at the ϵς2 estimated from measurements, there exist
a lower frequency for which the error seems not to reduce
anymore. This frequency is about 2 GHz and 1.5 GHz for,
respectively, the empty and loaded chambers. It is worthwhile
checking what is the number of overlapped modes MM at
these frequencies. An estimate of MM is shown in Fig. 8,
based on the experimentally evaluated composite quality fac-
tors and the modal density given by (39). For the two frequen-
cies previously mentioned, it seems that a minimum number
of 10 overlapped modes is required, in order to have the
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better performance possible, according to the limited accuracy
provided by the residual statistical uncertainty. These results
are actually too restrictive, as a more statistically motivated
choice would make use of (37), obtaining 800 MHz for the
empty chamber and a frequency below 700 MHz for the loaded
one. This example is meaningful in depicting the intrinsical
ambiguity of a single definition of the overmoded condition,
and the fundamental insight brought in by (33) and (37).

A final discussion is worthwhile: the validity of (33) implies
that if the error it predicts is comparable with the one found in
practice in a mode-stirred reverberation chamber, than it would
be wrong, from a statistical point of view, to conclude anything
about the eventual inefficiency of the stirring technique. As a
matter of fact, (33) has been derived under a perfect-stirring
assumption, so that the eventual presence of a poor stirring
is expected to provide an error ϵς2 higher than that due to
a limited modal overlapping. This is all the more true in
the lower frequency range, where the ineffectiveness of field
stirring is often regarded as the major source of statistical non-
compliancy in reverberation chambers: interestingly, the lower
frequency range is also where poor modal overlapping appears
more strongly.

VII. CONCLUSIONS

A discrete modal description of the field within a cavity has
allowed us to quantify the role that losses play in the statistics
of the electric energy density generated within reverberation
chambers. The proposed model has led to the derivation of
a simple formula expressing the error between the actual
standardized variance and the asymptotic one. This error was
shown to be dominated by the number of modes superposed
within the −3 dB bandwidth of the dominant modes; as
such, this result goes against common understanding that the
overmoded condition is a mere matter of available resonating
modes. We have proven that the definition of the overmoded
condition is not universal, but depends on the maximum
acceptable deviation from asymptotic laws, as well as on
the number of independent samples generated by the stirring
technique.

By linking the standardized variance error ϵς2 to
Kolmogorov-Smirnov statistics, it was proven that ϵς2 is a
meaningful metric for assessing how likely electric energy
density samples are to deviate from an asymptotic χ2

6 probabil-
ity law. This same analysis has led to the definition of a maxi-
mum composite quality factor that should not the exceeded in
order to ensure statistical compliancy. A fundamental result is
that even starting with a perfect-stirring assumption and a high
modal density, an electrically large reverberation chamber can
still present a non-asymptotic statistical performance. These
conclusions have major consequences on other commonly
accepted ideas, such as that non-compliance with asymptotic
laws is always a matter of poor stirring and that the Q should
always be as high as possible.

Experimental results support our findings, both for the
soundness of the proposed deviation metric and the fact that
it allows to predict the actual error incurred in field samples.
This latter result is fundamental, as it could lead to a simple

way of assessing the statistical compliance of a reverberation
chamber, and how relatively small changes in its composite
quality factor would affect its statistics.

APPENDIX A
MOMENTS OF THE |ψi(f)| RANDOM VARIABLES

Following the derivation given in Section IV, two moments
are needed, the second and the fourth. The second-order
moment of |ψi(f)| reads

E
[
|ψi(f)|2

]
=

∫
|ψi(f)|2p(fi)dfi , (40)

where p(fi) is the probability density function for the fre-
quency of resonance fi. As recalled in [11], there exist
minimum requirements for the composite quality factor of
a cavity, for it to be compliant with EMC standards. This
being coherent with our study, we can assume Qi ≫ 1. As
a consequence, the average relative bandwidth BM,i = fi/Qi

of each mode can be expected to be much smaller than one.
Hence, the |ψi(f)| give a non-negligible contribution over an
equivalent bandwidth Be/fi = 1/Qi ≪ 1. The ensemble
integral in (40) can thus be limited over a finite and narrow
bandwidth Be; this implies that it is reasonable to assume that
over this bandwidth all of the modes have the same bandwidth.
In other words, one can consider that the ψi(f) functions are
frequency-shifted replicas of the same template ψ0(f), i.e.,
ψi(f) = ψ0(f − fi). At the same time, the narrow-band
requirement, together with the perfect-stirrer assumption at the
heart of our work, allows to consider resonance frequencies
uniformly distributed over Be. As such

E
[
|ψi(f)|2

]
=

1

Be

∫
Be

|ψi(f)|2dfi . (41)

The frequency-replica paradigm implies that∫
Be

|ψi(f)|2dfi =
∫
Be

|ψ0(f−fi)|2dfi =
∫
Be

|ψ0(f)|2df .

(42)
The last integral is now recognizable as the energy of the

template function; clearly, this leads to modal functions ψi(f)
with the same energy. This was shown to be given by [25]∫

Be

|ψ0(f)|2df =
1

BM,i

π

2

Q2
i

Q2
i + 1

≃ π

2BM,i
. (43)

Hence
ν2 ≃ π

2BM,iBe
. (44)

The fourth-order moment can be obtained by means of the
same approach [25], yielding

ν4 ≃ π

4B3
M,iBe

(45)

and finally
ν4
ν22

≃ Be

π

Q

f
, (46)

having introduced the approximation BM,i ≃ BM , where
BM = f/Q is the average −3 dB bandwidth of the dominant
modes at the working frequency f and Q the associated
composite quality factor.
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APPENDIX B
STATISTICAL UNCERTAINTY FOR A FINITE POPULATION

In the experimental evaluation of the error ϵς2 in the
standardized variance, estimators are used for the average
value and the variance of W . Having been derived from a finite
population of N independent samples, these estimators are
affected by a residual statistical uncertainty that is important
to acknowledge and estimate. This can be done by applying a
local linearization of the definition of the error ϵς2 , obtaining
the following propagation-of-error model [6]

σ2
ϵ̂ς2

=

(
∂ϵς2

∂µW

)2

σ2
µ̂W

+

(
∂ϵς2

∂σ2
W

)2

σ2
σ̂2
W

, (47)

where µ̂W and σ̂2
W are unbiased estimators of, respectively,

µW , the average electric energy density and σ2
W , its variance,

as derived from the N available samples [6]. The derivatives
are evaluated over the average values of these estimators.
These estimators behave as random variables, with average
values equal to those they should estimate (unbiased estima-
tors) and variances σ2

µ̂W
and σ2

σ̂W
. Assuming the N samples

to be iid, the estimator variances can be approximated as [6]

σ2
σ̂2
W

= σ4
W

(
2

N − 1
+
κW − 3

N

)
(48)

σ2
µ̂W

=
σ2
W

N
(49)

where κW is the kurtosis of the random variable W . As
this value is not known for the random variable W , we will
approximate it by means of its asymptotic value for a χ2

6

distribution law, i.e., κW = 5. This yields

σ2
ϵ̂ς2

≃ 4

3N
(1 + ϵς2)

3
+

(
2

N − 1
+
κW − 3

N

)
(1 + ϵς2)

2
,

(50)
which is the square of the root-mean-square uncertainty of
the ϵς2 estimator. Attention should be paid to the fact that (50)
depends on the exact error ϵς2 , which is only known by means
of its estimate ϵ̂ς2 . In the higher frequency range, as ϵς2 → 0,
(50) simplifies to

lim
ϵς2→0

σ2
ϵ̂ς2

≃ 16

3N
, (51)

which is the residual statistical uncertainty that hinders the
enforcement of a single definition of the overmoded condition.
For N = 100 the standard deviation of the estimation error
is about 23 %. Assuming it to be normally distributed, the
maximum residual error is about twice as such, for a 95 %
confidence level, i.e., about 46 %.
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