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Introduction

In NMR, the measurement of spin relaxation times rests on well-known and well-understood methods, perfectly reliable at the present time [START_REF] Canet | Nuclear Magnetic Resonance: Concepts and methods[END_REF]. The so-called spin-lattice relaxation time (or longitudinal relaxation time in NMR), is usually deduced from the inversion-recovery experiment: a 180° inverting radio-frequency (rf) pulse, followed by an evolution period ( More or less complicated sequences have been used to measure the 14 N NQR spin-lattice relaxation time [START_REF] Alexander | [END_REF][3][4][5] but inversion-recovery type sequences have been mentioned scarcely [3]. Conversely, the 1 T 14 N NQR spin-spin relaxation has been often investigated with sequences of the Hahn spin-echo type [5][6][7][8]. It turns out that the transposition of NMR sequences to NQR of powder samples is not straightforward for several reasons. First, there is evidently no Zeeman term in pure NQR, thus no preferential direction. This prevents us to resort to the concept of the rotating frame which is invaluable in NMR for predicting the effects of radio frequency pulses. Thus, one is forced to rely on a density matrix treatment. If the density matrix is built on the Hamiltonian eigenstate basis, is related to diagonal elements and therefore to the recovery toward equilibrium, whereas off-diagonal elements decay according to . The second difficulty arises still from the lack of a preferential direction and from the random orientation of the microcrystallites constituting the powder sample. The first consequence of this feature is that the rf pulses which correspond respectively to the first maximum and to the first zero of nutation curve (signal amplitude as a function of the pulse length) are not true 90° and 180° pulses [9]. They will be denoted in the following pseudo 90° and pseudo 180° pulses, respectively. Although several theoretical approaches have been devoted to the two-pulse sequences in NQR [10][11], none of them takes really into account that the equivalent of the flip angle is different from one microcrystallite to the other. We have recognized this property in previous papers which were devoted either to nutation curves [12][13] or to the optimal conditions of data averaging [14]. In particular, we showed [13] that In this paper, we shall evaluate the consequences of the above mentioned NQR specificities in the case of a two-pulse sequence applied to a spin 1 nucleus (nitrogen-14). We shall first establish a general treatment based on the evolution of the density matrix. Contrary to previous approaches [9], [15][16], we shall define a simple (2,2) density matrix for each line in the NQR spectrum [14] together with its transformation equations (under rf pulses and evolution intervals). With this approach, the effect of any sequence can be evaluated in a straightforward manner, since it just requires the multiplication of (2,2) matrices. In a first time, this approach will be applied to the experiment which mimics the inversion-recovery method choosing for the length of the first pulse (inverting pulse) the first zero of the nutation curve (pseudo 180° pulse) and for the length of the second pulse (read pulse) the first maximum of the nutation curve (pseudo 90° pulse). Of course the inverse prevails for the experiment which is intended to produce spin echoes by a sequence of the Hahn type. We shall delineate the various difficulties and drawbacks, and show that, with appropriate phase cycling, and can be properly measured by the two quoted sequences. These theoretical predictions will be confronted to experimental results for the three and for HMT (hexamethylenetetramine; zero asymmetry parameter). Let us recall that the asymmetry parameter is defined as

zz yy xx V V V / ) ( - = η
, where are the elements of the electric field gradient tensor in its diagonal form. Possibly, is the axial symmetry axis.

The effects of rf pulses being different for

zz yy xx V V V , , zz V 0 = η and 0 ≠ η [ 13 
], the two cases will be systematically considered in the following.

2.Theory

Let us consider a sequence made of two rf pulses (separated by a time intervalτ ) of durations 0 δ and 1 δ , respectively (figure1). Signal acquisition is supposed to start at 0 = t , immediately after the second pulse. Let us denote by 0 α and 1 α the standard (NMR) flip angle corresponding to these two pulses:

1 , 0 1 1 , 0 δ γ α B = (1) 
γ being the gyromagnetic ratio and the amplitude of the ratio frequency field. At the level of each microcrystallite, the effective flip angle is given by: 

ϕ θ δ γ β f B × = (2) cos ) , ( = z f
In the general case the three lines are in the order

z y x ω ω ω > >
. Also, we have shown previously that, for any line, the evolution of the system can be accounted by a density matrix. At equilibrium, a working form of the density matrix can be written as 
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eq E being the identity matrix. Since the first term is invariant under any transformation, one has just to deal with 0 σ in order to follow the evolution of the spin system. This is quite comparable to the density matrix of a spin 2 1 system. The effect of a radio- frequency pulse is also similar to a spin 2 1 . As an example, and denoting the density matrix just after and just before the rf pulse, one has

+ σ - σ ( ) ( ) β σ β σ 90 , 0 90 , 0 R R - + = † (3) 
( : transpose complex conjugate). is a so-called propagator (or rotation matrix) with its subscript associated with the phase of the ratio frequency field (0° or 90°). † 90 , 0 R β is the effective flip angle (see [START_REF] Alexander | [END_REF]) which is different from one microcrystallite to the other. A phase shift of 180° amounts to change β into β -. One has for the two basic rotation matrices:
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)
We shall assume zero phase for the first pulse and we shall consider the two possibilities ( 0° and 90° phases) for the second pulse. Assuming equilibrium at the onset, and denoting by the density matrix just after this pulse, one has ).
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The density matrix prior to the second pulse ( ) can be written as:
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T 1 measurements

In both matrices, the measured signal is represented by the off-diagonal elements (one being the complex conjugate of the other). As already indicated, they should be ultimately multiplied by for the (1,2) element and for the element (2,1), 

T : ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - - 1 2 sin 2 1 sin 0 2 1 T e τ β β
. Therefore, if we want to measure properly, we have to cancel the other two terms. This can be done very easily by a very simple phase cycling (phases are indicated in degrees):

1 T + °°+ °°0 180 0 0 1 0 Acq β β (9)
Or alternatively

- °°+ °°180 0 0 0 1 0 Acq β β (10)
The above procedure rests on similar principles as the ones proposed by Rudakov and Mikhaltsvitch [3]. Moreover, we can notice that the maximum would be obtained for β for each microcrystallite and perform an average over the whole sample.

However, as we are primarily interested in the value, it suffices to extract the time constant from the signal evolution as a function of 1 T τ . It can be seen that shows up only in the first two term of the off-diagonal elements (coherences) of ( 7) and ( 8). If we want to measure , we have at least to remove the third term of these elements (which depends on ). This can be easily accomplished by the following phase cycle: (see the sign of the trigonometry functions in the three terms of the off-diagonal elements of ( 7) and ( 8)).

T 2 measurements

General

Should a phase shift of 90° used for the second pulse, the above phase cyclings become The change of the acquisition sign anticipates what will be demonstrated about the refocusing process (echo formation). Indeed, we can combine (11) and ( 13) to arrive at the four-step phase cycle, known in NMR as EXORCYCLE [17]. We turn now to quantities which can be refocused and thus capable of producing a spin echo. These quantities correspond to transitions for which variations lead to a slightly different resonance frequency (what we have called before ). Although an echo would be formed for a single , we shall actually consider two resonances at and . This is experimentally more realistic and, for symmetry reasons, simplifies the forthcoming calculations. In that case, we obtain from equation (7) with the phase cycle (11 
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In order to get some insight into the process of echo formation, it is convenient to derive theoretical expression for the actually observed signal. It will be proportional either to ) (t

I x or to ) (t I y
(until now, for the sake of simplicity, we looked at ( )

t 12 σ
). In fact, β and from eq. ( 7)
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and its complex conjugate for ( ) 
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Again with the assumptions made above (pseudo 90° pulse for 0 δ and pseudo 180° pulse for 1 δ ), we obtain numerically (Bessel functions, frequently invoked in NQR theory [18], cannot be used for these integrals) , as long as we employ a two-step phase cycle (see ( 11)-( 14)). However, if we have recourse to a four-step phase cycle (see (15) or ( 16)), the second term of ( 21) and (22) vanishes and a "normal" situation is retrieved and the echo does occur at 

τ = t .

Echo formation in the case of a two-step phase cycle as observed in the magnitude mode

We have performed many experiments in the magnitude mode with a two-step phase cycle. The magnitude mode was chosen in order to measure accurately the echo maximum and its height, and to get rid of the oscillations which result from a difference between the carrier frequency and the resonance frequency (which can occur in the course of the experiment due to slight temperature variations). In these conditions, we observed echo shifts and some other peculiarities. It is the purpose of this section to understand these features.

Let us first consider a simple doublet made of two resonances at frequencies and .

From equations ( 21) and ( 22), we know that the signal after the second pulse can be expressed as (omitting the relaxation damping factor and with the phase cycles ( 11) and ( 13)

) * ω + * ω - 2 T ( ) ( ) ( ) τ ω τ ω + ± - = t B t A t S * * cos cos (23) 
The sign in front of the second term depends on the phase of the 1 β pulse : plus for 90° and minus for 0° (see (21) and ( 22)).

It can be recalled that the time origin is set at the end of the second pulse. If is actually measured, an average on all possible values of has to be done. Provided that ( )

t S * ω ( ) τ + t is
sufficiently long, the second term will cancel, while the first term will be maximum at τ = t (echo formation, as expected). Therefore, except for short τ values (where the second term does not average to zero), nothing particular is expected if the signal is measured classically in the time domain.

However, considerable changes occur if the signal is measured in the magnitude mode. We have seen before that ( )

t I x
is zero so that the observed quantity will be

( ) ( ) 2 t I y
. Thus, in order to detect at which time the echo is formed, we have just to consider the square of ( 23) 2 . This, of course, is not true for the square of the cosine functions. We are thus left with the first two terms on the right hand-side of ( 24). An immediate consequence is that the observed signals arising from ( ) 0 1 β or ( ) 90 1 β will be strictly identical, if τ and t are sufficiently long .

( ) [ ] ( ) [ ] ( ) ( ) ( ) ( τ ω τ ω τ ω τ ω + - ± + + - = = t t
It is apparent from ( 23)-( 24) that refocusing for the considered doublet will occur at a time (

) which depends on . To find , we have just to set to zero the derivative of
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We arrive at

( ) ( τ ω ω * 2 2 2 2 * 2 tan 2 tan ) B A B A t echo + - = (26) 
As already stated, when the second term does not exist (as this is the case for an NMR experiment), the echo occurs at τ = echo t . Here, due to the fact that, in all cases, From the above considerations, we can conclude that the echo shift experimentally observed may be just an effect of the magnitude mode combined with a two-step phase cycle. Of course, this shift disappears in principle with the complete four-step phase cycle in the normal mode and in the magnitude mode.

On the other hand, we have to consider the case where ( ) τ + t is not long enough to average to zero the third term of (24). In such a situation, the echo amplitude can be seriously affected by the third term in (24) which is negative for ( ) 0 1 β and positive for ( ) 90 1 β . This latter feature will be experimentally verified.

Finally, the above considerations should not really apply to the case 0 = η : since A B << , the second term in (23) becomes negligible and we should find experimental results analogous to those obtained with a four-step phase cycle.

Experimental verifications

All experiments have been performed with a home-made spectrometer described before [19].

The output of the power amplifier was limited to 100W. HMT or sodium nitrite powders were inserted into 10 mm o.d. NMR tube filled approximately at 5 cm height. The probe was placed in an insulation box and maintained at ambient temperature, so as to minimize temperature variations. For the high frequency lines ( (HMT) [13]. α is defined in eq. 1.

The corresponding pulse length δ are given, for each frequency, in tables1 and 2. As indicated in the theoretical section, experiments were carried out according to the pseudo inversion-recovery method: (pseudo 180°)-τ -(pseudo 90°)-Acquisition. A typical recovery, involving the phase cycling indicated in the theoretical section, is shown in figure 2.

T 1 measurements

We can notice that this curve does not start at a value opposite of the maximum at highτ values. This is of course due to the fact that 0 α is not a true 180° pulse but a "pseudo 180°

pulse" such that the integration over all microcrystallites is zero. Anyhow, for all cases considered (the three lines of NaNO 2 and the single line of HMT; see figure 3), the results

given in table 1 are of the same order of magnitude as literature data [START_REF] Alexander | [END_REF][20][21][22] when they exist (for instance, we were unable to find a value for the 1 MHz transition of NaNO 1 T 2 ). Some comments must be done about the first part of the recovery. As shown in figure 4, without phase cycling, a very particular behavior is observed, attributable to the first two terms in the off-diagonal elements of the density matrices ( 7) and (8). Since these two terms, are damped by (or ) they disappear relatively quickly. However, still from figure 4, we see that perfectly clean results, even at the beginning of the recovery, are obtained with phase cycling (9) or (10). It thus appears that, with a proper phase cycling, there is strictly no problem for measuring a meaningful from recoveries which anyhow seem to be systematically monoexponential. Of course, determining from the initial slopes of recovery curves requires the asymptote value which can be obtained by performing the experiment with a very large T relaxation times [20,23], their respective weights are such that, in most cases, only one of them contribute to the recovery curve, hence the monoexponential character of the latter [5] .

On the other hand, as far as the x ω transition is concerned, the measured does not seem to significantly vary with temperature, at least in the range that we have investigated (210-350 1 T K) [24]. 

T 2 measurements

As in NMR, we can hope to derive a value of from the decay of echo amplitudes, the echoes being measured in the magnitude mode. However, as anticipated in the previous section, we met some difficulties with the two-step phase cycles ( 11) and ( 13). They will first be described. A typical series of echoes measured with the phase cycle (11), thus devoid of the unwanted terms involving (see (7) and ( 8)), is shown in figure 5. They concern NaNO

2 T 1 T 2
and, in that case (non-zero asymmetry parameter), the coefficient B of equations ( 23)-( 26) is not negligible with respect to A, therefore the theory developed before fully applies. This figure is an indisputable illustration of the echo shift, which is seen to increase when τ increases (it is roughly 5% of τ ), another feature predicted by the theory. A further peculiarity, associated with the two-step phase cycles ( 11) and ( 13), is the initial behavior of the decay curves in the case of NaNO 2 . It was predicted that when the third term of ( 24) is not average to zero (short τ values), this extra term would be negative when the phase of the second pulse is 0° and positive when it is 90°. This is exactly what is observed in figure 6 where the three top traces represent the decay curves of the NaNO 2 line at 3.6 MHz under the three phase cycles (11), ( 13) and (15). It can be noted that the four-step phase cycle (15) leads to an almost normal behavior. However, even though the decay is cleaner, we still observed in that case an echo shift. This can be due to transmitter phase imperfections or to a skew echo shape as suggested in reference [7]. This asymmetric shape (possibly due to irreversible relaxation) could as well result in an effective echo shift. . This constant shift (of 0.5 ms) could again be ascribed to the skew echo shape [7].

We can now establish the recipes for measuring in optimal conditions: use the four-step phase cycle, disregard nevertheless data at the beginning of the decay curve, observe the echo in the magnitude mode, measure its amplitude, determine and plot the data as a function of . In these conditions, we were able to observe, in all cases considered here, a monotonic decay which is seen to be monoexponential, thus, leading to a definite value. This is shown in figure 7, again for the three lines of NaNO 2 T 2 and for the single line of HMT.

In each case, data at the beginning of the evolution have been disregarded (and not shown in this figure). The values found for are given in table 2 together with the experimental parameters. Compared to literature values, our 's are of the same order of magnitude, but

2 T 2 T
shorter in the case of HMT: 1.1ms [8], 1.5ms [25] and larger for the x ω transition of NaNO 2 :

5ms [21], 5.3ms [22], 4.5ms [26] (data concerning the two other lines could not be found). This is not quite surprising since it is well known that NQR line-shapes and line-widths can be sample dependent [27]. Although the interpretation of relaxation times is beyond the scope of this study, we can notice the difference between and (of course, is always larger and expected than ): for NaNO 

T

Summary and Conclusion

The main objective of this work was to assess the capabilities of two-pulse sequences for measuring spin 1 (as π pulses) for the three NaNO 2 lines and for the single HMT line.

Experimental data (see figure 3) have been fitted according to π and pseudo π pulses) for the three NaNO 2 lines and for the single HMT line.

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - - 1 1 T e k A τ . NaNO2 HMT ω x =4.64MHz ω y =3.6MHz ω z =1.04MHz
Experimental data (see figure 7) have been fitted according to Reply to the Reviewer 1) "homologous" has been replaced by "homolog".

2) "monotonous" has been replaced by "monotonic".

3) The clarification suggested by the Reviewer has been inserted page 4.

4) The negligibly small temperature dependence of T 1 concerns only the x ω transition of sodium nitrite while reference 2 deals only with hexamethylene tetramine (HMT). 5) Reference [START_REF] Alexander | [END_REF] has been corrected (page 21). 6) Reference [18] has been removed from page 16 but other references (unfortunately omitted in the previous version) have been added. 7) We totally disagree with the Reviewer and we rebut the statement "I do not find it acceptable…". When the asymptote is known from an independent measurement, it is well known that data points at long τ are not necessary for the fit and even tend to deteriorate the result. They are in fact little sensitive to the value. Conversely, 1 T τ values around are crucial and a sentence has been added in the caption to figure 3.

We believe to know the problem relatively well and we have published several papers on the subject (see for instance two recent works: Chem. Phys. Lett. Empty circles correspond to the best experiment (four-step phase cycle) and exhibit actually an exponential decay. Of course, the whole set of data (including scattered data from three other experiments) could be fitted by a straight line but this would be meaningless. The results of figure 7 were obtained with the four-step phase cycle, as added in the relevant caption. 9) Literature data have been added as requested by the Reviewer. 
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 2 a 90° read-pulse which produces the NMR signal proportional to simplest experiment for measuring the spin-spin relaxation time (or transverse relaxation time in NMR) is the Hahn spin echo : a 90° pulse followed by a evolution period ( ), then a 180° pulse which entails the formation of a spin echo at a timeτ later. The amplitude of this echo decreases according to

  pseudo 180° pulses differ as a function of the symmetry of the electric field gradient tensor (at the level of the considered nitrogen nucleus).

1 T 2 T 14 N

 1214 lines of sodium nitrite (non zero asymmetry parameter, i.e. an electric field gradient tensor without axial symmetry)

0 m

 0 of each level in the absence of quadrupolar interaction and is 0 p the population difference, proportional to the line intensity. eq σ can therefore be expanded

- 1 )

 1 introduce relaxation phenomena during the evolution timeτ . Spin-spin relaxation is only involved in the off-diagonal elements (coherences). As far as the genuine relaxation ( ) is concerned, this amounts to multiply the considered off-diagonal element by 2 to account for the line-form factor ( ) (due, for instance, to temperature variations affecting the quadrupolar interaction), we need to multiply the (1,2) element by and the (2,1) element by with width at half-height in the case of a Lorentzian line. This can be an approximation in practical situations since NQR lines look rather Gaussian. can be considered as the frequency difference (in rad.s * ω of an extra resonance with respect to the main resonance 0 ω , the oscillating factors related to the main resonance being omitted in the above density matrices. order of some MHz whereas is of the order of some tens or hundreds of Hz. Of course, we shall consider at the end a distribution of .Spin-lattice relaxation concerns evidently diagonal elements (populations). This type of relaxation, defined by a time constant denoted , tends to restore populations toward their equilibrium values. Thus, the (1,1) element is simply multiplied by value of this element at the beginning of the evolution period (for instance, from (5), ( )

  resonance frequency (in rad.s -1 ). In these elements, there is only one term which depends on

  which is the classical inversion recovery experimentation). Very naturally, we choose pulse lengths corresponding respectively to the first zero in the nutation curve for 0 δ (equivalent in NMR to a π flip angle; pseudo 180° pulse) and the first maximum for 1 δ(equivalent in NMR to a 2 / π flip angle; pseudo 90° pulse). Of course, we would have to calculate 0 β and 1

Considerations 8 F

 8 

1 (

 1 the same way as for measurements, we can notice that the signal is maximum for 1 which would be the classical Hahn echo in NMR). Again, we would have to consider an average calculated over all the microcrystallites of the sample.

  σ (see below). As the origin of the variable t corresponds to the end of the 1 β pulse and if one takes into account the phase cycle, we obtain for ( ) 0 1

β

  the only change concerns the sign of the second term.

  As already mentioned, only the first term ( in a spin echo NMR experiment. The signal would be maximum for τ = t regardless of the value of , that is for all possible extra resonances. This represents of course the echo formation. Here, because of the second term ( ), this property no longer holds and the echo may no longer occur at

3 and 4

 4 MHz), 500 transients were accumulated, whereas for the 1 MHz line, 5000 transients were necessary. Pseudo 90° or 180°

2 T * 2 T 1 T 1 Tτ

 2211 value or, more simply, with a one-pulse sequence. Although there exist two 1

2 Ta

 2 Our theory predicted also that, in the case of a zero asymmetry parameter, nothing special would happen due to the fact that the coefficient B is much smaller than A. Again, this is perfectly verified in figure6(bottom) in the case of HMT. The three traces (corresponding to the three phase cycles) are seen to nearly coincide. However what is not shown in the figure is constant echo shift (independent of τ ) that we shall denote 0
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 2222222 it is much more important at the two high frequency transitions than at the low frequency transition. Surprisingly, HMT and are of the same order of magnitude although the resonance occurs at a relatively high frequency.
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 1 Figure 1. Schematic representation of a two-pulse sequence with the notations used
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 2 Figure 2. A typical inversion recovery experiment performed at 3.608MHz ( y ω line of sodium
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 314 Figure 3. The recovery curves for the three lines of NaNO 2 ( x ω at 4.6MHz, y ω at 3.6MHz and

Figure 5 .δ 1 δ

 51 Figure 5. A typical series of echoes (NaNO 2 at 4.64MHz) obtained according to the following sequence: phase cycle (10), ( ) ( ) Acq 180 , 0 1 0 0 δ τ δ --. Here, 0 δ is the pseudo-90° pulse and
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 62224 Figure 6. measurements with different phase cycling. Empty circles: the four-step phase cycle (15) ; filled lozenges: the two-step phase cycle (11); filled triangles: the two-step phase cycle (13). Top: NaNO
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 725 Figure 7. Echo amplitude decays, obtained with the four-step phase cycle (15), for the three
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 1 408,237 (2005), J. Phys. Chem. A111, 10615 (2007)) 8) Data of figure 6 correspond to different experiments run with different phase cycles.
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  (as this is the case in NMR), the first term is actually zero. As far as NQR is concerned,

	be performed over all the possible orientations. Referring to equations (1) and (2), and
	defining A and B by
	e The sign in front of the second term corresponds respectively to t t i t I T t y τ ω β β σ σ τ * 1 2 0 ) ( 21 12 sin cos 2 cos sin 2 ± ( ) 90 β 1 2 cos 2 1 β or to ( ) 0 τ ω * 1 β . In (18), we can notice that the first term corresponds to a signal produced by the first pulse (18) while the second term is consistent with an echo formation at τ = t with different signs according to the phase (0° or 90°) of the 1 β pulse. Moreover, it can be seen that if 1 β is equal o r P e e r R e v i e w O n l to π F y

1 β (as well as 0 β ) is different from one microcrystallite to the other and an integration must

  Let us first focus on the last term. It can be expressed as

																								±	2	AB	( cos	ω 2	*	t	+	cos	ω 2	τ *	)	. As for
	the second term of (23) and due to the distribution of	ω	*	, these two quantities average to zero
	(or nearly zero) provided that the products	2ω	*	t	and	τ ω * 2	are sufficiently large, that is if they
	vary by much more than		π														
						F o r															
										P													
											e													
												e r										
														R								
															e						
																v i e		
																					w
																								O n l
																											y
	S	t	2	I	y	t	2	A	2	cos	2	*	t	B	2	cos	2	*	t				2	AB	cos	*	cos	*	) (24)
																											13

Table 1 .

 1 crystals). Transposing NMR methods is precisely hampered by the lack of a preferential direction (contrary to the static magnetic field direction in NMR). This entails a number of particularities in NQR resulting from the necessity of integrating over the random directions of microcrystallites constituting the sample. By means of extensive theoretical developments, Experimental parameters used for the measurement of T 1 ( 0
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	experimentally verified, we can propose several recipes for reliably determining the two NQR
	relaxation times. We first recall that true 90° or 180° pulses do not exist ( again because of the
	F random orientation of microcrystallites) although we can always define pseudo 90° and 180° o r pulses which correspond to the first maximum and the first zero of nutation curves,
	respectively. The well known NMR inversion-recovery experiment can be substituted by the sequence P e ( ) ( ) ( n acquisitio signal pseudo pseudo -°--°90 180 ) τ , where τ stands for the evolution e r interval. With an appropriate phase cycling, a recovery curve involving as time constant is T 1 R actually obtained. One has not to worry that, contrary to the NMR experiment, the signal does e not start at but at a value greater than 0 M -0 M -( is the signal value for 0 M τ infinite). Thus v i e this experiment is quite trustable, as far as determination is concerned. 1 T
	In NMR sequence would become can be measured by the well-known Hahn spin echo sequence. In NQR, this 2 T w ( ) ( ) ( ) n acquisitio signal t pseudo pseudo echo -°--°180 90 τ . Our O theoretical considerations (experimentally verified) indicate that n l -as for inversion-recovery, a proper phase cycling must be implemented
	y -data at the beginning of the decay may be corrupted in spite of this phase cycling and have
	to be disregarded until an monotonic decay is reached.	
	-a major difference with the NMR experiment is the time	t	echo	at which the echo maximum is
	formed. It is always smaller than (or equal to)	τ , depending on the chosen phase cycle or to
	other phenomena (e.g. skew echo shape). In order to properly estimate	t	echo	, it is mandatory to
					19
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14 

N) NQR relaxation times of powder samples (by opposition to single

Table 2 .

 2 Experimental parameters used for the measurement of T 2 ( 0

	δ and 1 δ are the durations of the