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Abstract

We present the first laboratory experimental results concerning the scattering of a low-mode

internal tide by topography. Experiments performed at the Coriolis Platform in Grenoble used a

recently-conceived internal wave generator as a means of producing a high-quality mode-1 wave

field. The evolution of the wave field in the absence and presence of a supercritical Gaussian

was studied by performing spatiotemporal modal decompositions of velocity field data obtained

using Particle Image Velocimetry (PIV). The results support predictions that large-amplitude

supercritical topography produces significant reflection of the internal tide and transfer of energy

from low to high modes.
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The generation of internal tides, which are internal wave fields of tidal period, has been

the subject of much recent study [1]. A combination of satellite altimetry, field studies,

analysis, numerics and laboratory experiments, estimate there to be an energy flux into the

internal tide of around 1TW . It is believed that this energy flux plays a crucial role in ocean

mixing, although its ultimate fate remains to be clearly established.

Several examples of mechanisms leading to dissipation of the internal tide are currently

being investigated. Internal tides of short vertical wavelength (i.e. high modes) are expected

to be unstable near their generation site, where they can immediately produce overturnings

and mixing [2]. Most of the internal tide energy, however, is believed to be radiated with long

vertical wavelength (i.e. as low modes) away from the generation site [3, 4], to participate

in wave-wave interactions [5], (critical) reflection at sloping boundaries [6], and scattering

by mesoscale structures [7] and finite-amplitude bathymetry [8]. A long-term goal is to

determine the relative importance of these processes in the dissipation of the internal tide.

There have been a number of two-dimensional, linear analytical studies of internal tide

scattering by subcritical topography, where the slope of the topography is small compared

to the ray slope of internal waves [9–12]; in all these cases the ocean was treated as being

of infinite depth. A general conclusion of this body of work is that there is a redistribution

of internal tide energy flux from low to high mode numbers (i.e from long to short vertical

wavelengths), which increases the likelihood of breaking and mixing. This redistribution

seems to be around 6-10% of the incoming energy flux, suggesting that scattering of the

low-mode internal tide by sea floor topography is not a dominant process in the ocean.

There is some ambiguity, however, as it is found that scattering becomes more efficient for

larger and more rugged topography, where small-amplitude theories ultimately break down,

in which case it could be an O(1) process for the deep ocean [11].

Studies of finite-amplitude, two-dimensional topography in a finite-depth ocean reveal

scenarios where internal tide scattering by bathymetry is a dominant process. For example,

analytical studies of a knife-edge barrier [13, 14], and slope-shelf and ridge configurations

[15, 16] reveal that substantial scattering can occur; the extent of scattering depending on

the criticality of the topography and the depth-ratio. A general result is that large amplitude

subcritical and supercritical topography transmit and reflect the internal tide, respectively.

The impact of scattering by finite-amplitude bathymetry has also been revealed by nu-

merical simulations of idealized two- and three-dimensional topographic features, and by
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processing of satellite altimetry data from the Line Islands ridge located south of Hawaii

[8, 17]. These studies report up to 40% of the incident energy flux of a mode-1 internal tide

being scattered, and a corresponding enhancement of mode-2, leading to the conclusion that

scattering may be important in topographically rough regions of the Pacific.

Although there have been studies of the interaction of internal tide beams with sloping

boundaries [6, 18, 19] and tidal interactions with continental shelves [20], to the best of our

knowledge there are no reported laboratory experimental results of low-mode internal tide

scattering by bathymetry. A principal reason is that it has not previously been feasible to

produce a low-mode internal tide whose evolution can be studied in a controlled, experimen-

tal setting. In this Letter, we demonstrate a new method of reliably generating high-quality

low-mode internal tides using a recently conceived internal wave generator [21, 22]. In turn,

this allows us to perform the first experimental studies of low-mode internal tide scattering

by bathymetry, utilizing a modal decomposition algorithm that has been previously em-

ployed for experimental studies of internal tide generation [4]. This breakthrough sets the

scene for future, systematic experimental studies of internal tide scattering, to complement

ongoing theoretical and numerical studies, and upcoming field programs.

Experiments were performed in the 13 m diameter circular tank of the Coriolis Platform

in Grenoble; a schematic of the experimental arrangement is presented in figure 1. The

tank was filled to a depth of H = 0.54 m with a near-linear stratification of characteristic

Brunt-Väisälä frequency N = 0.63 ± 0.07 rad/s (i.e. period τ ≈ 10 s), as determined

using a calibrated PME conductivity probe. Slight variations of the stratification away from

linearity were primarily due to the diffusive evolution of the stratification near the top and

bottom boundaries, and are accounted for in our analysis.

A mode-1 internal tide was generated using the 1.5 m wide, 0.54 m tall internal-wave

generator previously employed to study plane wave reflection from a sloping boundary [21].

The generator comprised 24 horizontally-moving plates that were configured for these experi-

ments as illustrated by the schematic in figure 1(a), with maximum, anti-phase displacements

at the bottom and top to mimic the horizontal velocity component of the mode-1 internal

tide in a linear stratification. More precisely, the amplitude of displacement of the plates

was set to A0 cos(πz/H), with A0 = 35±1 mm and the bottom and top of the generator cor-

responding to z = 0 and H , respectively. The frequency of oscillation for the experimental

results presented here was ω = 0.35± 0.005 rad/s.
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FIG. 1: A schematic of the experimental configuration as viewed from (a) the side and (b) above.

The plates of the internal-wave generator are configured to match the horizontal velocity component

of a mode-1 internal tide. The radiated internal tide is incident on the Gaussian topography and

the transmitted wave field is ultimately directed away from the interrogation region by a reflection

barrier, after which the wave field is also damped.

The horizontal distance between the internal-wave generator and the far wall of the

experimental tank was 8 m, and we define x as the corresponding horizontal coordinate

originating at the generator (see figure 1). An angled reflection barrier was installed at the

far wall to prevent internal waves being reflected back into the field of view. As a precaution,

damping material was also placed in the path of waves reflected away by the barrier, to

further reduce the possibility of them having any subsequent impact. This configuration

proved highly successful, as the experiments were run for up to ten minutes (> 30 tidal

periods) without any evidence of back-reflected waves in the field of view.

The topography used to scatter the incident mode-1 internal tide was a nominally two-

dimensional Gaussian ridge of cross-section h(x) = h0 exp(−x2/2σ2) constructed from PVC.

The principal dimensions of the ridge were height h0 = 0.273 m and variance σ = 0.3 m,

so that the the ridge extended for roughly 1.5 m in the x-direction and had a depth ratio

h0/H=0.5. In the transverse, y-direction the span of the topography was ℓ = 2.0 m, which

was 0.5 m greater than the span of the generator. The first set of experiments were conducted

without the topography present, to investigate the integrity of the mode-1 tide. Thereafter,
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the ridge was introduced with its center at x = 3.93 m, which was sufficiently far to ensure

that a clean mode-1 wave field was established by the time it reached the topography. There

was no discernable effect due to internal tides being reflected back and forth in the region

between the generator and the topography.

Particle Image Velocimetry (PIV) was used to measure the velocity field. Snapshots of

the flow were recorded at 3 or 4 Hz using a pair of 12-bit CCD cameras with a resolution

of 1024 × 1024 pixels. The Correlation Image Velocimetry algorithms available through the

Coriolis facility [23] were used to calculate the velocity field from the experimental movies.

Finally, the Hilbert transform technique [24] was employed to distinguish the fundamental

frequency component of the wave field from any higher harmonics produced by nonlinearity,

and to confirm the absence of back-reflected waves.

The first studies investigated the modal content of the internal wave field radiated by

the wave generator in the absence of topography, with the goal of establishing the existence

of a high-quality, incident mode-1 tide. A snapshot of the velocity field in the vertical

mid-plane of the generator (y = 0) and in the range x=3.5 m to x = 5.0 m is presented in

figure 2(a). The wave field comprises a sequence of counter-rotating vortices that extend the

entire depth of the fluid and are in the process of traveling from left-to-right, consistent with

the expected form of a mode-1 wave field in a uniform stratification. It is quite remarkable

that even though the internal wave generator only provides horizontal (barotropic) velocity

forcing, vertical (baroclinic) velocity disturbances naturally evolve, nicely recreating the

velocity distribution of a mode-1 tide. Typical velocities induced are of the order of 10 mm/s,

compared to a forcing amplitude of A0ω = 12.2 mm/s.

A modal decomposition of the wave field presented in figure 2(a) was obtained using

a previously developed routine [4], the approach being modified to account for the slight

nonlinear features in the stratification. Modal decomposition was performed on data ob-

tained once a time-periodic regime had been clearly established (typically after 15 periods).

A time window of 6 periods was used for the temporal filtering, and the decomposition

was performed at twenty locations within a 0.5 m wide horizontal window centered around

x = 4.5 m. The modal decomposition was found to be the same at each location, and the

experiment was found to be highly repeatable. Further tests were performed, in which the

wave field was viewed in the x− y plane from above, to confirm two-dimensionality around

the vertical mid-plane y = 0.
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FIG. 2: (a) A snapshot of the instantaneous velocity field in the absence of topography; the velocity

magnitude in cm/s is given by the background color scale and arrows indicate velocity direction.

(b) Modal energy content of the horizontal velocity field normalized by the mode-1 amplitude;

the inset presents a zoom-in for modes 2 and higher. (c) Normalized, spatially-averaged frequency

spectrum of the horizontal velocity revealing a highly-dominant peak at the fundamental frequency.

The results of the modal decomposition are presented in figures 2(b) and (c). The nondi-

mensional energy flux associated with the nth mode is E
n
= A2

n
/n [4], where A

n
is the

modal amplitude nondimensionalized by A0. The energy flux in mode-2 is around 2% of

that in mode-1, and the energy flux in the higher modes is barely discernable. The tem-

poral spectrum of the field is so strongly peaked around the forcing frequency that higher

harmonics are negligible. Thus, in the absence of topography the experimental arrangement

successfully produced a high-quality mode-1 wave field.

The ability to generate a desired vertical modal structure opens the door to systematic

experimental studies of internal tide scattering. To investigate this, a Gaussian ridge was

carefully placed in the path of the mode-1 wave field, so as not to noticeably disturb the

stratification. The maximum topographic slope of the Gaussian was 0.55, corresponding
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FIG. 3: (a) Snapshot of the instantaneous velocity field (filtered at the fundamental frequency ω)

transmitted by the Gaussian ridge; the velocity magnitude in cm/s is given by the background color

scale and arrows indicate velocity direction. (b) Modal energy content of the horizontal velocity

field normalized by the mode-1 amplitude. This data was obtained in the region 5.15 m < x <

5.60 m. (c) Phase of the modes, with the phase of mode-1 arbitrarily being chose to be zero.

to an angle with respect to the horizontal of θ = 29◦. The ray slope of the internal tide

was 0.67, corresponding to θ = 34◦. The topography was therefore supercritical, with a

criticality of ε = 1.22; in this case, significant reflection and scattering of the low-mode

internal tide is expected [8, 17].

A composite snapshot of the wave field transmitted by the Gaussian ridge is presented

in figure 3(a). The snapshot contains a 0.3 m wide (grey) region with no data, as the

second camera was positioned sufficiently far back to ensure modal decomposition could be

performed in a region of constant depth. In contrast to the vortex structures evident in figure

2(a), a clear wave beam structure is visible in figure 3(a), indicating significant high-mode

content of the wave field. The wave beam originates from the top of the topography, strikes

the floor around x = 5.0 m, where it is reflected upwards. The maximum velocities in the
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wave beam are roughly 25% higher than in the mode-1 wave field of figure 2(b), suggesting

concentration of internal wave energy in the wave beam.

The modal structure of the transmitted wave field, calculated over the range 5.15 m

< x < 5.60 m, is presented in figures 3(b) and (c). The energy flux in mode-2 in the

scattered wave field is comparable to that in mode-1, and the energy flux in mode 3 is also

significant. Since E
n
= A2

n
/n, the amplitude of mode-2 is in fact 20% larger than that of

mode-1, and the amplitude of mode-3 is only 20% smaller than that of mode-1; it is this

rich modal structure that is responsible for the wave beam structure in figure 3(a). An

interesting observation is the existence of a constant phase delay of around 50◦ between

modes 1, 2 and 3 (and perhaps even the weak, but detectable, mode 5), as shown by the

results presented in figure 3(c). This suggests the existence of a mechanism for phase locking

that arises through the scattering process.

The amplitude of the transmitted mode-1 signal was 4.3 ± 0.1 mm/s, which is signifi-

cantly less than incident amplitude of around 10 mm/s. We furthermore determine that

modes 1 through 5 of the transmitted wave field contained only around 40% of the incident

energy flux, and thus around 60% of the incident energy was reflected by the topography

or transferred to other forms via nonlinear processes. There was clear evidence of the gen-

eration of higher harmonics, indicating that nonlinear processes were present. As evidence

of this, figure 4 presents a snapshot of the wave field filtered at the frequency 2ω, revealing

first harmonic content within the transmitted wave beam. For this experiment the first

harmonic is evanescent, so the observed features must have been locally generated within

the wave beam. The major features seem to lie immediately over the topography or near

the reflection site, where wave-wave interactions can occur.

In summary, these experiments demonstrate the feasibility to now study internal tide

scattering in a laboratory setting, providing a new way to investigate a key candidate pro-

cesses influencing the fate of oceanic internal tides. These initial experiments provide clear

support of predictions that large-amplitude supercritical topography produces significant

reflection of the internal tide and transfer of energy from low to high-modes. In addition, we

have found some evidence of nonlinear processes that transfer energy to higher harmonics,

which may also be significant. It would now seem that a careful comparison between exper-

iment, theory and numerics can be used to resolve any ambiguities regarding the impact of

finite-amplitude, rough topography on the low-mode internal tide. This will require some

8



FIG. 4: The transmitted wave field filtered at the first harmonic frequency 2ω; the velocity mag-

nitude in cm/s is given by the background color scale and arrows indicate velocity direction.

theoretical advancement, however, to handle extended, finite-amplitude, rough topography,

perhaps using the Green function approach [14].
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