
HAL Id: hal-00530719
https://hal.science/hal-00530719v1

Preprint submitted on 29 Oct 2010 (v1), last revised 26 May 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control techniques for thermo-acoustic tomography
Maïtine Bergounioux, Xavier Bonnefond, Pierre Maréchal

To cite this version:
Maïtine Bergounioux, Xavier Bonnefond, Pierre Maréchal. Control techniques for thermo-acoustic
tomography. 2010. �hal-00530719v1�

https://hal.science/hal-00530719v1
https://hal.archives-ouvertes.fr


Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

CONTROL TECHNIQUES FOR THERMO-ACOUSTIC

TOMOGRAPHY
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Université Paul Sabatier

31062 Toulouse cedex 9, France

(Communicated by the associate editor name)

Abstract. Thermo-acoustic and photo-acoustic tomography are imaging tech-
niques that combine high electromagnetic absorption contrast between two
media with ultrasound high resolution. Both techniques lead to an ill-posed
inverse problem of the same form which entails inversion (in the wide sense) of
the spherical Radon transform. One currently has a choice between three main
types of reconstruction procedures namely the filtered backprojection formulae,
eigenfunction expansion methods and time reversal method. In this paper we
propose to investigate this inverse problem with an alternative control formu-
lation : in our model the function to be recovered is the control function while
the (acoustic) pressure is the state function which satisfies a wave equation.
We stress that our objective is to give modelling hints, and not to provide new
results. Otherwise expressed, the originality of this paper lies essentially in the
way the problem is stated.

1. Introduction. Thermo-acoustic and photo-acoustic tomography are imaging
techniques that combine high electromagnetic absorption contrast between two me-
dia with ultrasound high resolution. These hybrid systems use an electromagnetic
pulse as an input and record ultrasound waves as an output. The electromagnetic
energy is distributed at a given time as uniformly as possible through the object.
The induced increase of temperature depends on the local absorption properties
(for example, cancerous tissues absorb more energy than healthy ones). This opens
the way to the detection of heterogeneities via measurements of the pressure field.
Heterogeneities behave like internal acoustic sources, and the signals recorded by
pressure detectors outside the medium under study provide information on their
distribution. One speaks of thermo-acoustic tomography (TAT) when the heat-
ing is realized by means of microwaves, and of photo-acoustic tomography (PAT)
when optical heating is used. While in TAT waves of radio frequency range are
used to trigger the ultrasound signal, in the PAT the frequency lies in the visual
or near infra-red ranges. In brief, TAT and PAT are two hybrid techniques using
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2 MAÏTINE BERGOUNIOUX AND PIERRE MARÉCHAL

electromagnetic waves as an excitation (input) and acoustic waves as an observa-
tion (output). For the mathematical purpose there is no distinction between these
methods. Both techniques lead to an ill-posed inverse problem of the same form
which, under simplifying assumptions, entails inversion (in the wide sense) of the
spherical Radon transform.

Figure 1. Realization of a tomograph with integrating transduc-
ers, from Patch and Scherzer [23]

More precisely, the main problem can be formulated as follows [13, 14, 15]: given
the sound speed c(x) and measured data pobs on S ⊂ R

n (n = 2, 3), find the initial
value uo(x) of the pressure p(x, t) where y is solution to the problem



































(

∂2p

∂t2
−∆p

)

(t, x) = 0, (t, x) ∈ [0, T ]× R
n,

p(0, x) = uo(x), x ∈ R
n,

∂p

∂t
(0, x) = 0, x ∈ R

n,

p(t, x) = pobs(t, x), x ∈ S, t ∈ [0, T ].

We shall justify this model in the sequel. The initial value uo is the TAT (or PAT)
image. This problem is highly ill-posed. In most reconstruction methods in TAT,
additional assumptions are performed as for example conditions on the support of
the function to recover and/or the observation surface, or a constant sound speed.
A nice overview of the state of art has been done in [15]. We summarize the in-
troduction (for more details one can refer to the whole paper). One currently has
a choice between three main types of reconstruction procedures for closed observa-
tion surfaces, namely the filtered backprojection formulae, eigenfunction expansion
methods and time reversal method.

The filtered backprojection method is the most popular [7, 9, 10, 13, 16]. How-
ever, it is not clear that backprojection-type formulae could be written for any
closed observation surface S. In [10], inversion formulae are provided assuming odd
dimensions and constant sound speed. Indeed, in this case the Huygens principle
holds : for any initial source with a compact support, the wave leaves any bounded
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domain in a finite time. This is not true any longer if the spatial dimension is even
and/or the sound speed is not constant any longer. All known formulae of the fil-
tered backprojection type assume constant sound speed and thus are not available
for acoustically inhomogeneous media. In addition, the only closed bounded surface
S for which such formulae are known is a sphere.

Expansion series are useful in the case where the Huyghens principle is valid This
approach was extended to the constant speed and arbitrary closed observation sur-
face and modified by the usage of the eigenfunctions of the Laplacian with Dirichlet
conditions on S [3, 25]. It theoretically works for any closed surface and for variable
sound speeds.

The time reversal method [14, 15] can be used for approximating the initial
pressure when the sound speed inside the object is variable. It works for arbitrary
geometry of the closed observation surface S. The sound speed can be variable.

In this paper we propose to investigate this inverse problem with an alternative
formulation. We propose a control approach: in our model the function to be
recovered is the control function while the pressure is the state function which
satisfies a wave equation. We stress that our objective is to give modelling hints,
and not to provide new results. Otherwise expressed, the originality of this paper
lies essentially in the way the problem is stated.

There are many ways to define the state equation and the cost functional (ob-
servation) in the optimal control or controllability approach. We state a few open
problems for future investigation, which cover various fields such as controllability
theory, optimal control both from the theoretical and numerical viewpoints, the
relationship with Fourier analysis and the control approach (Fourier aliasing effects
and numerical approximations for the wave equation), shape optimization and so
on.

The paper is organized as follows: in the next section, we present the physical
problem and the model, together with the integral formulation (involving the spher-
ical Radon transform). In Section 3, we propose an optimal control approach, give
various models and derive general optimality conditions. In Section 4, we explain
why a controllability approach is not easy. We end with remarks on numerical
aspects.

2. Background.

2.1. From physics to the TAT model. We describe here the physical model of
TAT (or PAT). Our exposition follows that of [24].

We denote by v(x, τ) the fluid velocity at position x and time τ , and make the
following physical assumptions:

1. v(x, τ) is small;
2. the fluid is non viscous and non turbulent;
3. there is no external force.

We also assume that the density ρ = ρ(x, τ) and pressure p = p(x, τ) undergo
small variations:

ρ = ρ0 + δρ with |δρ| << ρ0 and p = p0 + δp with |δp| << p0.

This allows for linearizing the mass conservation andmomentum conservation equa-
tions, which then read

∂ρ

∂τ
= −ρ0∇ · v and ρ0

∂v

∂τ
= −∇p,
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respectively. In the latter equations, ρ and p now stand the variations δρ and δp.
Combining these equations yields

∂2ρ

∂τ2
−∆p = 0. (1)

In order to link ρ and p with the absorbed electromagnetic radiation, one makes
use of the thermal expansion equation, whose linearized form reads

∂ρ

∂τ
=

1

v2
∂p

∂τ
−
β

cp
r. (2)

Here, β, cp and v denote respectively the thermal expansion coefficient, the specific
heat capacity and the adiabatic speed of sound, while r = r(x, τ) denotes the
absorbed electromagnetic power. From (1) and (2), we easily obtain

(

1

v2
∂2

∂τ2
−∆

)

p =
β

cp

∂r

∂τ
. (3)

Now, the absorbed electromagnetic power r(x, τ) is related to the absorption co-
efficient ψ = ψ(x) by the equation r(x, τ) = I(x, τ)ψ(x), in which I(x, τ) is the
radiation intensity. Finally, due to the high magnitude of the speed of light, one
can assume that I(x, τ) takes the separated form I(x) = J(x)j(τ). Equation (3)
then reads

(

1

v2
∂2

∂τ2
−∆

)

p =
βJΨ

cp

∂j

∂τ
.

The change of variable t = vτ yields the following reformulation:
(

∂2

∂t2
−∆

)

p =
βIΨ

cp

∂j

∂t

The function f(x) := βJ(x)Ψ(x)/cp is referred to as the energy deposition func-
tion. Finally, we can assume that the pressure increment, together with its time
derivative, is zero at the initial time (right before illumination). We are then led to
consider the following system:

(TAT )



























(

∂2

∂t2
−∆

)

p(x, t) = f(x)
∂j

∂t
(t),

p(x, 0) = 0,

∂p

∂t
(x, 0) = 0.

2.2. Integral formulation. The direct problem consists in determining p(x, t) of
all (x, t) ∈ R

3 × R+ from the knowledge of f and j. It is well known (see e.g. [13])
that the solution is given by

p(x, t) =

(

dj

dt
⊛
(

tRf
)

)

(x, t). (4)

Here, the convolution operation ⊛ is defined by

(

g ⊛ h
)

(x, t) =

∫ t

0

g(t− s)h(x, s) ds

and the operator R, referred to as the spherical Radon transform, is defined by

(Rf)(x, t) :=
1

4π

∫

S2

f(x+ tω) dω.
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Figure 2. Physical principle of Thermo-acoustic Tomography:
intensity time profile of the EM pulse (left) and scheme showing
the pressure wave generation and propagation (right).

In TAT, one is rather confronted the inverse problem:

Recover the energy deposition function f(x) frommeasurements of p(x, t)
for x running over a surface S outside the illuminated fluid.

We now show that additional approximations give rise to an integral formulation
of the latter inverse problem, under the assumption that the intensity profile j(t)
is nearly a Dirac centered at the origin. Assuming that j has support in [0, T ] (see
Figure 2 (left)), one may write, for every smooth function h(x, t),

d

dt

(

j ⊛ h
)

(x, t) =
d

dt

∫ t

0

j(t− s)h(x, s) ds

=
d

dt

∫ ∞

0

j(t− s)h(x, s) ds (for t ≥ T )

=

∫ ∞

0

dj

dt
(t− s)h(x, s) ds

=

(

dj

dt
⊛ h

)

(x, t).

If j ≈ δ, then

dj

dt
⊛ h ≈

dh

dt
,

so that
(

dj

dt
⊛
(

tRf
)

)

(x, t) ≈
d

dt
(tRf).

Consequently, Equation (4) can be approximated by

p(x, t) =
d

dt
(tRf). (5)

We see that, after integrating and dividing by t, measurements of p(x, t) on S×R+

give access to approximate values of (Rf)(x, t) on the same domain.
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2.3. Regularization by mollification. The integral formulation of the problem
leads to a linear inverse problem of standard form, that is:

Recover f from an approximate knowledge of Rf , where R is a compact
linear operator (modelling the data acquisition process) from a norm
space into another.

In TAT, R is the spherical Radon transform.
We call regularization by mollification a set of reconstruction methodologies de-

riving from the idea that the original ill-posed problem of reconstructing the un-
known object f should be replaced by that of recovering a smooth version of it. In
this approach, the target object is no longer f but ϕ ∗ f , where ϕ is a convolution
kernel and ∗ denotes the convolution operation.

This idea has been developed in two different ways, independently. One of
them, which bears the name of approximate inverse, was introduced by Louis and
Maaß [20, 21, 22]. In the context of TAT, it was developed by Altmeier, Schuster
and Scherzer [13]. The other way goes back to Lannes et al. [17], who introduced a
particular variational regularization in the context of deconvolution and aperture
synthesis. This approach was further analyzed and developed more recently by
Alibaud et al. [1] and Bonnefond et al. [5] (see also [2]).

2.3.1. Approximate inverses. Given a continuous and nonnegative function φ with
∫

φ = 1, one defines the family

φβ(x, y) :=
1

βn
φ

(

x− y

β

)

, β > 0,

called an approximation of unity. The mollified version of f , denoted fβ , can
expressed as the scalar product of f by φβ(·, y):

fβ(y) :=

∫

f(x)φβ(x, y) dx = 〈f, φβ(·, y)〉 .

Now, it is well-known that, in several senses,
∫

f(x)φβ(x, ·) dx→ f as β ↓ 0.

Assuming that φβ ∈ ranR∗, let ψβ be defined by

ψβ(·, y) = (R∗)−1φβ(·, y). (6)

Then, one has:

fβ(y) = 〈f, φβ(·, y)〉 = 〈f,R∗ψβ(·, y)〉 = 〈Rf, ψβ(·, y)〉 .

We see that if one can compute explicitly ψβ , fβ is readily obtained from the data
g = Rf by taking the scalar product with the so-called reconstruction kernel ψβ . In
the case where R∗ is not invertible, one may replace (R∗)−1 in equation (6) by the
pseudo-inverse of R∗ (which corresponds to the least-square solution of the equation
R∗ψ(·, y) = φβ(·, y)). Clearly, the difficulty in this method lies in general in equation
(6) which is an ill-posed problem as well. However, as mentioned above this nice
duality trick has been successfully applied in the context of TAT by Haltmeier et
al. in [13].
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2.3.2. Regularization by mollification. We assume here that the original object f0
has support in a bounded domain Ω0 in R

d, and that the mollified object ϕ∗ f0 has
most of its support in Ω ⊃ Ω0. Notice that, if ϕ is chosen to have compact support,
the definition of Ω is straightforward.

We also assume that R maps L2(Ω) into some infinite dimensional separable
Hilbert space G, and that R is compact and injective.

The convolution kernel is regarded as a member of the family

φβ(x) :=
1

βd
φ

(

x

β

)

, with φ ∈ L1(Rd) and

∫

Rd

φ(x) dx = 1. (7)

The latter family is an approximation of unity, and the choice of β determines the
target resolution. Clearly, in this approach, the relevant regularization parameter
is β.

Let Cβ denote the convolution by ϕβ . We now aim at approximating the new
target object Cβf = φβ∗f0, which is performed by solving the following optimization
problem:

(Pβ)

∣

∣

∣

∣

∣

∣

Minimize
1

2
‖Φβg −Rf‖2G +

α

2
‖(I − Cβ)f‖

2
L2

s.t. f ∈ L2(Ω),

in which I denotes the identity and Φβ : G→ G is itself a solution to:

(Qβ)

∣

∣

∣

∣

∣

∣

Minimize
1

2
‖RCβ −XR⌊E‖

2
L(E,G)

s.t. X ∈ L(G), X = 0 on (ranR⌊E)
⊥.

Here, E is a subspace of L2(Rd), L(E,G) denotes as usual the space of continuous
linear mappings from E to G and L(G) := L(G,G).

The choice of the functional to be minimized in (Pβ) can be explained as follows.
Any object f is the sum of its low frequency component Cβf and of its high frequency
component (I − Cβ)f The functional to be minimized acts of each component as
independently as possible: the fit term introduces constraints on the low frequency
component while the regularization term deals with the high frequency component.

The complementarity of the filters φ̂β et 1 − φ̂β allows for a smooth transition
between the experimental and regularization constraints.

We emphasize that, unlike most regularization techniques, the fit term requests
adequacy to the regularized data Φβg. The rationale for this is that, in some sense,
Φβg is optimally consistent with the new target object. Ideally, Φβ should be such
that

ΦβR = RCβ , (8)

which may not be feasible. Therefore, Φβ is chosen to minimize the discrepancy in
Equation (8).

3. A control formulation. In this section, the pressure p will be denoted y, in
order to fit the traditional notation in optimal control.
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3.1. The state equation. We have seen in the previous section that the equation
that describes the behavior of the system is (in R

n with n = 3):


















(

∂2y

∂t2
−∆y

)

(t, x) = uo(x)
∂j

∂t
(t), (t, x) ∈ [0, T ]× R

n,

y(0, x) = 0, x ∈ R
n,

∂y

∂t
(0, x) = 0, x ∈ R

n.

(9)

where j is the electromagnetic pulse intensity profile.

More generally we set u(t, x) := uo(x)
∂j

∂t
(t). The function to be recovered u is

regarded as a control function while the pressure y is regarded as the state function.
Therefore Equation (9) is the so-called state equation.

Remark 1. By using Duhamel’s principle [7], one may rewrite this state equation
as



















(

∂2y

∂t2
−∆y

)

(t, x) = 0 in [0, T ]× R
n,

y(0, x) = uo(x), in R
n,

∂y

∂t
(0, x) = 0 in R

n.

(10)

So, in this context, the control function can be a distributed one or an initial
one. However, this equivalence is only valid in the linear case and we focus on the
distributed case.

Recall that, if V is a norm space endowed with ‖ · ‖V , then for every p ∈ [1,∞]

Lp(0, T ;V ) := {y : [0, T ]× R
n → R | y(t, ·) ∈ V a.e. t ∈ (0, T )

and

∫ T

0

‖y(t, ·)‖pV dt < +∞}.

and

C(0, T ;V ) := {y : [0, T ]× R
n → R | ∀t ∈ (0, T ) y(t, ·) ∈ V

and t 7→ ‖y(t, ·)‖V is continuous }.

The original problem domain is Rn. This is consistent with the fact that one usually
uses classical Fourier analysis (Radon transform, spherical means,...). The control
viewpoint requires the definition of boundary conditions (to infinity if the domain
is R

n) to use duality methods and Green formulae. By contrast, the advantage
of this approach is that we may choose an open bounded subset B as the domain
and use finite differences or finite elements to compute the solution. A challenging
application is to set a model which allows for using both spectral (Fourier) analysis
and finite difference methods.

We recall a regularity and existence abstract result which gives indication about
the functional framework to be used:

Theorem 3.1 ([19] Vol. 1 p 286). If u ∈ L2([0, T ] × R
n), then (9) has a unique

solution in { y ∈ L2(0, T,H1(Rn)) , yt ∈ L2([0, T ]× R
n) . Moreover

y ∈ C(0, T ;H1(Rn)) and yt ∈ C(0, T ;L2(Rn)) ,

and the solution y continuously depends on u.
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In the sequel, we shall avoid using the whole space R
n. Therefore, we consider

that infinity means far enough and that the problem domain can be an open ball
B ⊂ R

n with large radius. Indeed the pressure y quickly vanishes and we may
consider that it is equal to 0 on the boundary ∂B of the ball. The ball B contains Ω
as well as the sensors location ωε (we shall justify the notation later on). If we
impose Dirichlet conditions on the boundary, we get:



























(

∂2y

∂t2
−∆y

)

(t, x) = u(t, x), in ]0, T [×B := Q,

y(0, x) = 0, in B
∂y

∂t
(0, x) = 0 in B

y = 0 on S

(11)

where S :=]0, T [×∂B is the lateral boundary of Q.

Remark 2. We may of course consider Neumann boundary conditions or mixed
conditions: this requires additional investigation on the physics. We may also
consider Rn instead of the ball: the techniques are quite similar.

We have a generic classical result (see [8] p. 632 for example) which can be
sharpened of course.

Theorem 3.2. Assume that u ∈ L2(0, T ;H−1(B)). Then, Equation (11) has a
unique solution y[u] ∈ L2(0, T ;H1

o (B)) ∩ C0([0, T ];L2(B)).

In the sequel we denote

W := L2(0, T ;H1
o(B)).

Open problem 1. We have set u(t, x) := uo(x)
∂j

∂t
(t) where j is a smooth ap-

proximation of the Dirac measure. This gives the natural regularity of the control
function. However, the following analysis can be performed using less smooth control
functions.

3.2. The control problem. Following Scherzer [13] we assume that u has a com-
pact support contained in [0, T ] × Ω, where Ω is a bounded open subset of R

n

containing the support of the object to be recovered. The pressure y is measured
(observed) on Σ = [0, T ]× Γ where Γ ⊂ ∂Ω is contained (most of time strictly) in
∂Ω. The inverse problem which consists in recovering u from measurements of y on
Σ can be formulated as the following minimization problem:

∣

∣

∣

∣

∣

∣

Minimize

∫

Σ

(y(u)− yd)
2 dt dγ

s.t. u ∈ U ,

where yd is the measured pressure and U is the admissible control function space.
Many difficulties then arise:

• The problem is known to be ill-posed: we cannot even ensure the existence
of a solution. One must add a regularization term for u. A standard way to
perform the regularization consists in adding to the functional a Tychonov
term:

α

∫

Q

u2dxdt with α > 0.
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Open problem 2. A crucial point is to investigate the physical model and
the qualitative properties of the control in order to choose an appropriate reg-
ularization term: we may choose the solution with minimal energy, but it may
not be the best choice.

Open problem 3. A natural question is that of describing the asymptotic
behavior of the solution as the regularization parameter α goes to 0 (this is
well-known for Tychonov regularization process for example).

• In order to define the observation term in the cost functional, the trace of y[u]
on Σ has to belong to L2(Σ). This depends on the regularity of u. However,
in the case of point detectors, the observation term would take the form

N
∑

i=1

∫

[0,T ]

(y[u]− yd)
2(t, xi) dt =

N
∑

i=1

∫

[0,T ]×Rn

(y[u]− yd)
2(t, x) dt dδxi

(x),

in which dδxi
denotes the Dirac measure at xi. Notice that one may relax the

above functional and write instead
N
∑

i=1

∫

[0,T ]×Rn

(y[u]− yd)
2(t, x) dt dµi(x),

in which dµi is a relaxed version of dδxi
, e.g. a gaussian measure centered

at xi. Clearly, the width of each µi should be less than, say, one half of
the expected wavelength of the pressure wave, so that the requested fit is
physically acceptable.

Open problem 4. Study the asymptotic behavior of the solution as the fit
measures µi approach the Dirac measures δxi

.

• Even if the cost functional makes sense, using duality methods and integrating
by parts is not possible since Γ is not a closed surface (roughly speaking, there
is no inside and outside).

To overcome the last difficulty we regard Γ as an open subset of ωε, with

lim
ε→0

ωε = Γ.

This convergence must be clarified of course (using tools from shape optimization,
for example). A simple way to perform this approximation is to set

ωε =
⋃

x∈Γ

B(x, ε), (12)

where B(x, ε) is the open ball of radius ε centered at x (see Figure 3).
In the case where there is a finite number of sensors located at xi, 1 ≤ i ≤ N, xi ∈

Γ one may choose

ωε =

N
⋃

i=1

B(xi, ε) .

So, we replace a boundary observation by a distributed observation. We set Ωε =
Ω ∪ ωε and Γε = ∂ωε.

Open problem 5. • More generally Ωε is defined as a perturbation of Ω: there
are many questions related to the asymptotic behavior of the ε-solution as
ε→ 0. One may use tools as the Γ-convergence for example.
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Figure 3. Observation surface relaxation

• Another interesting question is to look for an optimal ωε with respect to a
criterion given by the experimental setup for example.

Finally, the regularized optimal control problem reads:

(P)ε











min Jε(y, u) :=
1

2

∫

[0,T ]×ωε

(y − yd)
2(t, x) dt dx +

α

2

∫

[0,T ]×Ω

u2(t, x) dt dx

y = y[u] solution to (9), u ∈ U

where α > 0, yd ∈ L2(Q) and U is defined for example as

U := {u ∈ L2(]0, T [×B) | u(t, x) = 0 a.e. (t, x) ∈]0, T [×(B\Ω) } .

Remark 3. On can choose

U := {u ∈ L2(]0, T [×B) |u(t, x) = uo(x)
∂j

∂t
(t) a.e. (t, x) ∈]0, T [×Ω, supp(uo) ⊂ Ω } .

In the case where the control is an initial one the regularization term could be

α

2

∫

B

u2o(x) dx

(

=
α

2

∫

Ω

u2o(x) dx

)

.

Theorem 3.3. For every ε > 0 problem (P)ε has a unique solution (yε, uε)

Proof. The proof is standard: any minimizing sequence weakly converges to some
u∗ (up to a subsequence) in L2(Q) and strongly in H−1(Q). The sensitivity results
for the wave equation implies that the corresponding state sequence converges to
y[u∗]. As U is closed and convex (⊂ L2(Q) ) u∗ is admissible. The conclusion comes
from the lower-semi continuity of the cost functional.

Open problem 6. One has to precisely study the asymptotic behavior of (yε, uε)
with respect to ε and if possible give error estimates.

3.3. Optimality conditions. Once the optimal control problem has been formu-
lated it is easy to use the classical machinery (see [18]) introducing the adjoint
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state pε :


































∂2pε
∂t2

−∆pε =

{

yε − yd in [0, T ]× ωε

0 elsewhere

pε(T, x) = 0 in B,
∂pε
∂t

(T, x) = 0, in B,

pε = 0, on S

Since yε − yd ∈ L2(Q) then pε ∈ L2(0, T ;H1
o(B)) ∩ C0([0, T ];L2(B)). As (yε, uε) is

the solution to (P)ε then

∀(y, u) ∈W × U , such that y = y[u] J ′
ε(yε, uε)(y − yε, u− uε) ≥ 0 ,

that is
∫

[0,T ]×ωε

(yε − yd)(y − yε) dt dx + α

∫

[0,T ]×Ω

uε(u− uε) dt dx ≥ 0

∫

[0,T ]×B

(

∂2pε
∂t2

−∆pε

)

(y − yε) dt dx+ α

∫

[0,T ]×Ω

uε(u − uε) dt dx ≥ 0 .

The Green formula gives ([19] Vol. 1)
∫

[0,T ]×B

(

∂2pε
∂t2

−∆pε

)

(y − yε) =

∫

[0,T ]×B

(

∂2(yε − y)

∂t2
−∆(yε − y)

)

pε .

Finally

∀u ∈ U

∫

[0,T ]×B

(pε + αuε)(u − uε) dt dx ≥ 0 , (13)

that is

uε = ΠU (−
pε
α
) ,

where ΠU is the L2- projection on U . We get the following optimality system

Theorem 3.4. For every ε > 0 a necessary and sufficient condition for (yε, uε) ∈
W × U to be the solution to (P)ε is



































∂2y

∂t2
−∆y = u, in Q,

y(0, x) = 0, in B,
∂y

∂t
(0, x) = 0, in B,

y = 0, on S

(14a)



































∂2pε
∂t2

−∆pε =

{

yε − yd in [0, T ]× ωε

0 elsewhere

pε(T, x) = 0 in B,
∂pε
∂t

(T, x) = 0, in B,

pε = 0, on S

(14b)

∀u ∈ U ,

∫

Q

(pε + αuε)(u− uε) dt dx ≥ 0 , (14c)
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4. The controllability point of view. Another way to consider the problem,
which seems to be the most natural one is a controllability approach. Roughly
speaking, we look for a control function u with support in ]0, T [×Ω such that y[u]
is given on the set Σ =]0, T [×Γ. It is clear that the solution is not unique if there
is some. However the existence is not obvious both is the cases of exact and ap-
proximate controllability. There is a huge literature on controllability/observability
theory and we cannot mention all the papers. However, Bardos, Lebeau and Rauch
have shown in a famous paper [4] that for the observation or control of solutions of
second-order hyperbolic equation a necessary and sufficient condition for controlla-
bility is that the region of control meet every ray of geometric optics that has, at
worst, transverse reflection at the boundary. More precisely, for multidimensional
problems, the region of control must meet each ray in a non diffractive point. This
condition is not ensured in our case since the observability (stabilization) region ωε

is not necessarily connected to the control region Ω.

Open problem 7. What could be a good choice of ωε or Γ to give some existence
results for the controllability problem:

Find u with compact support in Ω such that y[u] = yd on Γ or ωε ?

Which model would be appropriate for using controllability techniques for the wave
equation (HUM method, Carleman estimates) ?

5. Numerical hints. Using our model we have obtained necessary and sufficient
optimality conditions that we may solve numerically. From now, ε > 0 is fixed and
we may use (for example) a fixed-point algorithm to solve equations (14). This
gives (formally)

Algorithm

1. Choose uo ∈ U (for example uo ≡ 0). Set k = 1
2. Iteration k

(a) Compute yk = y[uk−1] solution to equation (14a) with uk−1 instead of uε.
(b) Compute pk solution to equation (14b) with yk instead of yε.
(c) Set uk = ΠU (−pk/α).

3. Check if a stopping criterion is satisfied. If not k = k + 1 and go back to 2.

There are many classical tools to make this algorithm converge (splitting, re-
laxation). The more delicate part is the computation of ΠU since the support
constraint is a pointwise constraint and we perform a L2-projection. An alterna-
tive is to keep the constraint as a control constraint and deal with the associate
Lagrange multiplier. This will be addressed in future work.

The previous algorithm has been set in a infinite dimensional framework and it
is necessary to perform a discretization process, for example with finite difference
schemes. However, it is known that for time semi-discrete systems, due to high
frequency spurious components, the exponential decay property may be lost as
the time step tends to zero (see Zuazua [26, 27]) so that numerical schemes are
highly unstable. In [11], Ervedoza and Zuazua use a decoupling argument of low
and high frequencies, the low frequency observability property for time semi-discrete
approximations of conservative linear systems and the dissipativity of the numerical
viscosity on the high frequency components.
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Open problem 8. Establish the relationship between the numerical aliasing due to
high frequencies in the discretization of the wave equation and the classical aliasing
effect in Fourier analysis and signal processing. How can we relate the decoupling
method of [11] to Fourier extrapolation and/or mollification ?

Open problem 9. Find a numerical method (and a model) which use (for example)
finite difference schemes for the low frequency part and Fourier expansion for high
frequency part, via high frequency penalization.

6. Conclusion. We hope we have clearly presented many open question about a
challenging imaging process. We can apply these remarks to photo-acoustic tomog-
raphy (PAT) as well: the equations are the same (wave equation related to acoustic
part) but the frequency scale is different. There are many others questions that
arise as for example the optimal location of sensors (shape-optimization problem),
variable speed sound and/or non linear equations, filtering effect on u and so on.
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