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Advances in generalised van der Waals approaches for the
isotropic-nematic fluid phase equilibria of thermotropic liquid crystals

- An algebraic equation of state for attractive anisotropic
particles with the Onsager trial function

Mario Franco-Melgar∗, Andrew J. Haslam, and George Jackson†
Department of Chemical Engineering and Chemical Technology,

Imperial College, London SW7 2AZ, United Kingdom
(Dated: August 14, 2009)

In this contribution we provide a review and reformulation of perturbation theories (generalised
van der Waals approaches) for the description of the fluid phase behaviour and orientational or-
dering transitions of thermotropic nematic liquid crystals. Free energy functionals of the basic
Onsager form are used as the platform for the development of a general formulation which reduces
to the specific forms of the various theories that have found common use. A novel closed analyt-
ical description of the thermodynamic properties and degree of nematic order is then obtained by
employing the Onsager trial function to represent the orientational distribution function in terms
of a single parameter. The latter essentially constitutes an algebraic equation of state for the
nematic phase appropriate for use in engineering applications. The description of ordering transi-
tions with scaled-Onsager theories and suitable trial functions has already been illustrated by its
application to systems of hard spherocylinders (HSCs), indicating that the approach provides an
excellent representation of the orientational order of the hard-core (athermal) system [M. Franco
Melgar, A. J. Haslam, and G. Jackson, Mol. Phys. 106, 649 (2008)]. Here, the hard-body model
is extended to account for attractive interactions (treated at the van der Waals level) of a general
isotropic/anisotropic form (e.g., Lennard-Jonesium, square-well (SW), Maier-Saupe (MS) etc.). The
adequacy of our generalised van der Waals-Onsager theory is exemplified from an analysis of the
vapour-liquid, liquid-nematic, and vapour-nematic phase equilibria for hard spherocylinders with at-
tractive square-well interactions (HSC-SW). The effect of the potential range and molecular aspect
ratio on the vapour-liquid-nematic equilibria and orientational ordering transitions is examined to
investigate the van der Waals limit (corresponding states) of the ordering phase behaviour. In the
case of systems with an aspect ratio of ∼ 5 the corresponding-states limit is reached when the range
is about 16 times the molecular diameter. For progressively longer molecules with an attractive
range which follows their long dimension, the fluid-nematic equilibrium is enhanced, to the point
that the vapour-liquid boundary becomes metastable relative to fluid-nematic equilibria. In the case
of molecules of very large aspect ratio (∼ 50) an additional region of nematic-nematic coexistence
is exhibited by the system.

I. INTRODUCTION

A general algebraic methodology for the thermody-
namics of ordering transitions of mesogenic (liquid crystal
forming) particles based on a free energy of the Onsager1
form was introduced in our previous paper2. In Onsager
approaches the molecular shape (characterised by the re-
pulsive interactions) is traditionally considered as the key
to liquid crystalline behaviour. This is a suitable descrip-
tion for lyotropic liquid crystals where composition (den-
sity) is the relevant thermodynamic variable; the tem-
perature plays only a trivial role in systems of particles
interacting through purely repulsive (hard core) poten-
tials. The introduction of attractive interactions restores
the significance of the temperature.

∗Current address: Departamento de Ingenieŕıa Qúımica División
de Ingenieŕıa y Arquitectura, Tecnológico de Monterrey, Campus
Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey,
N.L., 64849, México.
†Corresponding author: g.jackson@imperial.ac.uk

Early in the twentieth century Born3,4 attributed
liquid-crystalline behaviour entirely to the influence
of long-range intermolecular forces arising from direc-
tionally dependent (anisotropic) electrostatic attractive
interactions. Following this perspective, Maier and
Saupe5,6 developed a compact and tractable theory
for orientational ordering transitions of polar molecules
(with interactions of a quadrupolar form) from an
isotropic liquid phase to a nematic (anisotropic) liquid-
crystal phase. Molecular shape is not considered explic-
itly in their treatment. The Maier-Saupe (MS) frame-
work provided for the first time an approach capable of
describing the temperature dependence of the nematic
order in liquid crystals at the molecular level. Though
not without its critics early on7–11, the MS theory has
been widely adopted in the liquid-crystal community as
a convenient model for the orientational order of ther-
motropic liquid crystals, most particularly in the analysis
of experimental data12–14.

The rich and varied phase behaviour exhibited by ther-
motropic mesogens (see the extensive compilation by
Dunmur et al.15 for nematics alone) is clearly closely re-
lated to specific features of the attractive interactions be-

Page 1 of 30

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2

tween the molecules (e.g., London dispersion forces, po-
larity/multipolarity, π−π interactions between aromatic
cores, electrostatic/charge transfer interactions etc.). It
is instructive to highlight the particular effect of a given
interaction by studying suitably chosen model systems:
for example, in the case of idealised rod-shaped molecules
with central point dipoles, the smectic-A (layered) phase
is found to be stabilised relative to the nematic (which
in some cases can also be destabilised relative to the
isotropic liquid), while for particles with terminal point
dipoles, smectic order is hindered16–19. Moreover, the
presence of flexible tails on the end of the molecule
has an opposing effect with the stabilisation of layered
structures20. Attractive interactions thus play an impor-
tant role in the determining the stability or otherwise
of liquid-crystalline phases. It is important to reiterate,
however, that the Onsager view that repulsive (excluded-
volume) interactions are ultimately responsible for the
stabilisation of orientationally ordered phases is now well
recognised21–25. This is of course in line with the van
der Waals picture26 inherent in perturbation approaches
where the structure of a fluid is deemed to be determined
principally by the repulsive molecular cores27,28.

Clearly, a proper description of mesogenic fluids re-
quires a consideration of both the anisotropic repulsive
molecular cores and the various types of attractive inter-
actions. The coupling of the Onsager and Maier-Saupe
descriptions of liquid crystals dates back to the work of
Kimura29, and of the groups of Gelbart30–34, Cotter35–41,
and Vertogen42–47. A large number of studies have been
carried out since then with generalised van der Waals
approaches of this basic form, making use of the full
armoury of mean-field, perturbation, integral equation,
and density functional theories48–108; some of these ex-
amples will be referred to explicitly in the coming sec-
tions when of particular relevance to our study. As well
as this vast body of work with continuum van der Waal-
sian models one should also acknowledge that systems of
particles with both hard-core repulsive and attractive in-
teractions have been treated extensively within a lattice-
model framework (see references109–117 as examples of
some of the early papers); lattice models artificially omit
the essential fluid nature of the structure (and the corre-
sponding correlations between the molecules) which can
lead to misleading conclusions about the effect of the var-
ious interactions, and lattice theories of liquid-crystalline
systems have lost popularity in more recent times.

Regardless of the repulsive or attractive nature of the
interactions between the particles, the free energy of an
anisotropic fluid such as a nematic liquid crystal is a
functional of the single particle orientational distribution
function, f(~ω). At equilibrium the orientational distri-
bution function will take on a form which minimises the
free energy of the system. In general a determination
of the equilibrium nematic state thus involves a varia-
tional problem which can be solved by a variety of nu-
merical techniques118 including series expansions119–123,
direct iteration124,125, or Monte Carlo annealing126. By

choosing an appropriate analytical description for f(~ω),
e.g., a trial function in terms of a single orientational
parameter1,127–130, the solution of the equilibrium dis-
tribution can be recast as a direct parametric minimi-
sation which is much simpler to handle and more com-
putationally efficient, without a marked compromise in
the numerical accuracy. The trial function introduced
by Onsager1 in his seminal paper leads to a free energy
which contains a Bessel function of the orientational pa-
rameter, and a numerical solution (albeit of lower di-
mensionality) is still required to locate the equilibrium
state of the system. Though the thermodynamic proper-
ties of the nematic state that result from a trial function
treatment are more tractable than with a full functional
representation, the computations in routine engineering
applications remain cumbersome (as compared with, e.g.,
typical van der Waalsian equations of state) particularly
in the case of multicomponent systems. Onsager1 and
Odjik129,130 have also provided truncated forms of the
free energy to leading order of the orientational parame-
ter appropriate for systems of highly anisotropic particles
which exhibit high degrees of nematic order. Linearised
forms of the thermodynamic expressions are computa-
tionally very appealing, but unfortunately the adequacy
of such a treatment rapidly deteriorates for thermotropic
mesogens with more moderate (and realistic) aspect ra-
tios2.

In previous work2 we developed a general methodol-
ogy for the treatment of the (scaled) Onsager free energy
of hard-core molecules with the Onsager trial function
which allows for an accurate a fully algebraic description
of the orientational order and thermodynamic proper-
ties (equation of state). A cubic equation for the de-
gree of orientational order of the equilibrium anisotropic
state is obtained by retaining higher-order terms, and
an excellent description of the equation of state and ne-
matic order parameter for particles with moderate shape
anisotropies is achieved. As we show in our current paper
this methodology can be extended beyond a description
of purely athermal systems to treat the nematic state of
particles with attractive interactions.

As with other generalised van der Waals theories,
the extended Onsager treatment described in the fol-
lowing sections includes both the repulsive nature of
the Onsager1 approach and the attractive nature of the
Maier-Saupe5,6 approach. A high-temperature pertur-
bation theory is used to construct the Helmholtz free
energy functional for the isotropic and anisotropic (ne-
matic) fluid phases of non-spherical particles interacting
through repulsive and attractive interactions. Specific
forms of the theory are developed for Lennard-Jonesium
and square-well attractive potentials with both isotropic
and anisotropic contributions. By using an Onsager
trial function to characterise the orientational distribu-
tion function we derive a fully algebraic equation of state
for the isotropic fluid and liquid-crystal phases of the
system. The specific expressions for molecules repre-
sented as hard spherocylinders (HSCs) with square-well
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attractive interactions are developed as a particular ex-
ample, and the resulting isotropic-anisotropic fluid phase
behaviour is examined in detail.

There is a current need for a closed-form description
of the thermodynamic properties of liquid crystals in a
variety of technological applications. The development
of an algebraic van der Waalsian equation of state for
liquid crystalline fluids represents the key highlight of
our current work.

II. ANISOTROPIC INTERMOLECULAR PAIR
POTENTIAL

We start by expressing the intermolecular pair po-
tential of systems of cylindrically symmetrical particles
(with rod or disk-like shapes) as a sum of the contribution
due to excluded-volume interactions (steep repulsions of
the overlapping molecular electronic density131) and the
contribution due to the attractive interactions (induced
polarisation, dispersion, multipolar etc.131–133):

u12(~r12, ~ω1, ~ω2) = urep
12 (~r12, ~ω1, ~ω2) + uatt

12 (~r12, ~ω1, ~ω2) .
(1)

Here, the pair potential u12(~r12, ~ω1, ~ω2) between particles
1 and 2 is written as a function of the intermolecular
vector ~r12 (of magnitude r12) between the centres of mass
of the two particles, and their orientations ~ω1 and ~ω2.
The repulsive contribution urep

12 (~r12, ~ω1, ~ω2) characterises
the overlaps of the molecular hard cores such that

urep
12 (~r12, ~ω1, ~ω2) =

{ ∞ when r12 < σ(r̂12, ~ω1, ~ω2)
0 when r12 ≥ σ(r̂12, ~ω1, ~ω2) .

(2)
The contact distance σ(r̂12, ~ω1, ~ω2) depends on the ori-
entations of both particles and on the unit vector r̂12 =
~r12/r12 between their centres. The attractive contribu-
tion uatt

12 (~r12, ~ω1, ~ω2) is also a complicated function of the
intermolecular vector, and the particle orientations.

In order to make the theoretical description more
tractable it is usual to follow the approach of Pople134

and expand the pair potential as a series in spherical
harmonics12,135,136. We follow the usual van der Waals
partitioning of the pair potential into repulsive and at-
tractive parts (Equation 1). The repulsive contribution
is treated explicitly while the attractive contribution is
expanded in spherical harmonics:

uatt
12 (~r12, ~ω1, ~ω2) = u000 + u202 + u404 + . . . . (3)

Here, the usual notation for the indices of spherical-
harmonic terms is employed. The molecules are assumed
to be centrosymmetric and also to have cylindrical sym-
metry so that the interaction is invariant to the inver-
sion of the principal molecular axis (up-down symme-
try). This means that only even terms in the series are
retained, corresponding to even multipolar interactions
(e.g., quadrupolar but not dipolar etc.). The first term
corresponds to an isotropic attractive contribution, which

does not depend on the molecular orientations, and the
higher terms to anisotropic attractions:

uatt
12 (~r12, ~ω1, ~ω2) = uatt

iso (r12) + uatt
aniso(~r12, ~ω1, ~ω2) . (4)

The isotropic part of the attractive potential depends
only on the radial distance r12 = |~r12| between the centres
of the two particle, and can be expressed as

uatt
iso (r12) = u000 = −ε0 s(r12) , (5)

where −ε0 characterises the strength of the pair interac-
tion, and s(r12) the dependence of the interaction on the
interparticle separation. The attractive interactions are
represented in this form for the sake of generality. In the
case of the well-known Lennard-Jones attractive contri-
bution (Sutherland potential) to the pair interaction, the
dependence is given by

s(r12) =
(

D

r12

)6

when r12 ≥ σ(r̂12, ~ω1, ~ω2), (6)

where D is a reference diameter of the particle.
For a square-well model characterised by the range
parameter λ,

s(r12) =
{

1 when λD > r12 ≥ σ(r̂12, ~ω1, ~ω2)
0 when r12 ≥ λD. (7)

The anisotropic part of the attractive interaction is as-
sumed to be of a general form37,137–140:

uatt
aniso(r12) = − [ε2 P2(cos γ) + ε4 P4(cos γ) + . . . ] s(r12) ,

(8)
where P2(cos γ) = 1

2 (3 cos2 γ − 1) and P4(cos γ) =
1
8 (35 cos4 γ − 30 cos2 γ + 3) are the second and fourth
Legendre polynomials, and cos γ = ~ω1 · ~ω2; the relative
orientation γ corresponds to the angle between the prin-
cipal axes of the two molecules. If one assumes a spherical
repulsive core and truncates the series after the second
Legendre polynomial the description essentially reduces
to the Maier-Saupe potential6,52.

III. THEORY OF THE NEMATIC PHASE

The total configurational energy U(~rN , ~ωN ) =∑
i

∑
j>i uij(~rij , ~ωi, ~ωj) of the system of N molecules in a

volume V at a temperature T is related to the Helmholtz
free energy A through the usual statistical-mechanical
relation135:

A = −kT ln QN , (9)

where the partition function QN (V, T ) is defined as

QN =
1

N !VN

∫∫
exp

(
−U(~rN , ~ωN )

kT

)
d~rN d~ωN

=
ZN (~rN , ~ωN )

N !VN
. (10)
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Here, ZN (~rN , ~ωN ) =
∫∫

exp(−U(~rN , ~ωN ))/kT ) d~rN d~ωN

is the configurational integral, which is a function of
the positions ~rN and orientations ~ωN of all N particles,
and V is the de Broglie volume, which incorporates
the kinetic contributions due to the translational and

rotational motion (the particles are assumed to be rigid
so that there are no vibrational contributions). The
relation for the average of a general function of config-
urational space W (~rN , ~ωN ) in the canonical ensemble
is

〈
W (~rN , ~ωN )

〉
NV T

=

∫∫
exp

(
−U(~rN , ~ωN )

kT

)
W (~rN , ~ωN ) d~rN d~ωN

∫∫
exp

(
−U(~rN , ~ωN )

kT

)
d~rN d~ωN

=
1

ZN

∫∫
exp

(
−U(~rN , ~ωN )

kT

)
W (~rN , ~ωN ) d~rN d~ωN . (11)

The probability of the system being in a state
of configurational space d~rN d~ωN is denoted by
℘(~rN , ~ωN ) d~rN d~ωN , where ℘(~rN , ~ωN ) is clearly

℘(~rN , ~ωN ) =
1

ZN
exp

(
−U(~rN , ~ωN )

kT

)
. (12)

For a pairwise-additive function

W (~rN , ~ωN ) =
∑

i

∑

j>i

wij(~ri, ~ωi, ~rj , ~ωj)

one can write the average as an equivalent expres-
sion in terms of the pair density ρ12(~r1, ~ω1, ~r2, ~ω2) as

〈
W (~rN, ~ωN )

〉
NV T

=
1
2

∫∫∫∫
d~r1 d~ω1 d~r2 d~ω2

× ρ12(~r1, ~ω1, ~r2, ~ω2)w12(~r1, ~ω1, ~r2, ~ω2) .

(13)

The pair density corresponds to N(N−1) times the prob-
ability of finding a pair of the N molecules in the el-
ement of configurational space d~r1 d~ω1 d~r2 d~ω2 irrespec-
tive of the positions and orientations of the remaining
particles and irrespective of all translational and angular
momenta, and can be expressed as135

ρ12(~r1, ~ω1, ~r2, ~ω2) =
N(N − 1)
ZN (V, T )

×
∫∫

. . .

∫∫
d~r3 d~ω3 . . . d~rN d~ωN

× exp
{
−U(~rN , ~ωN )

kT

}
. (14)

This is related to the pair-correlation function
g12(~r1, ~ω1, ~r2, ~ω2) through the definition

g12(~r1, ~ω1, ~r2, ~ω2) =
ρ12(~r1, ~ω1, ~r2, ~ω2)

ρ1(~r1, ~ω1) ρ1(~r2, ~ω2)
, (15)

where ρ1(~r1, ~ω1) and ρ1(~r2, ~ω2) are the single-particle
densities of molecules 1 and 2. In the case of a homo-
geneous nematic (anisotropic) phase, the single-particle
densities ρ1(~r, ~ω) = ρ f(~ω), where f(~ω) represent the
orientational distribution function, the number density
ρ = N/V being constant over the entire system. The de-
gree of orientational order of the nematic phase is com-
monly characterised in terms of the orientational order
parameters Sn, which are defined as averages of the Leg-
endre polynomials:

Sn =
∫

Pn(cos θ)f(θ)d~ω , (16)

where Pn(cos θ) is the nth Legendre polynomial, and θ
denotes the angle between the principal molecular axis
and the nematic director ~ωn (preferred direction of the
phase).

For systems of molecules interacting through separable
pairwise-additive potentials of the form of Equation (1)
the configurational energy can be written as a sum of the
two contributions:

U(~rN , ~ωN ) = U rep(~rN , ~ωN ) + Uatt(~rN , ~ωN ) , (17)

where U rep(~rN , ~ωN ) =
∑

i

∑
j>i urep

ij (~rij , ~ωi, ~ωj) is the
configurational energy corresponding to the repulsive in-
teractions (in case of hard-core molecules, U rep = ∞ for
configurations with overlapping particles, or U rep = 0
for configurations without overlaps), and Uatt(~rN , ~ωN ) =∑

i

∑
j>i uatt

ij (~rij , ~ωi, ~ωj) is the configurational energy
due to the attractive interactions. In a standard per-
turbative treatment the total free energy of the system
with configurational energy U(~rN , ~ωN ) can be written as
a sum of the free energy, Arep, of a repulsive reference
system (which in this case is also assumed to include the
ideal contribution) and the perturbation term due to the
attractive interactions Aatt:

A = Arep + Aatt . (18)
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The key of any perturbation approach involves a thor-
ough knowledge of the properties of the reference system,
and a means of calculating the attractive perturbation.
In the next section we therefore describe the treatment
of the reference system that we have chosen to include in
our treatment.

A. Free energy of the repulsive reference system

An excellent representation of the nematic phase of
hard core particles can be obtained from the second-
virial theory of Onsager1 as adapted by Parsons141 and
Lee142,143 to include the higher-order virial contributions.
The description of orientationally ordered phases with
scaled Onsager free-energy functionals has already been
discussed in detail2,144, so only the principal aspects are
highlighted here. The free energy of a nematic phase
of hard-core particles can be written as the following
functional of the single-particle orientational distribution
function f rep(~ω) in the Onsager form as2

Arep[f rep(~ω)]
NkT

=
Aid

iso

NkT
+ F rep

orient [f rep(~ω)]

+ G(ρ)F rep
conf [f rep(~ω)] . (19)

The isotropic contribution to the ideal free energy is given
in the usual form in terms of the number density and de
Broglie volume as

Aid
iso

NkT
= ln

(Vρ

Ω

)
− 1 (20)

where the solid angle Ω = 4π in the case cylindrically
symmetrical molecules. The Onsager orientational func-
tionals are defined as

F rep
orient [f rep(~ω)] ≡

∫
f rep(~ω) ln {Ωf rep(~ω)}d~ω, (21)

which corresponds to the orientational contribution to
the ideal free energy (orientational entropy), and

F rep
conf [f rep(~ω)] ≡ 1

Vm

∫∫
Vexc(~ω1, ~ω2)

× f rep(~ω1)f rep(~ω2)d~ω1d~ω2

≡ 2
B2

Vm
≡ 2B∗

2 , (22)

which corresponds to the excluded-volume contribution
to the free energy due to the repulsive interactions (con-
figurational entropy). Here, Vexc(~ω1, ~ω2) is the excluded
volume for a pair of hard-core particles with orientations
~ω1 and ~ω2, Vm the volume of the molecule, and B2 the
second virial coefficient.

The Parsons-Lee (PL) modification of the Onsager free
energy amounts to scaling the Onsager configurational
functional by a function G(ρ) of overall number density
which incorporates (in an approximate manner) the con-
tribution due to higher-body interactions. By employing

a de-coupling approximation the function can be repre-
sented as (one eighth of) the residual free energy of a
system of equivalent hard spheres with the same molec-
ular volume as the anisotropic hard core, Vm ≡ Vhs:

G (ρ) =
1
8

(
Ares

hs

NkT

)
=

1
8

η∫

0

ghs(σ)dη =
4η − 3η2

8(1− η)2
. (23)

This expression corresponds to the well-known Carna-
han and Starling28,145 hard-sphere relation, conveniently
expressed in terms of the packing fraction η = ρVm.
When G(ρ) = ρ/2 the free-energy reduces to the original
second-virial theory (SVT) of Onsager1. The extension of
the development to mixtures of hard-core particles is also
relatively straight forward (see146 for a recent review).

The functionals F rep
orient and F rep

conf represent the
two main competing contributions which give rise to
the orientationally ordered nematic state: the first,
F rep

orient [f rep(~ω)], tends to favour a disordered isotropic
state (the system loses entropy by ordering its molecu-
lar axis), while the second, F rep

conf [f rep(~ω)], favours the
nematic state (orientational ordering minimises the ex-
cluded volume, and thus maximises the configurational
entropy). The functional F rep

conf [f
rep(~ω)] is proportional

to the angle average of the excluded volume, which is
twice the second virial coefficient. The excluded volume
can be defined in terms of the repulsive part of the inter-
molecular pair potential as

Vexc(~ω1, ~ω2) =
∫ [

1− exp
(−urep

12 (~r12, ~ω1, ~ω2)
kT

)]
d~r12

=
∫∫ [

1− exp
(−urep

12 (~r12, ~ω1, ~ω2)
kT

)]
r2
12dr12dr̂12

=
∫∫ σ

0

r2
12dr12dr̂12 =

1
3

∫
σ3dr̂12. (24)

In the final form of the expression the excluded vol-
ume is expressed in terms of the corresponding integral
of the contact distance σ(r̂12, ~ω1, ~ω2). The usual nota-
tion for the volume integration over the vector

∫
d~r12 ≡∫∫

r2
12 dr12 dr̂12 is used.

The equilibrium orientational distribution function
f rep
eq (~ω) for the repulsive system corresponds to that

yielding the minimum in free energy. As the free energy
is a functional of f(~ω) one can obtain the distribution
at equilibrium from the extremum condition through the
variation of the free energy with respect to f(~ω) at con-
stant N , V , and T subject to the additional normalisa-
tion constraint

∫
f(~ω)d~ω = 1 :118

δ
{
A[f rep(~ω)]/NkT + λ′

(
1− ∫

f rep(~ω) d~ω
)}

δf rep(~ω)

∣∣∣∣∣
eq

=
δA[f rep(~ω)]/NkT

δf rep(~ω)
− λ′ = 0 , (25)

where the constant λ′ is a Lagrange undetermined mul-
tiplier. The resulting integral equation obtained when
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we substitute Arep from Equation (19) into the Euler-
Lagrange relation (Equation (25)) and perform the vari-
ation with respect to f rep(~ω) is

ln
[
Ω f rep

eq (~ω)
]−λ∗+

2G(ρ)
Vm

∫
Vexc(~ω, ~ω2) f rep

eq (~ω) d ~ω2 = 0 ,

(26)
where λ∗ = λ′ − 1 is another constant. After exponenti-
ating both sides of this expression,

f rep
eq (~ω) =

exp(λ∗)
Ω

exp
(
−2G(ρ)

Vm

∫
Vexc(~ω, ~ω2)f rep

eq (~ω) d ~ω2

)
,

(27)
and integrating over all orientations ~ω with the use of
the normalisation condition

∫
f rep
eq (~ω)d~ω = 1, the unde-

termined multiplier exp(λ∗)/ Ω is obtained as

exp(λ∗)
Ω

=
1∫

exp
(
−2G(ρ)

Vm

∫
Vexc(~ω, ~ω2)f

rep
eq (~ω)d ~ω2

)
d~ω

.

(28)
By substituting this back into Equation (27) the equilib-
rium orientational distribution function can be expressed
as the convolution,

f rep
eq (~ω) =

exp
(
−2G(ρ)

Vm

∫
Vexc(~ω, ~ω2) f rep

eq (~ω) d ~ω2

)

∫
exp

(
−2G(ρ)

Vm

∫
Vexc(~ω, ~ω2) f rep

eq (~ω) d ~ω2

)
d~ω

.

(29)
The form of f rep

eq (~ω) that one obtains from Equation (29)
is that which minimises the free energy of the reference
(purely repulsive) system.

B. Free-energy perturbation due to attractive
interactions

The difference in free energy ∆A = Aatt = A − Arep

between the repulsive reference system and the system
with the full interactions can be written in terms of the
ratios of the corresponding partition functions (or con-
figurational integrals) as

∆A = A−Arep = −kT ln
(

QN

Qrep
N

)
. (30)

As the full and reference systems have the same number
of particles and are at the same volume and temperature,
the ratio QN/Qrep

N is equivalent to the ratio ZN/Zrep
N of

the configurational integrals:

QN

Qrep
N

=
ZN

Zrep
N

≡

∫∫
exp

(
− U

kT

)
d~rNd~ωN

∫∫
exp

(
−U rep

kT

)
d~rNd~ωN

. (31)

By expressing the total configurational energy in terms of
the repulsive and attractive contributions (cf. Equation

(17)) one can write

ZN

Zrep
N

=

∫∫
exp

(
−U rep

kT

)
exp

(
−Uatt

kT

)
d~rN d~ωN

∫∫
exp

(
−U rep

kT

)
d~rN d~ωN

=
〈

exp
(
−Uatt

kT

)〉

rep

. (32)

In the last line we take advantage of the general relation
for the average of a general function of configurational
space [cf. Equation (11)]. One should note, however, that
in Equation (32) one is averaging the Boltzmann factor of
the attractive perturbative energy over all configurations
of the repulsive (reference) system, not the full system.
The contribution to the Helmholtz free energy due to the
attractive interactions can thus be written as

Aatt = ∆A = −kT ln
〈

exp
(
−Uatt

kT

)〉

rep

. (33)

This is the basis of the well known perturbation the-
ory derived by Zwanzig147, who generalised the earlier
developments by Longuet-Higgins148, Barker149,150 and
Pople134,151. It is important to realise that the relation
derived by Zwanzig is valid for a system with a separable
configurational energy regardless of the size of the “per-
turbation” in the energy. There is, however, no guarantee
that the free energy of the perturbed system will corre-
spond to the equilibrium state with the minimum free
energy when the difference in potential energy is large.
Both the exponential and logarithm of Equation (33) can
be expanded for small values of the potential-energy per-
turbation (relative to kT ); the contribution to the free
energy due to the attractive interactions can thus be ex-
pressed in the form of Zwanzig’s high-temperature per-
turbation expansion147:

Aatt =
〈
Uatt

〉
rep
− 1

2!(kT )

{〈[
Uatt

]2〉
rep
− 〈

Uatt
〉2
rep

}

+
1

3!(kT )2

{〈[
Uatt

]3〉
rep
− 3

〈[
Uatt

]2〉
rep

〈
Uatt

〉
rep

+ 2
〈
Uatt

〉3
rep

}
. . . (34)

Here, we examine a first-order perturbation theory,
where an attractive free energy is approximated by the
first term, i.e., Aatt ≈ 〈Uatt〉rep, which according to
Equation (11) can be written as

〈Uatt〉rep =
1

Zrep
N

∫∫
exp

(
−U rep(~rN , ~ωN )

kT

)

× Uatt(~rN , ~ωN ) d~rN d~ωN . (35)

Assuming that the attractive part of the configurational
energy, Uatt, can be expressed as a sum of pairwise inter-
actions, i.e., Uatt(~rN , ~ωN ) =

∑N
i

∑N
j>i uatt

ij (~rij , ~ωi, ~ωj)
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one can then write

〈Uatt〉rep =
1

Zrep
N

∫∫
exp

(
−U rep(~rN , ~ωN )

kT

)

×
N∑

i

N∑

j>i

uatt
ij (~rij , ~ωi, ~ωj) d~rN d~ωN . (36)

As there are 1
2N(N − 1) identical contributions arising

from the double sum for all the interparticle pair poten-
tials uij , the mean-attractive energy may be written in
terms of an arbitrary pair (say particles 1 and 2) as

〈Uatt〉rep
=

N(N − 1)
2Zrep

N

∫∫ ∫∫
uatt

12 (~r12, ~ω1, ~ω2)d~r1d~ω1d~r2d~ω2

×
∫∫

. . .

∫∫
exp

(−U rep(~rN, ~ωN )
kT

)
d~r3d~ω3 . . . d~rNd~ωN .

(37)

The pair density ρrep
12 (~r1, ~ω1, ~r2, ~ω2) of the repulsive ref-

erence is defined in an analogous way to that of the full
system [cf. Equation (14)] as

ρrep
12 (~r1, ~ω1, ~r2, ~ω2)

=
N(N − 1)

Zrep
N

×
∫∫

. . .

∫∫
exp

(−U rep(~rN, ~ωN )
kT

)
d~r3d~ω3 . . . d~rNd~ωN .

(38)

Substituting for the pair density of the reference the
mean-attractive energy can be expressed in general form
as

〈Uatt〉rep =
1
2

∫∫∫∫
uatt

12 (~r12, ~ω1, ~ω2)

× ρrep
12 (~r1, ~ω1, ~r2, ~ω2)d~r1d~ω1d~r2d~ω2

=
1
2

∫∫∫∫
uatt

12 (~r12, ~ω1, ~ω2)

× ρrep
1 (~r1, ~ω1)ρ

rep
1 (~r2, ~ω2)

× grep
12 (~r1, ~ω1, ~r2, ~ω2)d~r1d~ω1d~r2d~ω2 , (39)

noting again that in our particular case the average is per-
formed over the purely repulsive reference system, rather
than the full system [cf. Equation (13)]. In the second
form of the expression, the average is written in terms
of the pair-correlation function grep

12 (~r1, ~ω1, ~r2, ~ω2) =
ρrep
12 (~r1, ~ω1, ~r2, ~ω2)/[ρrep

1 (~r1, ~ω1)ρ
rep
1 (~r2, ~ω2)] of the refer-

ence system. To first order in the perturbation expansion
[Equation (34)] the free energy of the anisotropic (and at
this point inhomogeneous) system can thus be written in
terms of the pair-correlation function as

Aatt = 〈Uatt〉rep
=

1
2

∫∫∫∫
uatt

12 (~r12, ~ω1, ~ω2)

× ρrep
1 (~r1, ~ω1) ρrep

1 (~r2, ~ω2)
× grep

12 (~r1, ~ω1, ~r2, ~ω2) d~r1 d~ω1 d~r2 d~ω2 . (40)

In the case of nematic phases which possess orienta-
tional but no positional order we have a homogeneous
but anisotropic system, and the single-particle densities
simplify to ρrep

i (~ri, ~ωi) = ρf rep
eq (~ωi). The attractive con-

tribution to the configurational free energy is thus a func-
tional of f rep

eq (~ω):

Aatt = Fatt
conf [f

rep
eq (~ω)]

=
ρ2V

2

∫∫∫
uatt

12 (~r12, ~ω1, ~ω2)

× f rep
eq (~ω1) f rep

eq (~ω2)

× grep
12 (~r12, ~ω1, ~ω2) d~r12 d~ω1 d~ω2 . (41)

One can take the centre of one of the particles as the
origin of the coordinate system, and integrate it out of
the expression leaving only a dependence of the rela-
tive centre-to-centre vector, ~r12 = ~r2 − ~r1. It is im-
portant to reiterate that in developing a standard per-
turbative approach for the nematic phase, the averages
must be taken over the equilibrium structure of the repul-
sive reference system. We emphasise this by expressing
the free-energy perturbation in terms of the equilibrium
single-particle orientation function of the reference sys-
tem f rep

eq (~ω) which is obtained by solving Equation (29).

Strictly the use of the term “perturbation theory” to
describe approaches for systems of attracting mesogens
must involve the equilibrium structure of the reference
system as in Equation (41); the reader is directed to the
related work on dipolar systems83 as an example of the
application of such a perturbative approach to dipolar
hard spherocylinders. Clearly the incorporation of at-
tractive interactions between the particles will mean that
the equilibrium orientational distribution of the repulsive
reference will no longer correspond to the state with the
minimum total free energy; the attractions will often en-
hance the orientationally ordering of the particles. As
in standard perturbative density functional theories of
inhomogeneous fluids28, the equilibrium single particle
density (orientational distribution in the case of a ne-
matic state) is not represented by that of the repulsive
reference system but by the form which corresponds to
the minimum of the perturbed free energy functional.

C. Equilibrium free energy

In order to allow the orientational distribution function
to “relax” to that corresponding to the state of minimum
free energy for the system with the full potential, we first
write the total Helmholtz free energy [Equation (18)] as
a functional of f(~ω) (instead of f rep

eq (~ω) for the repulsive
reference):
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A[f(~ω)]
NkT

=
Aiso

NkT
+ Forient[f(~ω)] + G(ρ)F rep

conf [f(~ω)] + Fatt
conf [f(~ω)]

=
Aiso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

+
ρ

2kT

∫∫∫
uatt

12 (~r12, ~ω1, ~ω2) f(~ω1) f(~ω2) grep
12 (~r12, ~ω1, ~ω2) d~r12 d~ω1 d~ω2 , (42)

where the contribution due to the orientational entropy
is now a functional of f(~ω),

Forient[f(~ω)] =
∫

f(~ω) ln Ω f(~ω) d~ω , (43)

and the repulsive and attractive configurational function-
als are defined respectively as

F rep
conf [f(~ω)] =

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2)f(~ω1)f(~ω2)d~ω1d~ω2

(44)

and

Fatt
conf [f(~ω)] =

ρ

2kT

∫∫∫
uatt

12 (~r12, ~ω1, ~ω2) f(~ω1) f(~ω2)

× grep
12 (~r12, ~ω1, ~ω2) d~r12 d~ω1 d~ω2 . (45)

In the language of molecular-field theories12,137–140,
it is convenient to define a dimensionless field Ψ[f(~ω)]
(pseudo potential) acting on a particle with a certain
orientation ~ω ≡ ~ω1 as an integrated interaction due to
the presence of the particles with all other orientations
~ω2:

Ψ[f(~ω)] =
∫ {

G(ρ)
Vm

Vexc(~ω, ~ω2) +
ρ

2kT

∫
uatt

12 (~r12, ~ω, ~ω2)g
rep
12 (~r12, ~ω, ~ω2) d~r12

}
f(~ω2) d~ω2 . (46)

The contributions due to the repulsive and attractive in-
teractions can also be treated separately:

Ψ[f(~ω)] = Ψrep[f(~ω)] + Ψatt[f(~ω)] , (47)

where the repulsive pseudo-potential is

Ψrep[f(~ω)] =
G(ρ)
Vm

∫
Vexc(~ω, ~ω2) f(~ω2) d~ω2 , (48)

and the attractive pseudo-potential is

Ψatt[f(~ω)] =
ρ

2kT

∫∫
uatt

12 (~r12, ~ω, ~ω2)f(~ω2)

× grep
12 (~r12, ~ω, ~ω2) d~r12 d~ω2 . (49)

After substituting Equation(46) [or Equations (48) and
(49)] into Equation (42) we can express the Helmholtz

free-energy functional as

A[f(~ω)]
NkT

=
Aiso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω

+
∫

f(~ω)Ψ[f(~ω)] d~ω

=
Aiso

NkT
+

∫
f(~ω) {lnΩ f(~ω)

+ Ψrep[f(~ω)] + Ψatt[f(~ω)]
}

d~ω . (50)
One must now examine the variation of the full free en-
ergy (42) with respect to f(~ω) (at constant N , V , and
T ) subject to the constraint that

∫
f(~ω)dω = 1:

δ
{
A[f(~ω)]/NkT + λ′

(
1− ∫

f(~ω) d~ω
)}

δf(~ω)

∣∣∣∣∣
eq

=
δA[f(~ω)]/NkT

δf(~ω)
− λ′

=
δForient[f(~ω)]

δf(~ω)
+

δF rep
conf [f(~ω)]
δf(~ω)

+
δFatt

conf [f(~ω)]
δf(~ω)

− λ′ = 0 . (51)
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After performing the variation for the functionals
Forient[f(~ω)], F rep

conf [f(~ω)], and Fatt
conf [f(~ω)] the following

Euler-Lagrange expression is obtained for the equilibrium

value of the single particle orientational distribution func-
tion, feq:

δ A[f(~ω)] /NkT

δ f(~ω)
= ln [Ω feq(~ω)] + λ∗ + 2

G(ρ)
Vm

∫
Vexc(~ω, ~ω2) feq( ~ω2) d ~ω2

+
ρ

kT

∫∫
u12(~r12, ~ω, ~ω2) grep

12 (~r12, ~ω, ~ω2) feq(~ω2) d~r12 d~ω2

+
ρ

kT

∫∫
u12(~r12, ~ω, ~ω2)

δ grep
12 (~r12, ~ω, ~ω2)

δ feq(~ω)
feq(~ω) feq(~ω2) d~r12 d~ω2 = 0 . (52)

The Euler-Lagrange expression can be written in a more
compact manner in terms of the molecular fields defined
earlier:

δ A[f(~ω)] /NkT

δ f(~ω)
= ln [Ω feq(~ω)] + λ∗ + 2Ψrep

eq [feq(~ω)]

+ 2Ψatt
eq [feq(~ω)] + Ψatt

eq [feq(~ω)]′ = 0 , (53)

where Ψatt
eq [feq(~ω)]′ represents the last term of Equa-

tion (52). The constant λ∗ = λ′−1 is eliminated in a sim-
ilar fashion to that for the repulsive system [cf. Equation
(28)], i.e., exponentiating the expression, then integrat-
ing over ~ω, and finally making use of the normalisation
condition, which leads to the final expression feq(~ω):

feq(~ω) =
exp

(
−δF rep

conf [feq(~ω)]
δf(~ω)

− δFatt
conf [feq(~ω)]
δf(~ω)

)

∫
exp

(
−δF rep

conf [feq(~ω)]
δf(~ω)

− δFatt
conf [feq(~ω)]
δf(~ω)

)
d~ω

=
exp

(−2Ψrep
eq [feq(~ω)]− 2 Ψatt

eq [feq(~ω)]−Ψatt
eq [feq(~ω)]′

)
∫

exp
(−2Ψrep

eq [feq(~ω)]− 2Ψatt
eq [feq(~ω)]−Ψatt

eq [feq(~ω)]′
)

d~ω

. (54)

The equilibrium orientational distribution satisfying
this relation gives the state with the minimum free
energy. Once the equilibrium Helmholtz free en-
ergy is known, the other thermodynamic quanti-
ties such as the pressure P (i.e., the equation
of state) and chemical potential µ can be ob-
tained through the standard thermodynamic relations
P = − (∂A/∂V )N, T and µ = (∂A/∂N)V, T .

Together with the expression (50) for the Helmholtz
free energy in terms of the molecular fields, the general
relation (54) provides a unified form from which to cast
the common approaches that are used to represent the
thermodynamics of nematic liquid crystals. In the case of
a system interacting only through repulsive interactions,

Ψeq[feq(~ω)] = Ψrep
eq [feq(~ω)] with Ψatt[feq(~ω)] = 0, expres-

sion (50) reduces to the Onsager free-energy functional
with the Parsons141 and Lee142,143 scaling to include the
higher-order terms; the original expression of Onsager1
is obtained if a simple linear dependence in density is
assumed for the two-body term, i.e., G(ρ) = ρ/2.

When one approximates the structure of the reference
repulsive system by its low-density limit28,

lim
ρ→0

grep
12 (~r12, ~ω1, ~ω2) = exp

(
−urep

12 (~r12, ~ω1, ~ω2)
kT

)
,

(55)
the attractive contribution to the pseudo-potential is sim-
ply
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Ψatt
GVDW[f(~ω)] =

ρ

2kT

∫∫
uatt

12 (~r12, ~ω, ~ω2)f(~ω2) exp
(
−urep

12 (~r12, ~ω, ~ω2)
kT

)
d~r12 d~ω2

=
ρ

2kT

∫∫
uatt

12 (~r12, ~ω, ~ω2)f(~ω2)H[r12 − σ(r̂12, ~ω, ~ω2)] d~r12 d~ω2

=
ρ

2kT

∫∫ ∞∫

σ

uatt
12 (~r12, ~ω, ~ω2)f(~ω2) r2

12 dr12 dr̂12 d~ω2 . (56)

In the last form of the expression, the integral is writ-
ten equivalently over the limits of the hard-core ref-
erence interaction [cf. Equation (2)]; the lower-limit
corresponds to the contact distance σ(r̂12, ~ω1, ~ω2) and
H[r12−σ(r̂12, ~ω, ~ω2)] is the heaviside function which en-
sures that one integrates the attractive potential only for
configurations outside the excluded-volume region. The
use of this approximation leads to the generalised van der
Waals (GVDW) theory introduced by Kimura, Gelbart,
Cotter, Vertogen and co-workers29–47; differences arise
from the various ways of treating the reference hard-core
system (e.g., scaled particle theory, y-expansion, etc.).
Though often referred to as a mean-field perturbation
theory, one should take care to distinguish such an ap-
proach from the Zwanzig high-temperature perturbation
theory where, as discussed earlier, one retains the equi-
librium structure (in this case the single-particle orien-
tational distribution function) of the repulsive reference
system. Mean-field theories of type are of course com-
monly used in the description of isotropic fluids and are
commonly referred to as augmented van der Waals ap-
proaches152–155.

The Maier-Saupe6 theory, one of the most widespread
approaches used to describe phase transitions in liquid
crystals, can be obtained from our general expression
for the free energy if one neglects the repulsive field
Ψrep[f(~ω)] ≈ 0 (or assumes that it is constant and
does not depend on density as in the case of a fully
occupied lattice), and then assumes that the attractive
field Ψatt[f(~ω)] ∝ S2P2(cos γ); the latter is equivalent
to truncating the expansion of the attractive pair po-
tential [Equation (8)] after the second Legendre term.
The molecular-field theories of Chandrasekhar and co-
workers137,138, and Luckhurst and co-workers12,139,140 es-
sentially amount to retaining higher-order terms in the
Legendre expansion: Ψatt[f(~ω)] ∝ ∑

L S2LP2L(cos γ).
Continuum versions of the Maier-Saupe theory have
also been formulated (e.g., see references52,80), and
correspond to using a hard-sphere repulsive reference

system Ψrep[f(~ω)] ≈ Ψhs(ρ) with grep
12 (~r12, ~ω, ~ω2) ≈

exp(−uhs
12(r12)/kT ) in Ψatt[f(~ω)] ∝ S2P2(cos γ) as with

the GVDW approach; an analogous description (albeit
with a different underlying significance of the tempera-
ture) results from the so-called L2 leading-order trunca-
tion of the Legendre polynomial series of the excluded
volume of hard particles156–160.

For consistency with the decoupling approximation
employed by Parsons141 for the pair distribution func-
tion, one can approximate the pair distribution function
of the reference repulsive system of anisotropic molecules
required in the evaluation of the mean-attractive energy
by that of an equivalent system of hard spheres with the
same molecular volume:

grep
12 (~r12, ~ω, ~ω2) ≈ ghs

12(r12/σ) . (57)

This type of approximation has been used by Williamson
and co-workers92,95 and by Garćıa-Sánchez et al.102
within a second-order perturbation theory of mesogens
with repulsive and attractive interactions; as will be
shown in the next section, the further use of the mean-
value theorem can be employed to factorise the radial
distribution function out of the expression, thus simpli-
fying the integration of the mean-attractive energy.161,162

It is now clear that our general notation is appropriate
to the most common approaches developed to deal with
orientational ordering in liquid crystals. We now develop
explicit expressions for the Helmholtz free energy of hard
particles with specific centre-to-centre attractive interac-
tions. In the first example, square-well anisotropic parti-
cles are examined; this is the system for which the fluid
phase behaviour is investigated in detail. As a second ex-
ample we give the specific expressions for the free energy
of particles with Lennard-Jones interactions. The free
energy of hard particles interacting through and attrac-
tive potential of the form defined in Equations (4)–(8)
can be obtained from the general expression (42):

A[f(~ω)]
NkT

=
Aiso

NkT
+

∫
f(~ω) lnΩ f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫
[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ) + . . . ] s(r12) f(~ω1) f(~ω2) grep

12 (~r12, ~ω1, ~ω2) d~r12 d~ω1 d~ω2 . (58)
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If one approximates the pair distribution function by its low-density limit [Equation (55)], the free-energy can be
written as

A[f(~ω)]
NkT

=
Aiso

NkT
+

∫
f(~ω) lnΩ f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫ ∞∫

σ

[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] s(r12) f(~ω1) f(~ω2) r2
12dr12 dr̂12 d~ω1 d~ω2 . (59)

This free-energy corresponds to a generalised van der Waals – Onsager description of the nematic phase. Here, the
specific dependence of the contact distance σ(r̂12, ~ω, ~ω2) on orientation is omitted for compactness; note that we will
frequently omit this dependency in the text that follows.

D. Nonspherical molecules with orientationally dependent SW interactions

In the case of a centre-to-centre anisotropic square-well interaction defined in Equation (7), the shape function is
simply s(r12) = 1 over the range of the attraction, and the mean-field Helmholtz free energy (59) simplifies to

A[f(~ω)]
NkT

=
Aiso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫ λD∫

σ

[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] f(~ω1) f(~ω2) r2
12dr12 dr̂12 d~ω1 d~ω2

=
Aiso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫ [
r3
12

3

]λD

σ

[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] f(~ω1) f(~ω2) dr̂12 d~ω1 d~ω2

=
Aiso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫ (
λ3D3 − σ3

3

)
[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] f(~ω1) f(~ω2) dr̂12 d~ω1 d~ω2 . (60)

In order for the upper limit of the integral in the distance r12 to be identified with the square-well range λD for all
relative orientations, the range has to be larger than the long dimension of the particle; when this is not the case
the upper limit becomes a complicated function of orientation. If care is not employed, this can lead to an incorrect
evaluation of the mean-attractive energy (e.g., see reference84) as has been pointed by Garćıa et al.99. It is now
convenient to express the free energy in terms of angle averages of the individual configurational contributions as

A[f(~ω)]
NkT

=
Aid

iso

NkT
+

∫
f(~ω) lnΩ f(~ω) d~ω +

G(ρ)
Vm

〈Vexc(~ω1, ~ω2)〉~ω1,~ω2

− ρ

2kT

(
4πλ3D3

3

)
ε0 +

ρ

2kT
〈Vexc(~ω1, ~ω2)〉~ω1,~ω2

ε0

− ρ

2kT

(
4πλ3D3

3

)
〈P2(cos γ)〉~ω1,~ω2

ε2 +
ρ

2kT
〈Vexc(~ω1, ~ω2)P2(cos γ)〉~ω1,~ω2

ε2

− ρ

2kT

(
4πλ3D3

3

)
〈P4(cos γ)〉~ω1,~ω2

ε4 +
ρ

2kT
〈Vexc(~ω1, ~ω2)P4(cos γ)〉~ω1,~ω2

ε4 . (61)

In general the orientational averages of a function
J(~ω1, ~ω2) are defined as

〈J(~ω1, ~ω2)〉~ω1,~ω2
=

∫∫
J(~ω1, ~ω2)f(~ω1)f(~ω2)d~ω1d~ω2 .

(62)

Specific expressions for the orientational averages will be
obtained by using the trial function of Onsager1, as will
be shown in Section III F.
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An inspection of Equations (61) highlights a tight cou-
pling of the repulsive and attractive contributions to the
free energy in such systems (cf. References30,31); the av-
erage excluded volume of the molecular hard core multi-
plies the isotropic mean-field dispersion contribution, and
there are coupled averages of the excluded volume and
the anisotropic part of the attractive interactions (e.g., of
Maier-Saupe form) represented by the Legendre polyno-
mial terms. The same type of coupling will also become
apparent from an analysis of the expressions that we de-
velop for the systems with Lennard-Jonesium attractive
interactions in the next subsection. As a consequence
one can not just simply add an uncoupled Maier-Saupe
attractive contribution to the free energy of an isotropic
hard-core reference in order to develop an equation of
state of the nematic state. An inconsistent treatment
of this kind has nevertheless been reported for the per-
turbed hard sphere chain theory (PHSCT)85 and the sta-
tistical associating fluid theory (SAFT)106,107 of chain-
like mesogens.

E. Nonspherical molecules with orientationally
dependent LJ interactions

Another commonly employed centre-to-centre attrac-
tive interaction has the Lennard-Jones (Sutherland) form
of Equation (6). For example, in the early work of
Baron and Gelbart31 an attractive potential of this form
was used, though instead of the P2(cos γ) orientational
dependence they used the essentially equivalent cos2 γ
form. Attractive interactions of the Sutherland and
Maier-Saupe ∼ r−6

12 P2(cos γ) form have been examined
by Telo da Gama and co-workers52,80, but in this case

for spherically symmetric molecules with hard spherical
cores; Teixeira94 later refined this model to include a hard
ellipsoidal core, and a similar pair potential has also been
studied by Simões et al.101. In this context it is also
important to mention the Gay-Berne (GB) model163, an
anisotropic (ellipsoidal) version of the Lennard-Jones po-
tential, has been used extensively in simulation studies
of liquid crystals164,165 (see references103,166 for recent re-
views). Mean-field perturbation theories for the isotropic
fluid and nematic phases of GB particles have thus also
been developed79,88,103.

As a general example of the use of our approach for
interactions of this form, we develop the free energy for a
Lennard-Jonesium potential which conforms to the scal-
ing proposed by Parsons141. In this case the potential
is assumed to depend on the intermolecular distance r12

scaled by the orientationally dependent contact distance
σ(r̂12, ~ω1, ~ω2), rather than the molecular diameter D,
r∗ = r12/σ(r̂12, ~ω1~ω2):

s(r∗) =
[
σ(r̂12, ~ω1, ~ω2)

r12

]6

=
1

r∗6
when r12 ≥ σ(r̂12, ~ω1, ~ω2). (63)

In line with the Parsons141 approach, the pair correla-
tion function of the reference system of non-spherical
molecules grep

12 (~r12, ~ω1, ~ω2) can then be approximated
by that of an effective system of hard-spheres with the
same molecular volume [Equation 57]. The Helmholtz
free energy for the system of nonspherical hard-core par-
ticles with Lennard-Jonesium attractive interactions can
be obtained from Equation (58) as

A[f(~ω)]
NkT

=
Aid

iso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫ ∞∫

σ

[
σ

r12

]6

[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] ghs
12(r12/σ) f(~ω1) f(~ω2) r2

12dr12 dr̂12 d~ω1 d~ω2 ,(64)

After changing variables from r12 to r∗ = r12/σ(r̂12) we obtain

A[f(~ω)]
NkT

=
Aid

iso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT

∫∫∫ ∞∫

1

[
1
r∗

]6

[ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] ghs
12(r

∗) σ3 r∗2dr∗ f(~ω1) f(~ω2) r2
12dr12 dr̂12 d~ω1 d~ω2 .

(65)

We can make use of the mean-value theorem to factorise out the contact value of the hard-sphere distribution function
ghs
12(1; ρeff) of a system at an effective density ρeff when integrating over dr∗ (see the work by Gil-Villegas and co-
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workers161,162 for isotropic fluids of chain molecules):

A[f(~ω)]
NkT

=
Aid

iso

NkT
+

∫
f(~ω) ln Ω f(~ω) d~ω +

G(ρ)
Vm

∫∫
Vexc(~ω1, ~ω2) f(~ω1)f(~ω2) d~ω1 d~ω2

− ρ

2kT
Geff(ρ)

∫∫ ∫
σ3

3
dr̂12 [ε0 + ε2 P2(cos γ) + ε4 P4(cos γ)] f(~ω1) f(~ω2) d~ω1 d~ω2 , (66)

where we have defined the simple function of density as Geff(ρ) = ρ ghs
12(1; ρeff). As for the square-well potential the

expression can now be written in terms of the orientational averages of the separate configurational contributions:

A[f(~ω)]
NkT

=
Aid

iso

NkT
+

∫
f(~ω) lnΩ f(~ω) d~ω +

G(ρ)
Vm

〈Vexc(~ω1, ~ω2)〉~ω1,~ω2
− ρ

2kT
Geff(ρ)

{
ε0 〈Vexc(~ω1, ~ω2)〉~ω1,~ω2

+ ε2 〈Vexc(~ω1, ~ω2)P2(cos γ)〉~ω1,~ω2
+ ε4 〈Vexc(~ω1, ~ω2)P4(cos γ)〉~ω1,~ω2

}
. (67)

We have again expressed the orientational average of the
contact distance in terms of the excluded volume. This
represents a generalised Onsager Helmholtz free-energy
for a first-order perturbation theory of non-spherical
molecules with Lennard-Jonesium anisotropic attractive
interactions. The expression reduces to our generalised
van der Waals – Onsager free energy when the pair-
correlations are neglected in the attractive contribution,
i.e., ghs

12(1; ρeff) = 1; the corresponding expression for the
square-well system was given in Equation (61).

It may now be apparent to the reader that the free en-
ergy of a nematic phase of non-spherical molecules with
square-well or Lennard-Jonesium attractive interactions
can be expressed in terms of orientational averages of
the configurational contributions. These averages can
be evaluated numerically and the equilibrium free en-
ergy obtained by solving the appropriate Euler-Lagrange
equation [cf. Equation (54)]. As with the purely repul-
sive system examined in our previous work2, adopting
this procedure is computationally intensive, particularly
if one is interested in solving for the conditions of phase
equilibria and treating mixtures, therefore we seek to de-
velop more-convenient analytical expressions for the aver-
ages in terms of a parameter that characterises the degree
of orientational order in the system. The representation
of the orientational distribution function in terms of the
Onsager1 trial function provides an accurate and conve-
nient method of obtaining a tractable expression for the
free energy.2

F. The Onsager trial function

In his seminal paper, Onsager1 chose to represent the
orientational distribution function f(~ω) by the simple
form

fOTF (θ) =
α cosh [α cos (θ)]

4π sinh (α)
, (68)

This trial function depends on the azimuthal angle θ =
arccos(~ω · ~ωn), defined with respect to a reference vector

~ωn which corresponds to the director in a nematic phase,
and on the parameter α which describes the degree of
orientational order. When α = 0 there is no preferential
orientational ordering and the trial function takes on the
isotropic value of fOTF = 1/(4π).

The use of the Onsager trial function to obtain ana-
lytical expressions for the orientational averages such as
those described in the previous section has already been
discussed in detail2. It is relatively straight forward to
evaluate the functional corresponding to the ideal orien-
tational entropic contribution to the free energy. In this
case one obtains the following analytical function of the
orientational parameter:

Forient[fOTF] =
∫

fOTF (θ) {lnΩ fOTF (θ)} d~ω

= ln(α cothα)− 1 +
arctan(sinh α)

sinh α
.(69)

The evaluation of the orientational averages of the con-
figurational contributions due to the repulsive (excluded
volume) and attractive interactions is less trivial. We
have already demonstrated2 the relevance and general
applicability of the Onsager trial function in evaluat-
ing the angle average 〈J(~ω1, ~ω2)〉~ω1, ~ω2 ≡ 〈J(γ)〉~ω1, ~ω2 of
functionals that depend on the relative orientation γ =
arccos(~ω1 · ~ω2) of a given pair of anisotropic molecules.
The method has broad applicability to any functional of
the orientational distribution function f(~ω). It is impor-
tant to recall that the only requirement to implement
Onsager’s approach to a specific system is the feature of
cylindrical symmetry such that

J(γ) = J(π − γ) . (70)

The specific functional form chosen by Onsager1 was
J(γ) = sin γ, which corresponds to the leading contribu-
tion of the excluded volume for a system of hard rod-like
molecules.

Going beyond the original treatment of Onsager, one
can generalise the theory and express the configura-
tional contributions as functions of terms in sini γ (where
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i ≥ 0), to obtain analytical expressions for the func-
tionals2. Each term of the configurational free energy
thus satisfies the Onsager condition given by Equation
(70). The excluded volume (second virial coefficient for
a fixed relative orientation) of cylindrically symmetrical
molecules can be expressed as such a series in sin γ:

Vexc(γ) = 2B2(γ) =
∞∑

i=0

Ci sini γ, (71)

where the coefficients Ci depend on the specific form of
the repulsive interactions (shape of the molecule). It
should be noticed that in his original treatment, On-
sager1 considered only an excluded volume which was a
linear function of sin γ (appropriate for hard spherocylin-
ders). In the case of linear chains formed from tangent
hard-sphere segments the excluded volume can be cap-
tured by the first three terms (C0, C1 sin γ, and C2 sin2 γ)
to very high accuracy167,168. When one represents the ex-
cluded volume as a series in sin γ, it is clear from Equa-
tion (71) that, neglecting terms beyond O(sin4 γ), we can
write its orientational average as

〈Vexc(γ)〉~ω1, ~ω2
= C0 + C1 〈sin γ〉~ω1, ~ω2

+ C2

〈
sin2 γ

〉
~ω1, ~ω2

+ C3

〈
sin3 γ

〉
~ω1, ~ω2

+ C4

〈
sin4 γ

〉
~ω1, ~ω2

.

(72)

In the case of the configurational free energy of systems
with orientationally dependent attractions [e.g., Equa-
tion (61) and (67)] one has to evaluate the orientational
averages of the Legendre polynomials, and of products of
these with the excluded volume. If one uses the identity
cos2 γ ≡ 1−sin2 γ, then the terms in P2(cos γ), P4(cos γ),
Vexc(γ) P2(cos γ), and Vexc(γ)P4(cos γ) can also be ex-
pressed as a series in sin γ. The orientational averages of
the Legendre polynomials can be expressed simply as2

〈P2(cos γ)〉~ω1, ~ω2 = 1− 3
2
〈sin2 γ〉~ω1, ~ω2 = S2

2 (73)

and

〈P4(cos γ)〉 ~ω1, ~ω2
=

35
8

〈
sin4 γ

〉
~ω1, ~ω2

− 5
〈
sin2 γ

〉
~ω1, ~ω2

+ 1

= S2
4 . (74)

The angle average of the mixed term Vexc(γ)P2(cos γ)
can be written as

〈Vexc(γ)P2(cos γ)〉~ω1, ~ω2 = C0 + C1 〈sin γ〉~ω1, ~ω2 +
(

C2 − 3 C0

2

)
〈sin2 γ〉~ω1, ~ω2

+
(

C3 − 3 C1

2

)
〈sin3 γ〉~ω1, ~ω2 +

(
C4 − 3 C2

2

)
〈sin4 γ〉~ω1, ~ω2

(75)

where we again disregard terms beyond O(sin4 γ) in the
excluded volume. An examination of Equation (75) sug-
gests the following recurrence formula:

〈Vexc(γ)P2(cos γ)〉~ω1,~ω2 =
n∑

i=0

(
Ci − 3 Ci−2

2

)
〈sini γ〉~ω1,~ω2 ,

(76)

where Ci< 0 = 0. Proceeding in a similar fashion one
can obtain an expression for the configurational term in
〈Vexc(γ)P4(sin γ)〉~ω1, ~ω2 as

〈Vexc(γ)P4(cos γ)〉~ω1, ~ω2 = C0 + C1 〈sin γ〉~ω1, ~ω2 + (C2 − 5 C0) 〈sin2 γ〉~ω1, ~ω2

+ (C3 − 5 C1) 〈sin3 γ〉~ω1, ~ω2 +
(

35 C0

8
− 5 C2 + C4

)
〈sin4 γ〉~ω1, ~ω2 , (77)

which can also be expressed in the more compact form

〈Vexc(γ) P4(sin γ)〉~ω1, ~ω2 =
n∑

i=0

(
35
8

Ci−4 − 5 Ci−2 + Ci

)
〈sini γ〉~ω1, ~ω2 . (78)
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All of the configurational contributions to the free energy
can therefore be evaluated by determining the appropri-
ate orientational averages of powers of sin γ. The use of
the Onsager trial function to describe the orientational
distribution function f(~ω) greatly simplifies the task of
evaluating these contributions.2 The orientational aver-
ages of the general function J(γ) are obtained by means
of the following integral:

〈J(γ)〉~ω1,~ω2
=

1
2 sinh2 α

π∫

γ=0

cosh
{

α
√

2(1 + cos γ)
}

dJ(γ)

+ J(0) . (79)

By employing this generic formula, the various terms in
〈sini γ〉~ω1, ~ω2 can now be expressed as relatively simple
functions of the Onsager orientational parameter α ap-
pearing in Equation (68) which characterises the extent
of orientational order (sharpness of the orientational dis-
tribution function):

〈sin γ〉~ω1, ~ω2 =
π

2 sinh2 α
I2(2α) ; (80)

〈sin2 γ〉~ω1, ~ω2 =
2
3

(
1− S2

2

)

=
4 coth α

α
− 4 + 6 coth2 α

α2

+
12 coth α

α3
− 6

α4
; (81)

〈sin3 γ〉~ω1, ~ω2 =
3

2 sinh2 α

{π

4
[I2(2α)− I6(2α)]

}
; (82)

〈sin4 γ〉~ω1, ~ω2 =
8
35

(
−1 +

10
3
− 10

3
S2

2 + S2
4

)

= 8
{

2
α2

+
63
α4

+
270
α6

+
315
α8

− 2 coth α

[
15
α3

+
165
α5

+
315
α7

]

+ coth2 α

[
2
α2

+
60
α4

+
315
α6

]}
. (83)

We have introduced modified Bessel functions, which can
be represented in the standard integral form169:

I2j(2α) =
1
π

π∫

u=0

exp(2α cosu) cos(2ju)du . (84)

It is worth mentioning that modified Bessel functions
are particularly useful in that they can be expressed as
asymptotic expansions. In the context of moderately or-
dered nematic states an accurate representation of the
configurational terms can be achieved when only the first
few terms of the expansion in the orientational parameter

α are retained. The angle averages of Equation (80) and
(82) can thus be accurately represented as relatively sim-
ple algebraic expressions in α. We can now see how each
of the angle averages required for the evaluation of the
free energy depends only on the parameters Ci character-
ising the geometry of the molecule, and the variational
parameter α introduced in the definition of the trial func-
tion proposed by Onsager.

Once the separate orientational contributions have
been determined these can be combined as in Equa-
tions (61) or (67) (depending on the particular molecular
model) to express the Helmholtz free energy A(α) of the
system as a function of the parameter α. The equilib-
rium free energy of the nematic phase is then obtained
by determining the value of αeq that minimises the free
energy, corresponding to the condition:

∂ A(α)
∂ α

∣∣∣∣
eq

= 0 . (85)

This expression is clearly much easier to solve than the
Euler-Lagrange integral equation [see Equation (54)] that
has to be evaluated numerically when the free energy
A[f(~ω)] is described as the more general functional of
the orientational distribution function f(~ω). The other
thermodynamic properties such as the pressure (equation
of state) and chemical potential are also obtained from
the equilibrium free energy as analytical functions of α by
employing the standard thermodynamic relations: µ =
(∂A / ∂N)V T and P = −(∂A / ∂V )NT . An additional
advantage of using the Onsager trial-function method is
that, by re-arranging Equations (81) and (83), one can
express the nematic order parameter S2 (and the higher
order parameters S2i) as an algebraic expression in the
orientation parameter:2

S2 = 1− 3 coth αeq

αeq
+

3
α2

eq

; (86)

S4 = 1 +
45
α2

eq

+
105
α4

eq

−
(

10
αeq

+
105
α3

eq

)
cothαeq . (87)

As an example of the usefulness and versatility of the
theory developed here, we make use of the Onsager trial
function with our free energy (Equation 61) to derive an
analytical (algebraic) equation of state for hard sphero-
cylindrical molecules interacting through orientationally
dependent (Maier-Saupe, P2(cos γ)) square-well attrac-
tive potential in the following subsection. This algebraic
description represents the key highlight of our methodol-
ogy for using the Onsager trial function within the gener-
alised van der Waals formalism for nematic liquid crystals
developed in the previous sections.

G. Algebraic equation of state for SW
spherocylinders.

The equation of state of hard spherocylinders with ori-
entationally dependent (anisotropic) square-well attrac-
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tive interactions can be constructed from the general ex-
pressions for the angle averages of the configurational free
energy given in the previous section. The main physical
features of real mesogenic molecules (a hard anisotropic
core with dispersive interactions that depend on the rela-
tive molecular orientation) are taken into account in the
model. The equation of state can be represented in al-
gebraic form for such a model system. Such a repre-
sentation is particularly appropriate for use in engineer-
ing applications when a description of liquid-crystalline
phases is required. The approach that we follow here is
to examine the leading terms of the free energy obtained
with the Onsager trial function for moderately ordered
nematic states (large values of α). As we show in this
section it is possible to obtain a cubic solution for the ori-
entational parameter α of the equilibrium nematic state
by an appropriate truncation of the free energy.

The total free energy of nonspherical hard-core
molecules with isotropic and anisotropic square-well at-
tractive interactions was given in Equation (61). For the
sake of simplicity, we have chosen to assume a Maier-
Saupe form where the higher-order Legendre contribu-
tions to the attractive part of the free energy are not
present (i.e., ε4 = 0):

A[f(~ω)]
NkT

=
Aid

iso

NkT
+ Forient[f(~ω)] +

G(ρ)
Vm

〈Vexc(γ)〉~ω1,~ω2

− ρ

2
ε0
kT

{
4 π D3

3
λ3

[
1 +

ε2
ε0
〈P2(sin γ)〉~ω1,~ω2

]

−
[
〈Vexc(γ)〉~ω1,~ω2

+
ε2
ε0
〈Vexc(γ)P2(sin γ)〉~ω1,~ω2

]}
.

(88)

The ideal isotropic contribution to the free energy Aid
iso

is simply proportional to ln ρ [Equation 20] and does not
depend on the orientational parameter α.

On describing the free energy of the anisotropic system
with the Onsager trial function, the contribution due to
the ideal orientational entropy Forient[f(~ω)] can be ex-
pressed in terms of orientational parameter α as [Equa-
tion (69)]

Forient[fOTF] = ln(α cothα)− 1 +
arctan(sinhα)

sinhα
≈ ln α− 1 +O(exp[−α]) . (89)

The approximate form of the ideal orientational entropy
is obtained for moderately ordered nematic states where
α >> 1. In order to determine the configurational con-
tributions to the free energy that arise from the repulsive
and attractive intermolecular interactions it is necessary
to specify the features of the molecular model. In this
example we develop the theory for hard spherocylinders
with central square-well interactions [see Figure (1)]. As
has been already mentioned, the hard spherocylinders
comprise a cylinder of length L with hemispherical caps
of diameter D at each end. The square-well interaction
[cf. Equation (7)] acts from the centre of mass of the

FIG. 1: Our model for the attractive rod-like molecules con-
stitutes a hard spherocylinder core of aspect ratio (L + 1)/D
and a spherical square-well (SW) potential characterised by
isotropic and anisotropic interactions of strengths ε0 and ε2,
and range λD. In the figure we have depicted the shortest
range (dotted line) that circumscribes the hard core charac-
terised by λD = L + D (the so-called “square peg in a round
hole” model)

hard rods and has a range λD ≥ L + D so that one
can obtain analytical expressions for the appropriate in-
tegrals [see Section (III D)]; the attractive square-well is
assumed to consist of an isotropic part of depth −ε0 and
an anisotropic Maier-Saupe part (second Legendre form)
of depth −ε2 P2(cos γ). The excluded volume of a pair of
spherocylinders is given by1

Vexc(γ) = C0 + C1 sin γ , (90)

where the constants C0 = 4
3 π D3 + 2π LD2 and

C1 = 2L2D depend on the molecular dimensions.
It is clear from Equation (88) that the orienta-
tional averages 〈Vexc(γ)〉~ω1,~ω2

, 〈P2(sin γ)〉~ω1,~ω2
, and

〈Vexc(γ)P2(sin γ)〉~ω1,~ω2 have to be evaluated to give the
free-energy of the nematic state. The orientational av-
erage of the excluded volume can be determined from
〈sin γ〉~ω1,~ω2

[see Equations (72) and (80)], the average of
the second Legendre polynomial 〈P2(sin γ)〉~ω1,~ω2

can be
determined from

〈
sin2 γ

〉
~ω1,~ω2

[see Equations (73) and
(81)], and the mixed average 〈Vexc(γ)P2(sin γ)〉~ω1,~ω2 is
a function of 〈sin γ〉~ω1,~ω2

,
〈
sin2 γ

〉
~ω1,~ω2

,
〈
sin3 γ

〉
~ω1,~ω2

[see
Equations (75) and (82)], and with C2 = C3 = C4 = 0.
This means that the free-energy of our model can be
evaluated from the average of the first three moments of
sin γ. For large α the average of the moments given in
Equations (80) to (83) can be approximated by retaining
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terms up to 1/α3/2:

〈sin γ〉~ω1,~ω2 ≈
√

π

(
1

α1/2
− 15

16α3/2

)
+O

(
1

α5/2

)
(91)

〈sin2 γ〉~ω1,~ω2 ≈
4
α

+O
(

1
α2

)
(92)

〈sin3 γ〉~ω1,~ω2 ≈
√

π
6

α3/2
+O

(
1

α5/2

)
(93)

〈sin4 γ〉~ω1,~ω2 ≈ 0 +O
(

1
α2

)
. (94)

These expressions are generalisations of the simpler lin-
ear expressions for the orientational averages of the con-
figurational functionals of hard-core molecules presented
by Odijk130 with the Gaussian trial function. For Equa-
tions (91) and (93) we have made use of the asymptotic
expansion169

π

2 sinh2 α
Iν(2α) ≈ √

π





1
α1/2

+
∞∑

i=1


(−1)i

i∏
j=1

4 ν2 − (2 j − 1)2

i!(16)i α(2 i+1)/2








(95)

to represent the modified Bessel function Iν(2α) (where here ν = 2, 6). The orientational averages of the configura-
tional contributions can thus be approximated by

〈Vexc(γ)〉~ω1,~ω2
= C0 + C1 〈sin γ〉~ω1, ~ω2 ≈ C0 + C1

√
π

[
1

α1/2
− 15

16
1

α3/2
+O

(
1

α5/2

)]
(96)

〈P2(sin γ)〉~ω1,~ω2 = 1− 3
2
〈sin2 γ〉~ω1, ~ω2 = S2

2 ≈ 1− 6
α

+O
(

1
α2

)
(97)

〈Vexc(γ) P2(sin γ)〉~ω1,~ω2 = C0 + C1 〈sin γ〉~ω1, ~ω2 −
3
2

{
C0 〈sin2 γ〉~ω1, ~ω2 + C1 〈sin3 γ〉~ω1, ~ω2

}

≈ C0 + C1

√
π

1
α1/2

− 6 C0
1
α

+
159 C1

√
π

16
1

α3/2
+O

(
1

α5/2

)
(98)

〈P4(sin γ)〉~ω1, ~ω2 =
35
8

〈
sin4 γ

〉
~ω1, ~ω2

− 5
〈
sin2 γ

〉
~ω1, ~ω2

+ 1 = S2
4 ≈ 1− 20

α
+O

(
1
α2

)
. (99)

Note that though not necessary in this particular case
we have included the expression for

〈
sin4 γ

〉
~ω1,~ω2

and
〈P4(sin γ)〉~ω1, ~ω2 for the sake of completeness; in the case
of systems with more complex forms of the excluded vol-
ume interaction or with attractive interaction including

higher order Legendre terms these contributions would
have to be included.

The total Helmholtz free energy of the nematic phase
[Equation (88)] can now be expressed as an algebraic
function of the Onsager orientational parameter α as

A(α)
NkT

=
Aid

iso

NkT
+ ln α− 1 +

G(ρ)
Vm

[
C0 + C1

√
π

(
1

α1/2
− 15

16
1

α3/2

)]

− ρ

2
ε0
kT

{[
4 π

3
(λD)3 − C0

] (
1 +

ε2
ε0

)
− C1

√
π

(
1 +

ε2
ε0

)
1

α1/2

+
ε2
ε0

[
C0 − 4 π

3
(λD)3

]
6
α

+
15
16

C1

√
π

(
1 +

53
5

ε2
ε0

)
1

α3/2

}
. (100)

This expression is much more tractable than the full func- tional form of Equation (88), and, as we will show, pro-
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vides one with a simple and accurate algebraic equation
of state which is ideal for the modelling of the nematic
phase in engineering applications.

The numerical advantage of such an approach becomes
apparent when one determines the equilibrium nematic

state. In this case instead of having to solve a Euler-
Lagrange integral equation [cf. Equation (54)], the free
energy is simply minimised with respect to the Onsager
parameter α (by equating its derivative to zero):

∂

∂ α

[
A(α)
NkT

]
=

1
α
− 1

2
C1

√
π

[
ρ

2
ε0
kT

(
1 +

ε2
ε0

)
+

G(ρ)
Vm

]
1

α3/2
+ 6 ρ

ε2
kT

[
C0 − 4 π

3
(λD)3

]
1
α2

+
45
32

C1

√
π

[
ρ

2
ε0
kT

(
1 +

53
5

ε2
ε0

)
+

G(ρ)
Vm

]
1

α5/2
= 0 . (101)

In order to express the solution for the equilibrium orien-
tational parameter αeq in a compact cubic form we define
the parameter χ = α1/2 which leads to

∂

∂ α

[
A(α)
NkT

]
=

1
χ5

{
a0 + a1 χ + a2 χ2 + χ3

}
= 0 , (102)

where the state/molecule dependent coefficients are de-
fined as

a0 =
45
32

C1

√
π

[
ρ

2
ε0
kT

(
1 +

53
5

ε2
ε0

)
+

G(ρ)
Vm

]
(103)

a1 = 6 ρ
ε2
kT

[
C0 − 4 π

3
(λD)3

]
(104)

a2 = −1
2

C1

√
π

[
ρ

2
ε0
kT

(
1 +

ε2
ε0

)
+

G(ρ)
Vm

]
. (105)

It is immediately clear that the equilibrium value for χ
and therefore α can be evaluated after solving the cubic
polynomial that appears within curly brackets in Equa-
tion (102). We use the relatively simple trigonometric
formulation of Nickalls170 to solve the cubic polynomial
for the value of α at equilibrium:

αj =
1
9

{
a2 − 2

√
a2

2 − 3a1 cos

(
2jπ

3
+

1
3

arccos
−27

[
a0 − 1

3a1a2 + 2
27a2

3
]

2[a2
2 − 3a1]

3/2

)}2

, (106)

where j = {0, 1, 2}. As in the case of the purely re-
pulsive system,2 the largest root α2 = αeq corresponds
to the equilibrium value of the orientational parameter.
The roots α0 and α1 correspond to the “isotropic” and
unstable solutions. One should note that the expressions
do not provide a good approximation of the thermody-
namics of the system for these lower values of α as the
free energy expansion involves a truncated series. The
correct expression with α = 0 is used to represent the
isotropic phase; the specific expressions for the Helmholtz
free-energy, chemical potential and pressure (equation of
state) will be given at the end of this section.

The phase coexistence between the isotropic and
anisotropic (nematic) states is established by ensuring
that the phases are in chemical and mechanical equilib-
rium, i.e., the equality of chemical potential and pressure.

The expression for the chemical potential is given by

µ

kT
=

(
∂(A/kT )

∂N

)

V

=
µ0

kT
+ ln ρ− 1 + ln αeq

+
1

8 Vm

µhs

kT

[
C0 + C1

√
π

(
1

α
1/2
eq

− 15
16

1

α
3/2
eq

)]

− ρ

2
ε0
kT

{
4 π

3
(λD)3

[
1 +

ε2
ε0

(
1− 6

αeq

)]

− C0

(
1 +

ε2
ε0

)
− C1

√
π

(
1 +

ε2
ε0

)
1

α
1/2
eq

+
ε2
ε0

C0
6

αeq
+

15
16

C1

√
π

(
1− 53

5
ε2
ε0

)
1

αeq
3/2

}
.

(107)
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where the reference chemical potential is

µ0

kT
= ln

( V
4π

)
, (108)

and the term in µhs corresponds to the chemical poten-
tial of the effective hard-sphere system which is obtained
from the Carnahan and Starling expression (cf. Equation
(23)):

µhs

kT
=

3 η3 − 9 η2 + 8η

(1− η)3
. (109)

It is more usual to express the density dependence in
terms of the packing fraction η = ρVm, where in this
case the volume of the hard spherocylinder is given by
Vm = VHSC = π/6 D3 + π/4 LD2.

Once expressions for the Helmholtz free energy and
chemical potential are known, the pressure can be ob-
tained from the thermodynamic relationship

A = Nµ− pV

A

NkT
=

µ

kT
− pV

NkT
. (110)

The compressibility factor of the nematic phase of attrac-
tive hard-spherocylinders can thus be written as

Z =
pV

NkT
=

µ

kT
− A

NkT

= 1 +
Zhs − 1
8 Vm

[
C0 + C1

√
π

(
1

α
1/2
eq

− 15
16

1

α
3/2
eq

)]

− ρ

4
ε0
kT

{
4 π

3
(λD)3

[
1 +

ε2
ε0

(
1− 6

αeq

)]

− C0

(
1 +

ε2
ε0

)
− C1

√
π

(
1 +

ε2
ε0

)
1

α
1/2
eq

+
ε2
ε0

C0
6

αeq
+

15
16

C1

√
π

(
1− 53

5
ε2
ε0

)
1

αeq
3/2

}
.

(111)

where Zhs is the Carnahan and Starling145 hard-sphere
compressibility factor:

Zhs =
1 + η + η2 − η3

(1− η)3
. (112)

In essence this is a generalisation of the van der Waals26
(or augmented van der Waals152–154) equation of state to
deal with anisotropic (nematic) phases of non-spherical
molecules with orientationally dependent attractive in-
teractions; it goes beyond the van der Waals treatment
in that the Parsons-Lee scaling applied to the Onsager
theory is used to give an accurate representation of the
anisotropic repulsive cores, and furthermore orientation-
ally dependent attractive pair interactions are treated.
The cubic equation for the parameter αeq that charac-
terises the degree of orientation order of the equilibrium

state [cf. Equation (106)] provides a fully algebraic equa-
tion of state of the system. This is the first analytical
equation of state of its kind that has been developed
to describe anisotropic phases at the microscopic level
of specific molecular interactions. We feel that such an
equation is of particular relevance to the description of
fluid phase equilibria of orientationally ordered states in
practical applications where fast and reliable computa-
tions are required.

Before our examination of the phase equilibria is pre-
sented for specific systems it only remains to provide
the corresponding expressions for the Helmholtz free
energy, chemical potential, and pressure (compressibil-
ity factor) of the isotropic state of hard-spherocylinders
with orientationally dependent attractive interactions.
In the case of isotropic phases the single particle ori-
entational distribution function is constant for all ori-
entations: f(~ω) = fOTF(~ω) = 1 / 4π. When this value
of f(~ω) for the isotropic phase is substituted in the
free energy of the nematic [Equation (61)] the contri-
bution due to the ideal orientational entropy [Equa-
tion (43)] disappears, i.e., Forient [1 / 4π] = 0, and
the respective configurational contributions can easily
be integrated to give 〈Vexc(γ)〉~ω1, ~ω2 = C0 + C1 π/4,
〈P2(sin γ)〉~ω1, ~ω2 = S2

2 = 0, 〈P4(sin γ)〉~ω1, ~ω2 = S2
4 = 0,

and 〈Vexc(γ)P2(sin γ)〉~ω1, ~ω2 = −C1 π/32. The Helmholtz
free energy, chemical potential, and compressibility fac-
tor of the isotropic phase of our model mesogen can thus
be expressed as

A[f(~ω)]
NkT

=
Aid

iso

NkT
+ Forient[f(~ω)] +

G(ρ)
Vm

(
C0 +

π

4
C1

)

− ρ

2
ε0
kT

[
4 π

3
(λD)3 − C0 +

π

4
C1

(
1
8

ε2
ε0
− 1

)]
,

(113)

µ

kT
=

µ0

kT
+ ln ρ +

1
8 Vm

µhs

kT

(
C0 +

π

4
C1

)

− ρ

2
ε0
kT

[
4 π

3
(λD)3 − C0 +

π

4
C1

(
1
8

ε2
ε0
− 1

)]
,

(114)

and

Z =
pV

NkT
= 1 +

Zhs − 1
8 Vm

(
C0 +

π

4
C1

)

− ρ

4
ε0
kT

[
4 π

3
(λD)3 − C0 +

π

4
C1

(
1
8

ε2
ε0
− 1

)]
.

(115)

From these expressions one can readily obtain the
vapour-liquid coexistence branches for the isotropic fluid,
and together with the corresponding relations (106),
(107) and (111) for the anisotropic fluid one can also
determine the boundaries of vapour-nematic and liquid-
nematic equilibria.
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IV. RESULTS

The liquid-crystalline phase transitions of model meso-
gens with attractive interactions have been studied with
numerous theoretical approaches, including the Flory lat-
tice treatments109–117, the Maier-Saupe and other molec-
ular field theories5,6,12,137–140, and a host of numerical
studies with generalised van der Waals (perturbative),
integral equation and density functional theories29–108.
In this section we present the fluid phase equilibria and
orientational ordering for molecules with anisotropic re-
pulsive and attractive and interactions determined using
the compact algebraic equation of state developed in the
previous section. As we have seen, a generalised van
der Waals – Onsager Helmholtz free energy for the ne-
matic phase of hard spherocylinders with square-well at-
tractive interactions can be expressed as Equation (61).
Here, a Parsons-Lee scaling of the Onsager free energy is
used to determine the repulsive contribution, and a first-
order perturbation theory (described at the mean-field
level) is employed to determine the effect of the attrac-
tive interactions. We employ an Onsager trial function to
simplify the treatment of the orientational order by ex-
pressing the free energy as a function of an orientational
parameter α (see Section III F). When only the lead-
ing terms in the orientational parameter α are retained,
a cubic equation (106) can be solved to give algebraic
equations for the free energy [Equation (100)], chemical
potential [Equation (107)], and pressure (compressibility
factor) [Equation (111)]. To assess the adequacy of our
algebraic equation of state, the phase behaviour obtained
with the analytical expressions is first compared with the
results obtained with the numerical solution of the full
Bessel integrals involved in the Onsager trial-function de-
scription. It is important to point out that positionally
ordered states such as smectic and solid phases are not
considered in our current study. As a consequence it is
possible that some of the high-density states examined
in our calculations may be metastable with respect to
smectic or solid ordering.

We start by examining a system of hard spherocylin-
ders of length L and diameter D with isotropic square-
well interactions of range λD and well depth−ε0 (see Fig-
ure 1); the higher-order orientationally dependent contri-
butions are all zero in the first instance, i.e., ε2 = ε4 = 0.
Although the attractive interactions do not in this case
depend on the relative orientations of the particles for
this simple model, it is important to stress that the in-
clusion of purely isotropic attractive pair interactions still
gives rise to a free-energy contribution with an apprecia-
ble angular dependence as a result of a coupling with
the anisotropic hard-core interactions30,31. The shape
of the model mesogen is characterised by the length-to-
breadth ratio L/D (corresponding to an aspect ratio of
L/D+1). In the theory developed in the previous section
we have assumed that the range is always λ ≥ L/D + 1
to ensure the proper decomposition of the repulsive and
attractive parts of the integrals99. It is convenient to ex-

0.0 0.1 0.2 0.3 0.4 0.5
2.5

3.0
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L
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FIG. 2: The temperature-density fluid phase diagram (T ∗ =
kT/ε0 and η = ρ VHSC) for attractive spherocylinders with a
length-to-breadth ratio of L/D = 5 and an attractive range
of λ = 6. The scaled Onsager free energy functional (sec-
tion III F) is used to describe the system with the Onsager
trial function; the representation with the full modified Bessel
function [cf. Equation (61)] is represented by the continu-
ous curve, and the truncated algebraic solution [cf. Equation
(100)] by the dashed curve; there is virtually no difference
between the results obtained with the truncated and the full
Bessel functions. The dotted line corresponds to the vapour-
liquid-nematic three phase coexistence separating the vapour-
liquid (V − L), liquid-nematic (L −N), and vapour-nematic
(V −N) regions.

amine the phase behaviour in terms of a reduced tem-
perature defined as T ∗ = kT/ε0, a reduced pressure
P ∗ = PVm/ε0, and a reduced density (packing fraction)
η = ρVm, where the volume of the hard spherocylinder is
Vm = VHSC = πD3/6 + πLD2/4.

The fluid phase behaviour for the system of L/D = 5
hard spherocylinders with isotropic square-well attrac-
tions of range λ = 6 is presented as a temperature-density
projection of the phase diagram in Figure 2. In keep-
ing with the previous theoretical studies for this type of
model (see References48,49,52,53,68,70,72,73,79,80,95,96,99,109
as typical examples), three-regions of fluid phase equilib-
ria are apparent. This type of vapour-liquid-nematic (V-
L-N) phase behaviour has also been observed in simula-
tions of Gay-Berne particles165, and of hard spherocylin-
ders with isotropic (depletion)171 and anisotropic93 at-
tractive interactions for appropriate choices of the molec-
ular aspect ratio and attractions. Note that in these
studies, high-density coexistence regions involving posi-
tionally ordered phases are also determined; for the origi-
nal parametrisation of the Gay-Berne potential simulated
by de Miguel et al.164, both vapour-liquid-smectic and
liquid-nematic-smectic triple points are exhibited by the
system. The phase equilibria between vapour (V) and
isotropic liquid (L) states determined with the isotropic
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equation of state [cf. Equations (113), (114), and (115)]
is seen at low and intermediate densities; as with other
equations of state of the general van der Waals form, the
vapour-liquid equilibrium is bounded at higher temper-
ature by a critical point (T ∗c = 5.32 and ηc = 0.105).
The coexistence region between isotropic liquid (L) and
anisotropic nematic (N) states can be seen at higher
densities (packing fractions of ∼ 40%). In the high-
temperature limit the thermodynamic properties of the
system are dominated by the repulsive interactions, and
the L-N transition rapidly tends to that of the hard-
core system2, with limiting coexisting packing fractions
of ηL = 0.406 and ηN = 0.427. As the temperature is
lowered the L-N region gets broader, which is in line
with the well accepted view that even isotropic attrac-
tive interactions enhance the degree of alignment of the
system and the first-order character of the phase transi-
tion (e.g., see References31,35,40,45,52,58,59,68,99). At suffi-
ciently low temperatures, the L-N region merges into the
vapour-liquid curve at the vapour-liquid-nematic (V-L-
N) triple point corresponding to T ∗t = 3.31, ηV = 0.001,
ηL = 0.351 and ηN = 0.436. Below the triple-point
temperature, only vapour-nematic (V-N) coexistence is
seen. The L-N and V-N phase boundaries determined
with the full numerical description of the Bessel function
[cf. Equation (61) in Section III F] are compared with
those determined with the algebraic expression [cf. Equa-
tion (100)] in Figure 2. It is very gratifying to see that the
algebraic solution obtained from a truncated free-energy
provides an essentially identical description to the full
numerical solution of the configurational contributions
as described with the Onsager trial function; only a very
slight deviation in the density of the coexisting nematic
state is found. In view of the positive endorsement of
the accuracy of the algebraic description, this simplified
form of the equation of state will be used exclusively from
now on to describe the fluid phase equilibria of the other
model systems.

The effect of varying the range of the isotropic attrac-
tive interaction (ε0 6= 0 and ε2 = 0) for hard spherocylin-
ders with a fixed length-to-breadth ratio of L/D = 5 is
now examined. The temperature-density projection of
the fluid phase equilibria is shown in Figure 3 for attrac-
tive ranges of λ = 6, 10 and 15. The vapour-liquid phase
equilibrium is much more sensitive to the range of the
isotropic attractive interaction than the liquid-nematic
coexistence. The vapour-liquid critical temperature is
seen to rapidly increase with increasing range; a cor-
responding increase in the vapour-liquid-nematic triple
point temperature is also found. The extent of the liquid-
nematic coexistence does not vary much with the range
of the attractive potential, though a slight shift in the co-
existence boundaries to higher density is apparent. Does
the phase behaviour of such a model conform to the van
der Waals principle of corresponding states172? In order
to answer this question we have replotted the fluid phase
equilibria in terms of a temperature which is reduced in
a van der Waals dimensionless form in terms of the inte-
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FIG. 3: The temperature-density fluid phase diagram (T ∗ =
kT/ε0 and η = ρ VHSC) for attractive hard spherocylinders
with a length-to-breadth ratio of L/D = 5 and a varying
attractive range λ (denoted on the figure). Our generalised
van der Waals – Onsager free energy functional is used to
describe the system with the Onsager trial function [Equa-
tion (100)]. The dotted line corresponds to the vapour-liquid-
nematic three phase coexistence.

grated attractive constant, T ∗vdW = kT/[ε0(λ3− 1)]. One
can see from Figure 4, that as the range of the isotropic
attraction is increased the vapour-liquid coexistence of
the system converges onto a universal corresponding-
states curve (also see the work by Williamson and Gue-
vara96). This is expected as we are modelling the fluid
phase equilibria with an augmented van der Waals equa-
tion of state; for large ranges of the attractive interactions
one tends to the mean-field limit. More interestingly, the
isotropic liquid-nematic (L-N) coexistence also appears
to converge to a universal corresponding-states solution.
The L-N coexistence region of the system with a range of
λ = 6 is seen to be shifted to lower densities, but those
with λ = 10 and 15 are almost indistinguishable. Though
not apparent at the scale of Figure 4, the L-N coexistence
densities of all of these systems approach the limiting val-
ues of the repulsive reference at sufficiently high tempera-
tures (with corresponding packing fractions of ηL = 0.406
and ηN = 0.427). It is clear from these findings that the
range of the attractive interactions does not qualitatively
affect the type of fluid phase behaviour that is observed.
Teixeira84 has reported the possibility of an additional
region of nematic-nematic coexistence when the range of
the spherical-well is made significantly smaller than the
aspect ratio of the particle, but this finding has been
brought into question99. We should also add that solid-
solid phase behaviour is possible for spherical molecules
with very short ranged attractions173,174; a study of this
type of behaviour is omitted from our current work as
the focus is on nematic liquid-crystalline phases.
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FIG. 4: Corresponding states representation of the
temperature-density fluid phase diagram (T ∗vdW =
kT / [ε0(λ

3 − 1)] and η = ρ VHSC) for attractive hard
spherocylinders with a length-to-breadth ratio of L/D = 5
and a varying attractive range λ (denoted on the figure). The
generalised van der Waals – Onsager free energy functional is
used to describe the system with the Onsager trial function
[Equation (100)].
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FIG. 5: The temperature-density fluid phase diagram (T ∗ =
kT/ε and η = ρ VHSC) for attractive hard spherocylinders of
varying length-to-breadth ratio L/D (labelled on the figure)
and attractive range λ = L/D + 1. The generalised van der
Waals - Onsager free-energy functional is used to describe the
system with the Onsager trial function [Equation (100)]. The
dotted line corresponds to the vapour-liquid-nematic three-
phase coexistence line. The vapour-liquid coexistence be-
comes metastable for large values of the aspect ratio (e.g.,
dashed curve L/D = 15).

0.0 0.1 0.2 0.3 0.4 0.5

10

12

14

16

V-LV L L - N

V - N

N  

 

T*

a )

10 11 12 13 14
0.0

0.2

0.4

0.6b )

V

L
N  

 

P*

T*

FIG. 6: (a) The temperature-density (T ∗ = kT / ε0 and
η = ρVHSC), and (b) the corresponding pressure-temperature
(P ∗ = PVHSC / ε0) fluid phase diagrams for attractive hard-
spherocylinders with a length-to-breadth ratio of L/D = 10
and an attractive range λ = L/D + 1 = 11. The gener-
alised van der Waals - Onsager free-energy functional is used
to describe the system with the Onsager trial function [Equa-
tion (100)]. The dotted line corresponds to the vapour-liquid-
nematic three phase coexistence separating the vapour-liquid
(V −L), liquid-nematic (L−N), and vapour-nematic (V −N)
regions.

We now examine the effect of varying the molecular
length-to-breadth ratio L/D on the fluid phase behaviour
of hard spherocylinders with enveloping isotropic square
wells of range λ = L/D+1 (“square peg in a round hole”
model68,70). Qualitatively different types of behaviour
are exhibited by the system in this case depending on
the asymmetry of the molecule. The effect of the aspect
ratio on the fluid phase equilibria and orientational order-
ing for models of this type has already been investigated
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in some detail (e.g., see References53,80,84,92,95,102). The
findings obtained with Flory lattice models for solutions
of rigid rod-like polymers109,116 are also particularly rel-
evant to our study because a direct analogy can be made
between a solvent-rod mixture and a lattice-gas system
of purely attractive rods in vacuum. Similarly, the work
on models of ideal polymers and rod-like colloids73,175
is relevant as the effect of the polymer components can
be averaged out to provide the behaviour of pure rod-like
molecules with effective attractions (Asakura-Oosawa de-
pletion interactions).

The phase diagram of the system with L/D = 5 and
λ = 6 is re-plotted in Figure 5 together with that of the
longer molecule with L/D = 10 and λ = 11. As expected
the liquid-nematic region becomes much more extensive
as the aspect ratio is increased: the vapour-liquid re-
gion is seen to have shrunk considerably with respect to
that of the L/D = 5 system (when measured relative to
the triple point), while the liquid-nematic region covers
a wide range of densities. There is also a corresponding
increase in vapour-liquid-nematic triple-point tempera-
ture. Quantitatively, however, the phase behaviour of
the models with L/D = 5 and L/D = 10 is the same.
An enlargement of the fluid phase diagram and the corre-
sponding pressure-temperature projection for the system
with L/D = 10 and λ = 11 are shown in Figures 6 a)
and b): the stable vapour, liquid, and nematic PT re-
gions are clearly visible as are the V-L critical and the
V-L-N triple points. Following the classification scheme
of Varga et al.95 this type of fluid phase behaviour is
referred to as type I behaviour.

Flory and co-workers109,116, and Khokhlov and Se-
menov53 showed early on that as the aspect ratio of the
molecules is increased, there is a transition to a differ-
ent type of fluid phase diagram, classified as type II be-
haviour95. Type II phase behaviour is exhibited by the
system of L/D = 15 hard-spherocylinders with an en-
veloping isotropic square well of range λ = 16 as can
be seen in Figure 5. In this case the vapour-nematic
and liquid-nematic phase boundaries found for type I
behaviour have merged into a single isotropic-nematic
(I-N) region; the vapour-liquid coexistence curve is now
metastable with respect to the I-N coexistence. As a
consequence type II systems do not exhibit a vapour-
liquid-nematic triple point. The existence of type II be-
haviour has been reported experimentally for solutions
of the polypeptide polycarbobenzoxylysine (PCBL) in
dimethylformamide (DMF)176, which can effectively be
thought of as a pseudo one-component suspension of rod-
like macro particles, and has now also been confirmed by
simulation for a related model171.

We display the phase behaviour of molecules with large
aspect ratios specifically in Figure 7. The systems of
hard spherocylinders with a length-to-breadth ratio of
L/D = 40 and a attractive range of λ = 41 are still seen
to exhibit type II phase behaviour. As the aspect ra-
tio is increased further a new region of nematic-nematic
coexistence is found at densities above those of the I-N
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FIG. 7: The temperature-density fluid phase diagram (T ∗ =
kT/ε0 and η = ρ VHSC) for attractive hard spherocylinders of
varying length-to-breadth ratio L/D (labelled on the figure)
and attractive range λ = L/D + 1. The generalised van der
Waals - Onsager free energy functional is used to describe the
system with the Onsager trial function [Equation (100)]. For
large aspect ratio above L/D ∼ 45 a new region of nematic-
nematic (NI-NII) coexistence develops, and in this case the
dotted line represents a vapour-nematic-nematic three-phase
line.

boundary, as can been for the system with L/D = 50 and
λ = 51 in Figure 7. A narrow V-N region is now found at
relatively low densities at higher temperatures, and be-
low a vapour-nematic-nematic triple-point temperature
there is a relative broad region of V-N coexistence. This
can be seen more clearly in the enlarged representation
of the temperature-density phase diagram shown in Fig-
ure 8 a). The corresponding pressure-temperature pro-
jection for this system is given in Figure 8 b): in this
case the N-N coexistence is bounded by the N-N criti-
cal and the V-N-N triple points. This type of nematic-
nematic coexistence, classified by Varga et al.95 as type
III behaviour, was already predicted in the early lattice
calculations solutions of rigid polymers by Flory and co-
workers109,116). In their very interesting paper, Khokhlov
and Semenov53 re-examined this type of N-N behaviour
using an Onsager-like theory for a system of pure rods
with attractive interactions, showing the transitions be-
tween type I, II, and III phase behaviour with increasing
molecular aspect ratio. We should also mention that co-
existence between nematic phases has also been found
in mixtures of hard rods of different length or thick-
ness (e.g., see References158–160,177–182). It is pleasing to
see that our simple algebraic equation of state (obtained
from a generalised van der Waals – Onsager free energy
with a cubic solution of the orientational parameter) also
predicts the three possible types of fluid phase behaviour
exhibited by such systems.

Type III behaviour with the characteristic feature of
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coexistence between two nematic phases has been iden-
tified in solutions of the polypeptide poly(γ-benzyl-L-
glutamate) (PBLG) in DMF176,183 or benzyl alcohol184,
and in aqueous solutions of the rod-like polysaccharide
schizophyllan185,186. Interestingly, the complete phase
diagram obtained for PBLG rods (with a molecular
weight of 310,000 g/mol) dispersed in DMF176 is qual-
itatively very similar to the type III behaviour shown in
8 a); the apparent aspect ratio of the PBLG rods176 is
expected to be somewhere between 50 and 130 which is
above the threshold of ∼ 45 where we predict the tran-
sition from type II to III. We should note in this case
that the PBLG rods form cholesteric (chiral nematic)
phases187,188, though the difference in free energy be-
tween the nematic and cholesteric states (and as a con-
sequence the main features of the fluid phase behaviour)
are expected to be very small108.

In the last part of our work we focus on the effect of
including anisotropic attractive interactions on the fluid
phase behaviour of such systems. The model in ques-
tion is a hard spherocylinder with both isotropic and
anisotropic (ε0 6= 0 and ε2 6= 0) square-well interactions
of range λ = L/D + 1 (see Section III D). As with the
studies of Gelbart30–33,33, Cotter35–41, and Vertogen42–47

and Telo da Gama52,80 and co-workers, the anisotropic
interaction is assumed to be of the Maier-Saupe (second
Legendre polynomial) form. It is now convenient to in-
troduce an additional reduced parameter ε∗ = ε2/ε0 to
characterise the strength of the anisotropic interaction
relative to the isotropic interaction; a value of ε∗ = 0
would correspond to the systems studied earlier in this
section.

The temperature-density projection of the fluid phase
behaviour for L/D = 5 hard spherocylinders with
isotropic and anisotropic square-well interactions of range
λ = 6 is depicted for different values of the relative
strength ε∗ in Figure 9. As expected the introduction
of the anisotropic attractive interactions of the Maier-
Saupe form enhances the propensity of the system to
form orientationally ordered states. The liquid-nematic
region broadens significantly as ε∗ is increased, while
the vapour-liquid coexistence curve remains unaltered
(in an isotropic phase the orientational average of the
Maier-Saupe attractive interaction is zero). As a conse-
quence, the vapour-liquid-nematic triple point is seen to
increase. For sufficiently large anisotropies in the attrac-
tions (above ε∗ ∼ 0.25), the vapour-liquid region becomes
metastable relative to the isotropic-nematic region. This
type of behaviour was also reported by Telo da Gama52

for hard spheres with isotropic and anisotropic (Maier-
Saupe) attractions of the Lennard-Jones form, where
the orientational ordering is driven solely by the attrac-
tive interactions. In the case of our square-well hard-
spherocylinder model, anisotropies in both the repulsive
(molecular shape) and attractive interactions stabilise
the formation of the liquid-crystalline states. In contrast
to the hard-sphere Maier-Saupe model of Telo da Gama,
our attractive rods still exhibit orientationally ordered
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FIG. 8: (a) The temperature-density (T ∗ = kT / ε0 and
η = ρVHSC), and (b) the corresponding pressure-temperature
(P ∗ = PVHSC / ε0) fluid phase diagrams for attractive hard-
spherocylinders with a length-to-breadth ratio of L/D = 50
and an attractive range of λ = L/D + 1 = 11. The gener-
alised van der Waals - Onsager free-energy functional is used
to describe the system with the Onsager trial function [Equa-
tion (100)]. In this case the dotted line corresponds to a
new coexistence three-phase line corresponding to a vapour-
nematic-nematic equilibria.

states at high temperature as the system approaches
the limiting behaviour of the repulsive hard-core fluid.
Furthermore, the slope of the liquid-nematic coexistence
densities with temperature found for the spherical mod-
els (see Figure 3 in Reference52) is much less marked than
that depicted in Figure 9, and the L-N coexistence densi-
ties of the Maier-Saupe spheres are seen to rapidly extend
into the region where one would expect solid phases to
be stable.

The separate effect on the fluid phase behaviour of
changing the anisotropy in the molecular shape for a
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FIG. 9: The temperature-density fluid phase diagram (T ∗ =
kT/ε0 and η = ρ VHSC) for hard spherocylinders of length-
to-breadth ratio L/D = 5 with isotropic (ε0) and anisotropic
(ε2) attractive interactions of range λ = 6. The types of phase
diagrams obtained for different values of the relative attrac-
tive strength ε∗ = ε2/ε0 (denoted on the figure) are shown.
The generalised van der Waals - Onsager free-energy func-
tional is used to describe the system with the Onsager trial
function [Equation (100)]. The difference between Onsager-
like (ε∗ = 0) and Maier-Saupe-like (ε∗ > 0) phase behaviour
can be seen.

fixed anisotropy in the attractive interactions is shown in
Figure 10. We examine hard spherocylinders of varying
aspect ratio with isotropic and anisotropic square-well in-
teractions of relative strength ε∗ = ε2/ε0 = 0.3, but now
for an attractive range described by λ = L/D+1.5. This
choice will enable us to include the important limiting
system corresponding to spherical molecules (L/D = 0)
with square-well interactions of range λ = 1.5. This
model is equivalent to the Lennard-Jonesium system ex-
amined by Telo da Gama52 at the level of the mean-
field theory employed in both of our studies. It is
evident from Figure 10 that the system of attracting
hard-spherocylinders with L/D = 5, ε∗ = 0.3 and
λ = 6.5 exhibits only isotropic-nematic phase equilibria;
the vapour-liquid coexistence is metastable in this case.
When the length-to-breadth ratio is reduced to L/D = 4
(with a corresponding decrease in the square-well range
to λ = 5.5), the vapour-liquid coexistence becomes sta-
ble, and separate liquid-nematic and vapour-nematic re-
gions are seen. As expected the isotropic states are sta-
bilised with respect to the anisotropic states as the as-
pect ratio is decreased: the density of the nematic phase
at the V-L-N triple point is seen to increase with de-
creasing L/D, the first-order character of L-N transition
decreases, and the slope of the L-N coexistence bound-
aries with temperature decreases markedly. In the case
of hard spheres with isotropic and anisotropic square-
well attractions of relative strength ε∗ = 0.3 and range
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FIG. 10: The temperature-density fluid phase diagram (T ∗ =
kT/ε0 and η = ρ VHSC) for hard spherocylinders of vary-
ing length-to-breadth ratio L/D (denoted on the figure) with
isotropic and anisotropic attractive interactions of relative
strength ε∗ = ε2/ε0 = 0.3 and range λ = L/D + 1.5. The
generalised van der Waals - Onsager free-energy functional is
used to describe the system with the Onsager trial function
[Equation (100)].

λ = 1.5, the L-N transition is weakly first order, and the
nematic states are stable only for packing fractions above
about ∼ 50%, where positionally ordered phases are ex-
pected to be stable. The phase diagram for the spherical
system with L/D = 0 is essentially same as the Lennard-
Jonesium-Maier-Saupe model of Telo da Gama52 when
examined in terms of the appropriate reduced variables;
the marked temperature dependence of the liquid and
nematic densities at coexistence becomes apparent from
Figure 10.

The reduced pressure-temperature projection of the
fluid phase behaviour for the hard spherocylinders of
varying length-to-breadth ratio L/D with isotropic and
anisotropic square-well attractions of relative strength
ε∗ = 0.3 and range λ = L/D + 1 are shown in Figure
11. Separate V-L, L-N and V-N boundaries are seen for
the systems with L/D = 0 to 4, while a continuous I-N
curve is seen for L/D = 5. The L-N boundary is found
to be very steep as expected from a Clausius relation
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FIG. 11: The pressure-temperature fluid phase diagram
(P ∗ = P VHSC/ε0 and T ∗ = kT/ε0) for hard spherocylinders
of varying length-to-breadth ratio L/D (denoted on the fig-
ure) with isotropic and anisotropic attractive interactions of
relative strength ε∗ = ε2/ε0 = 0.3 and range λ = L/D + 1.5.
The generalised van der Waals - Onsager free-energy func-
tional is used to describe the system with the Onsager trial
function [Equation (100)].

for transitions with a small change in density172. The
critical temperature is seen to increase rapidly with in-
creasing aspect ratio, while the critical pressure remains
relatively insensitive to changes in the aspect ratio. On
the other hand, the pressure and temperature of the V-L-
N triple point both increase noticeably as the anisotropy
in the molecular shape is increased. For sufficiently large
anisotropies the triple and critical points merge and only
I-N phase behaviour is found (e.g., see the system with
L/D = 5). An important practical implication of using
a model such as the one that is proposed here is that
one can easily control the slopes of the P −T boundaries
by varying the molecular shape and/or the anisotropy in
the attractive interactions. This turns out to be partic-
ularly useful in controlling the form of the temperature
dependence of the order parameter S2.

We have analysed the temperature dependence of S2

at a fixed pressure (P ∗ = P VHSC/ε0 = 0.1) for the
systems of L/D hard spherocylinders with a fixed rel-
ative strength of anisotropic and isotropic attractions of
ε∗ = 0.3 and a range λ = L/D + 1.5. The effect of
changing the molecular aspect ratio on the temperature
dependence of the degree of orientational order obtained
with the algebraic equation of state [cf. Equation (100)]
is apparent from Figure 12. The slope of the curves can
be controlled by varying the molecular shape, a clear ad-
vantage from the original Maier-Saupe model. The same
effect can be found if the strength of the anisotropic at-
traction is varied, providing a means of describing the
temperature dependence of the order parameter found in
different mesogenic systems. This will allow one to deter-

0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

 L/D = 0
 L/D = 1
 L/D = 2
 L/D = 3
 L/D = 4
 L/D = 5

 

 

S2

T/TNI

FIG. 12: The nematic order parameter S2 as a function of
the temperature relative to that of the I-N transition (TNI)
for hard spherocylinders of varying length-to-breadth ratio
L/D (denoted on the figure) with isotropic and anisotropic
attractive interactions of relative strength ε∗ = ε2/ε0 = 0.3
and range λ = L/D + 1.5. The generalised van der Waals -
Onsager free-energy functional is used to describe the system
with the Onsager trial function [Equation (100)]. The cal-
culations are for a fixed pressure of P ∗ = P VHSC/ε0 = 0.1,
which corresponding to a relatively high pressure state (cf.
Figure 11).

mine the optimal set of molecular parameters (e.g., L/D
and ε∗) for a given system in a relatively straightforward
manner.

V. CONCLUSIONS

We consider the main achievement of this study to
be the development of an algebraic theory that includes
the effect of isotropic and anisotropic attractive inter-
actions as well as molecular shape. It is recognised
that anisotropic phases may appear as a consequence
of only the competition between the repulsive entropic
contributions as confirmed by molecular simulation21–25.
Nonetheless, in order to model real thermotropic meso-
gens the effect of dispersive forces cannot be neglected
and its contribution to the development and stabilisation
of the anisotropic phase should be thoroughly studied.
This is certainly facilitated if one has a reliable, theoret-
ically well-founded and easy-to-use equation of state at
hand. A free energy of closed analytical form in terms
of the Onsager orientational parameter α is provided for
systems with nematic ordering. The algebraic solution of
the equilibrium value αeq given through a cubic polyno-
mial represents a real advantage, since it leads to an alge-
braic expression for the generalised Onsager free energy,
and correspondingly any other thermodynamic function.
In essence, this algebraic equation of state corresponds to
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a extension of a van der Waals treatment of fluid phase
behaviour to systems exhibiting orientational order; the
determination of the isotropic-nematic (vapour-nematic
and liquid-nematic) with our approach is no more diffi-
cult than obtaining vapour-liquid phase behaviour using
van der Waals-like equations of state to describe isotropic
fluids.

The adequacy of our algebraic equation of state is as-
sessed by determining the phase equilibria of systems
comprising square-well hard spherocylinders, and com-
paring it with that obtained from a numerical solution
of the generalised Onsager free energy, where the config-
urational functionals are evaluated in terms of modified
Bessel functions Iν(2α) of the orientational parameter α.
It is confirmed that the approximate solution (cubic ex-
pression for α) of the model provides a description which
is certainly in good agreement with the numerical eval-
uation of the Bessel functions. It is also very rewarding
to observe that with the algebraic equation of state in
α one obtains a qualitatively (and in most cases quan-
titatively) correct description of the different classes of
phase diagram that have been described in systems of
this type with fully numerical approaches (see for exam-
ple references84,94? ,95); in the latter the contributions to
the free energy, which are functionals of the orientational
distribution function f(~ω), were evaluated using (essen-
tially exact) numerical methods.

Finally, we would like to emphasise the generality of
the method and the ease of implementation when more-
complex anisotropic forms of attractive interactions are

required to accurately describe the phase behaviour of
real liquid crystals. In Section III F we laid out a set
of expressions that can easily be added to the descrip-
tion when the attractive interactions contain higher-order
Legendre contributions, such as the spherical harmonic
expansion of the anisotropic pair potential first proposed
by Pople134. The methodology developed here can be ex-
tended to enable a quantitative treatment of real meso-
genic systems by coupling it with an accurate description
of the isotropic phase such as that provided by the sta-
tistical associating fluid theory (SAFT)189–192.
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