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ABSTRACT 

Thanks to its high thermal conductivity, aluminum nitride may be a serious candidate as fuel coating for the Gas Fast 

Reactor. However, its behavior under irradiation is not entirely well understood. In order to catch a glimpse of this 

behavior, specimens were irradiated with swift heavy ions of different energies then characterised by both thermally 

stimulated luminescence and optical absorption spectrophotometry. With these techniques, the native defects, as well as 

those affected by irradiation, were identified: thus, by comparison to the virgin sample, no new defect detectable by 

these techniques is created by irradiations. Eventually, the fact that these techniques complement each other allowed to 

understand the effect of irradiation parameters on the defect concentration. 

Keywords: AlN, irradiation, swift heavy ions, electronic interactions, thermoluminescence, optical absorption 

spectrophotometry 
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1. Introduction 

Gas Fast Reactor (GFR) is one of the six new systems considered by Generation IV International Forum (GIF): it is 

designed to work under helium-pressure and high-temperature (1100-1300 K). These working conditions led to the 

selection of non-oxide refractory ceramics as fuel coating; the remarkable thermo-mechanical properties of carbides and 

nitrides make them great candidates for this application. However, their behavior under irradiation has to be studied in 

more details. 

Among the studied materials, aluminum nitride is distinguished by its high thermal conductivity which should ensure 

the heat transfer between the coolant and the fuel. Actually, the values obtained for commercial aluminum nitride 

generally range between 160 and 200 W m
-1

 K
-1

 [1-4] with the highest value of 320 W m
-1

 K
-1

 measured on a single 

crystal [5]. 
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The main drawback for the use of aluminum nitride in nuclear facilities is its ability to generate a radioactive long-lived 

isotope 
14

C by transmutation of 
14

N [6]. Nevertheless, this drawback can be reduced by the use of isotope tailored 

material, in which 
15

N replaces 
14

N [7].  

The behavior of aluminum nitride ceramics is also studied in the framework of fusion reactors, in which this material, 

thanks to its high electrical resistivity (> 10
12

  m at 300 K [8]), could be used as electric insulator for toroidal current 

break, neutral beam injectors, and superconducting magnets. Thus, many works have been carried out to understand the 

behavior of aluminum nitride under neutron irradiation, especially by Yano et al. [7,9-17]. However, as far as we know, 

no study has been performed concerning the characterization of defects induced by irradiation.  

Thus, the aim of this study is to characterize the evolution of native defects of aluminum nitride as a result of swift 

heavy ion irradiations, using thermally stimulated luminescence and optical absorption spectrophotometry.  

2. Material and methods 

2.1. Sample preparation and irradiation 

The studied material was obtained by sintering of AlN powders with Y2O3 (sintering aid: 3 mol%) at 2123 K in nitrogen 

atmosphere during 3 h. This polycrystalline aluminum nitride consists of 8 µm grains with 0.89 % of oxygen. Its 

thermal conductivity was measured between 198 and 214 W m
-1

 K
-1

. Preparation of the samples before irradiation was 

already described elsewhere [18]. Briefly, they were polished with diamond suspensions down to 1 µm, and then 

subsequently irradiated with different swift heavy ions (SHI). This kind of irradiation aims to simulate the interactions 

of fission products without the drawback of neutrons activating the specimens. Thus, the specimens can be manipulated 

just after irradiations without any particular precautions. 

SHI were provided by GANIL facilities (Caen, France). In order to know the effect of electronic stopping power, 

samples were irradiated with different ion-energy couples. Table 1 shows the effect of three ion irradiations in AlN, to 

wit the average projected range (Rp), both the electronic (Se) and the nuclear (Sn) stopping powers. All these data were 

obtained with SRIM-2008 code [19]. In addition, this table contains the experimentally reached fluences and the 

irradiation temperatures.  

Table 1: Summary of irradiation conditions; RT stands for room temperature. 

Ion irradiation Rp (µm) Se (keV nm
-1

) Sn (keV nm
-1

) Fluences (cm
-2

) Temperatures 

74 MeV Kr 9.7 13.1 0.054 10
12

, 10
13

, 10
14

, 10
15 

RT & 773 K 

92 MeV Xe 9.4 17.7 0.132 10
12

, 10
13

, 10
14

, 10
15 

RT 

930 MeV Xe 46.2 21.8 0.018 10
11

, 10
12

, 10
13

, 4.5x10
13 

RT & 773 K 
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The fluences reached for 930 MeV Xe irradiations are lower than those reached with the two other irradiations. This is 

due to the highest energy, which may heat the samples during irradiation. Thus, in order not to heat the samples, the flux 

used for this irradiation was lower than for the two others. The required duration for equivalent fluences were hence 

much higher. 

2.2. Thermally stimulated luminescence measurements 

Principle of thermally stimulated luminescence (TSL) may be found elsewhere [20,21]. For TSL measurements, 

specimens were excited at room temperature (RT) during five minutes by a deuterium UV-lamp (50 W) covering the 

200-400 nm spectral range. 

Two minutes after excitation, TSL readout was achieved by linear heating of the excited sample from RT to 673 K at a 

rate of 1 K s
-1

. TSL intensity was recorded by means of a photomultiplier (Philips 2018 B) covering the 200-600 nm 

range. For spectral analyzis of TSL emission, spectra were caught by an optical multi-channel analyzer (Princeton 

Instruments) covering the 300-800 nm range. 

2.3. Optical absorption measurements 

Optical absorption spectrophotometry (OAS) was performed at room temperature using a Varian Carry 500 

spectrophotometer equipped with a diffuse reflection sphere. The spectra were recorded on the 250-800 nm wavelength 

range with a scan rate of 600 nm min
-1

. The absorption reference was made of polytetrafluoroethylene (PTFE). For all 

the samples, optical absorption was measured before and after ion irradiation in the same experimental conditions. The 

absorption bands affected by irradiation have been characterized by the difference curve, which is obtained by 

subtracting the absorption spectrum of the virgin sample from the spectrum of the same sample after ion irradiation.  

3. Results 

3.1. Thermally Stimulated Luminescence 

Typical evolution of TSL glow curves as a function of fluence is shown in Figure 1. The TSL signal of the AlN sample 

before irradiation consists of one broad and structureless glow curve peaking at approximately 400 K. This broad peak 

is due to the presence of oxygen in the nitrogen sublattice. More precisely, it attests the presence of trapping centers 

(TC), certainly oxygen in substitution of nitrogen ON and/or bivalent 2ON centers [20,22,23]. Whatever the ion-energy 

couple or the irradiation temperature are, the TSL intensity decreases with increasing fluence. Moreover, neither shift of 

the main peak, nor presence of new TSL peaks induced by irradiation were observed. 
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Figure 1: TSL glow curves of polycrystalline AlN sample as a function of 92 MeV Xe ion fluence. 

 

In order to compare the TSL signal for each irradiation, we calculated the area under each glow curve; Figure 2 shows 

the variation of TSL area as a function of fluence for each irradiation. In this Figure, we can note three different trends. 

First, for 74 MeV Kr and 92 MeV Xe irradiations at RT, TSL area quickly decreases up to 10
13

 cm
-2

 then tends to 

stabilize. Second, for irradiation at 773 K with 74 MeV Kr we can note a slight decrease up to 10
13

 cm
-2

 followed by a 

sharp decline occuring between 10
13

 and 10
14

 cm
-2

, then finally a stabilization of the signal. Third, whatever the 

temperature of 930 MeV Xe irradiation is, TSL area decreases more swiftly than for other irradiations up to 

stabilization. These trends suggest that the degradation process revealed by TSL is the same for different irradiations but 

of similar energies. 

 

Figure 2: TSL area under glow curve as a function of ion fluence for (a) low energy irradiations, and (b) high energy 

irradiations; lines are only to guide the eye. 
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Figure 3 shows the typical evolution of TSL emission spectra of the main peak (400 K) as a function of fluence; 

position of the bands was determined by Gaussian decomposition (not shown here). The spectrum of the virgin sample 

shows the main recombination centers (RC) in AlN already identified by Benabdesselam et al. [21]. First, the main 

broad band centered at around 3.2 eV is the convolution of the emission of probably three RC, which are more easily 

noticeable for the highest fluences (see inset): the emissions at 3.17 ± 0.01 eV and 2.67 ± 0.17 eV have been 

respectively attributed to complex centers VAl-ON-3N and VAl-2ON-2N while the one at 3.60 ± 0.04 eV may be 

associated to transitions from VAl to ON [22]. Concerning the low bands appearing at lower energies, they might be 

linked to some impurities: the emission at 2.04 ± 0.05 eV is attributed to the presence of Mn
4+

 in substitution of Al
3+

 

(MnAl) [21] whereas that centered at 1.79 ± 0.03 eV has been reported by Martin et al. as being due to the presence of 

Cr
3+

 in substitution of Al
3+

 (CrAl) [24]. Inductively coupled plasma (ICP) analyzis confirmed the presence of both 

impurities in our samples, at concentrations of 1.9 ± 0.1 and 2.0 ± 0.1 ppm respectively. 

 

Figure 3: Spectral distribution of the main TSL peak (400 K) as a function of 92 MeV Xe ion fluence in polycrystalline 

AlN samples; the inset is a zoom of the main emission band for the highest fluences. 

 

After irradiation, it is interesting to remark that no new RC is created: as shown for the glow curves, the intensity of the 

spectra decreases with the fluence, whatever the irradiation is.  

3.2. Optical absorption spectrophotometry 

Figure 4a shows the optical absorption spectrum of AlN before irradiation. It presents several absorption bands in the 

250-800 nm range. In this Figure, one can see the spectrum of the sample irradiated at RT with 92 MeV Xe to 10
15

 cm
-2

; 

as explained in section 2.3., the induced absorption was obtained by subtracting the absorption spectrum of a virgin 

sample from that of the same sample after ion irradiation.  
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Figure 4: Optical absorption of polycristalline AlN in the 250-800 nm wavelength range: (a) comparison between the 

virgin sample and the same sample irradiated at room temperature with 92 MeV Xe to 10
15

 cm
-2

, and (b) optical 

absorption bands induced by 92 MeV Xe irradiation. 

 

Through the 92 MeV Xe irradiations, Figure 4b shows the typical evolution of the absorption induced by irradiation as a 

function of fluence. In this Figure, one can see an increase of the absorption with the fluence all over the studied range.  

After irradiation, the optical density of 7 bands increases more particularly; the energy of these bands (Table 2) was 

determined after Gaussian decomposition of the obtained spectra (not shown here). Each of these 7 bands was ever on 

the absorption spectrum of the virgin sample: irradiations do not induce any new absorbing defect in the 250-800 nm 

range. 
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Table 2: Identification of absorption bands affected by 92 MeV Xe irradiation in polycristalline AlN sample; F centers 

are defects based on anionic vacancies. 

 (nm) E (eV) Related defect References 

678 ± 7 1.83 ± 0.02 Cr
3+

 (zero-phonon) [25-29] 

630 ± 6 1.97 ± 0.02 FeAl [30] 

511 ± 6 2.43 ± 0.03 ?  

455 ± 9 2.73 ± 0.05 VN or Ali or F2
2+ 

[31-36] 

406 ± 8 3.06 ± 0.06 VAl or CrAl [37,38] 

370 ± 6 3.35 ± 0.05 F2
+ 

[39] 

290 ± 8 4.28 ± 0.12 O related center (F2?) or Ali [36,40-42] 

 

In the literature, few information are available concerning the identification of absorbing defects in AlN. The data 

presented in Table 2 has been performed using those from other materials, in particular from alumina. Indeed, according 

to the high chemical affinity of oxygen towards aluminum, it is likely that a thin layer of alumina is present on the 

surface of AlN samples. Finally, as for the impurities of both manganese and chromium observed in the TSL emission 

spectra, the presence of iron in AlN samples (Table 2) was clearly identified by ICP, at a ratio of 330 ± 20 ppm.  

4. Discussion 

The estimation of the concentration of each absorbing defect (AD) is complicated. However, for each irradiation 

parameter, we observed that when an absorption band increases, all the other bands do likewise, even if not with the 

same rate (Figure 4b); this observation was also right for decrease of the optical density of the irradiated sample 

compared with that of the virgin one. That is why, in order to understand the effects of SHI in AlN material, we decided 

to follow the variation of the overall absorption of each sample as a function of irradiation parameters by calculating, 

for each performed irradiation, the average of the optical density induced by irradiation; this global absorption was 

called average optical absorption induced by irradiation (Figure 5).  
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Figure 5: Average optical absorption induced by (a) low energy irradiations, and (b) high energy irradiations within the 

250-800 nm wavelength range; lines are only to guide the eye. 

 

Thus, whatever the irradiation carried out at RT is, the induced absorption remains constant and almost null up to 

10
12

 cm
-2

, and then increases. For irradiations performed at 773 K with 930 MeV Xe ions, the variation is similar to that 

at RT except for highest fluence of 4.5x10
13

 cm
-2

 for which the induced absorption decreases slightly at 773 K while it 

increases for RT. This behavior could be explained by an annealing of the defects created by irradiation from a critical 

fluence c ranging between 10
13

 and 4.5x10
13

 cm
-2

 at 773 K. Thus, above c the defects would be annealed, inducing a 

decrease of the overall concentration of defects. Finally, for the 74 MeV Kr irradiation at 773K, we observe a sharp 

drop in absorption compared to the virgin sample. This drop is followed by the same increase with the fluence as 

obtained for irradiation at RT: the average induced absorption hence reachs a comparable value to that before irradiation 

for 10
14

 cm
-2

 fluence, and becomes higher for 10
15

 cm
-2

. Thus, if the electronic stopping power Se decreases 

(13.1 keV nm
-1

 for 74 MeV Kr and 21.8 keV nm
-1

 for 930 MeV Xe, see Table 1), the critical fluence of annealing c 

decreases, being lower than 10
12

 cm
-2

 for irradiation at 773 K with 74 MeV Kr. Moreover, the evolution of this average 

induced absorption reflects a balance between annealing by irradiation temperature and creation of defects by 

irradiation itself, which inclines toward the creation only for high fluences. 

Thanks to OAS, we know that irradiations create defects that absorb the UV-visible radiations, and therefore some of 

the TSL emissions mainly located in this range. To better understand the irradiation effects due to SHI, we now compare 

the results obtained by both techniques. 

First, by considering the annealing at 773 K of the absorbing defects induced by 74 MeV Kr ion irradiation (Figure 5a), 

one would expect an increase of the TSL signal for low 74 MeV Kr fluences, above the signal of the virgin sample. 

However, according to Figure 2a, the TSL signal also decreases for this irradiation. Therefore, this ion-energy couple 
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(74 MeV Kr) seems to induce the decrease of TSL center concentration. Moreover, regarding the fact that there is no 

difference between the TSL signals related to 930 MeV Xe irradiations performed at RT and 773 K, we can consider 

that an increase of the irradiation temperature does not induce any increase of TSL center concentration, but only the 

annealing of AD. Therefore, the differences between the TSL curves of 74 MeV Kr ion irradiations would be only due 

to both the creation of AD at RT and their annealing at 773 K.  

Second, for the same fluences and for irradiations performed at RT, TSL signal is nearly the same for both 74 MeV Kr 

and 92 MeV Xe irradiations, and then decreases in the case 930 MeV Xe irradiation. As for these irradiations the AD 

concentration is the same whatever the electronic stopping power is, this latter has not any effect on TSL center 

concentration up to a threshold Seth above which this concentration strongly decreases; according to data reported in 

Table 1, this threshold would be between 17.7 and 21.8 keV nm
-1

. 

Eventually, when the fluence increases at RT, we noted that both the AD concentration increases in the same way 

whatever the Se is, and the TSL signal decreases as a function of Se. Therefore, the decrease of TSL signal as a function 

of the fluence cannot directly be attributed to the creation of AD. So we can conclude that when the fluence increases, 

the concentration of TSL centers decreases.  

Thus, by comparing the TSL and OAS signals we now understand the effect of each irradiation parameter on the 

concentrations of both TSL centers and AD. But how to justify the fact that TSL center concentration decreases when 

either the electronic stopping power or the fluence increases? The first hypothesis is that, following the thermal spike 

model [43,44], electronic stopping power provides heat in the material through electron-phonon interactions. This heat 

could induce some annealing effect as ever remarked by Benyagoub et al. in silicon carbide [45]. Thus, the TSL center 

would be annealed, explaining the decrease of the TSL signal when increasing the fluence. Nevertheless, TSL centers 

observed in our specimens being due to the substitution of both Al and N atoms by impurities (oxygen, chromium, 

manganese, ...), their annealing appears to be difficult. Therefore, we rather think that electronic stopping power induces 

some modifications of these TSL centers. For instance, Mn
4+

 which is in substitution of Al
3+

 may be ejected from its site 

MnAl and becomes an intersticial Mni, or the complex centers VAl-ON-3N and VAl-2ON-2N may be dissociated by Se; 

these modifications may also be met with trapping centers such as oxygen in substitution of nitrogen. This hypothesis 

would explain the decrease of the concentration of TSL centers all the while creating other (absorbing) defects in the 

material. Whatever the hypothesis is, further characterisations such as photoluminescence would be necessary. 
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5. Conclusion 

In this study, we first identified both trapping and recombination centers by thermally stimulated luminescence, but not 

all the absorbing defects are affected by SHI irradiation. A major result is that whatever the analytical technique is, no 

new defect was detected after these irradiations. 

Second, thanks to the fact that TSL and OAS complement each other, we discriminated the effect of fluence, electronic 

stopping power, and temperature on the overall concentration of both TSL centers and AD. Thus, the higher the fluence, 

the lower the TSL center concentration, and the higher the AD concentration. Moreover, we defined an electronic 

stopping power threshold Seth, which ranges between 17.7 and 21.8 keV nm
-1

, above which the TSL center 

concentration strongly decreases. On the contrary, when Se < Seth, the electronic stopping power has no effect on both 

TSL centers and AD concentrations. Concerning the temperature, we concluded that this parameter has no effect on TSL 

center concentration, whereas it induces the decrease of the AD concentration if the fluence is higher than a critical 

fluence c which depends on ion-energy couple. This result is quite encouraging for application of aluminum nitride as a 

component of fuel for the GFR, which should operate at temperatures well above 773 K. 

Eventually, we tryed to know how the TSL signal decreases as a function of both electronic stopping power and fluence, 

and our hypothesis is that irradiations induce a change of the TSL centers, creating non-luminescent defects. 
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