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We consider the problem of adaptive estimation of the regression function in a framework where we replace ergodicity assumptions (such as independence or mixing) by another structural assumption on the model. Namely, we propose adaptive upper bounds for kernel estimators with data-driven bandwidth (Lepski's selection rule) in a regression model where the noise is an increment of martingale. It includes, as very particular cases, the usual i.i.d. regression and auto-regressive models. The cornerstone tool for this study is a new result for self-normalized martingales, called "stability", which is of independent interest. In a first part, we only use the martingale increment structure of the noise. We give an adaptive upper bound using a random rate, that involves the occupation time near the estimation point. Thanks to this approach, the theoretical study of the statistical procedure is disconnected from usual ergodicity properties like mixing. Then, in a second part, we make a link with the usual minimax theory of deterministic rates. Under a β-mixing assumption on the covariates process, we prove that the random rate considered in the first part is equivalent, with large probability, to a deterministic rate which is the usual minimax adaptive one.

Introduction 1.Motivations

In the theoretical study of statistical or learning algorithms, stationarity, ergodicity and concentration inequalities are assumptions and tools of first importance. When one wants to obtain asymptotic results for some procedure, stationarity and ergodicity of the random process generating the data is mandatory. Using extra assumptions, like moments and boundedness conditions, concentration inequalities can be used to obtain finite sample results. Such tools are standard when the random process is assumed to be i.i.d., like Bernstein's or Talagrand's inequality (see [START_REF] Ledoux | Probability in Banach spaces[END_REF], [START_REF] Van Der | Weak convergence and empirical processes[END_REF] and [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], among others). To go beyond independence, one can use a mixing assumption in order to "get back" independence using coupling, see [START_REF] Doukhan | [END_REF], so that, roughly, the "independent data tools" can be used again. This approach is widely used in nonparametric statistics, statistical learning theory and time series analysis.

The aim of this paper is to replace stationarity and ergodicity assumptions (such as independence or mixing) by another structural assumption on the model. Namely, we consider a regression model where the noise is an increment of martingale. It includes, as very particular cases, the usual i.i.d. regression and the auto-regressive models. The cornerstone tool for this study is a new result, called "stability", for self-normalized martingales, which is of independent interest. In this framework, we study kernel estimators with a data-driven bandwidth, following the Lepski's selection rule, see [START_REF] Lepski | On a problem of adaptive estimation in Gaussian white noise[END_REF], [START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF]. The Lepski's method is a statistical algorithm for the construction of optimal adaptive estimators. It was introduced in [START_REF] Lepski | Asymptotically minimax adaptive estimation i: Upper bounds, optimally adaptive estimates[END_REF][START_REF] Lepski | On a problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepski | On problems of adaptive estimation in white gaussian noise[END_REF], and it provides a way to select the bandwidth of a kernel estimator from the data. It shares the same kind of adaptation properties to the inhomogeneous smoothness of a signal as wavelet thresholding rules, see [START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF]. It can be used to construct an adaptive estimator of a multivariate anisotropic signal, see [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF], and recent developments shows that it can be used in more complex settings, like adaptation to the semi-parametric structure of the signal for dimension reduction, or the estimation of composite functions, see [START_REF] Goldenshluger | Structural adaptation via L p -norm oracle inequalities[END_REF], [START_REF] Juditsky | Nonparametric estimation of composite functions[END_REF]. In summary, it is commonly admitted that Lepski's idea for the selection of a smoothing parameter works for many problems. However, theoretical results for this procedure are mostly stated in the idealized model of Gaussian white noise, excepted for [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF], where the model of regression with a random design was considered. As far as we know, nothing is known on this procedure in other settings: think for instance of the auto-regressive model or models with dependent data.

Our approach is in two parts: in a first part, we consider the problem of estimation of the regression function. We give an adaptive upper bound using a random rate, that involves the occupation time at the estimation point, see Theorem 1. In this first part, we only use the martingale increment structure of the noise, and not stationarity or ergodicity assumptions on the observations. Consequently, even if the underlying random process is transient (e.g. there are few observations at the estimation point), the result holds, but the occupation time is typically small, so that the random rate is large (and eventually not going to zero as the sample size increases). The key tool is a new result of stability for self-normalized martingales stated in Theorem 2, see Section 3. It works surprisingly well for the statistical application proposed here, but it might give new results for other problems as well, like upper bounds for procedures based on minimization of the empirical risk, model selection (see [START_REF] Massart | Concentration inequalities and model selection[END_REF]), etc. In a second part (Section 4), we make a link with the usual minimax theory of deterministic rates. Using a β-mixing assumption, we prove that the random rate used in Section 2 is equivalent, with a large probability, to a deterministic rate which is the usual adaptive minimax one, see Proposition 1.

The message of this paper is twofold. First, we show that the kernel estimator and Lepski's method are very robust with respect to the statistical properties of the model: they does not require stationarity or ergodicity assumptions, such as independence or mixing to "do the job of adaptation", see Theorem 1. The second part of the message is that, for the theoretical assessment of an estimator, one can use advantageously a theory involving random rates of convergence. Such a random rate naturally depends on the occupation time at the point of estimation (=the local amount of data), and it is "almost observable" if the smoothness of the regression were to be known. An ergodicity property, such as mixing, shall only be used in a second step of the theory, for the derivation of the asymptotic behaviour of this rate (see Section 4). Of course, the idea of random rates for the assessment of an estimator is not new. It has already been considered in [START_REF] Guerre | Design adaptive nearest neighbor regression estimation[END_REF][START_REF] Guerre | Design-adaptive pointwise nonparametric regression estimation for recurrent markov time series[END_REF] for discrete time and in [START_REF] Sylvain Delattre | Dynamics adaptive estimation of a scalar diffusion[END_REF] for diffusion models. However, this work contains, as far as we know, the first result concerning adaptive estimation of the regression with a martingale increment noise.

The model

Consider sequences (X k ) k≥0 and (Y k ) k≥1 of random variables respectively in R d and R, both adapted to a filtration (F k ) k≥0 , and such that for all k ≥ 1:

Y k = f (X k-1 ) + ε k , (1) 
where the sequence (ε k ) k≥1 is a (F k )-martingale increment:

E(|ε k ||F k-1 ) < ∞ and E(ε k |F k-1 ) = 0,
and where f : R d → R is the unknown function of interest. We study the problem of estimation of f at a point x ∈ R d based on the observation of (Y 1 , . . . , Y N ) and (X 0 , . . . , X N -1 ), where N ≥ 1 is a finite (F k )-stopping time. This allows for "sample size designing", see Remark 1 below. The analysis is conducted under the following assumption on the sequence (ε k ) k≥1 :

Assumption 1. There is a (F k )-adapted sequence (σ k ) k≥0 , assumed to be observed, of positive random variables and µ, γ > 0 such that :

E exp µ ε 2 k σ 2 k-1 | F k-1 ≤ γ ∀k ≥ 1.
This assumption means that the martingale increment ε k , normalized by σ k-1 , is uniformly subgaussian. In the case where ε k is Gaussian conditionally to

F k-1 , Equation (1) is satisfied if (σ k ) is such that Var (ε k |F k-1 ) ≤ cσ 2
k-1 for any k ≥ 0, where c > 0 is a deterministic constant not depending on k. If one assumes that Var (ε k |F k-1 ) ≤ σ2 for a known constant σ > 0, one can take simply σ k ≡ σ. Note that σ k-1 is not necessarily the conditional variance of ε k , but an observed upper bound of it.

Particular cases of model ( 1) are the regression and the auto-regressive model.

Example 1. In the regression model, one observes (Y k , X k-1 ) n k=1 satisfying Y k = f (X k-1 ) + s(X k-1 )ζ k ,
where (ζ k ) is i.i.d. centered, such that E(exp(µζ 2 k )) ≤ γ and independent of F k = σ(X 0 , . . . , X k ), and where f : R d → R and s : R d → R + . This model is a particular case of (1) with

σ 2 k ≥ s(X k ) 2 .
Example 2. In the auto-regressive model, one observes a sequence (

X k ) n k=0 in R d satisfying X k = f (X k-1 ) + S(X k-1 ) ζ k , (2) 
where f = (f 1 , . . . , f d ) : R d → R d , where S : R d → R d×d and where

ζ k = (ζ k,1 , . . . , ζ k,d
) is a sequence of centered i.i.d. vectors in R d independent of X 0 , with covariance matrix I d and such that E(exp(µζ 2 k,j )) ≤ γ. The problem of estimation of each coordinate f j is a particular case of [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF] with

Y k = (X k ) j , F k = σ(X 0 , ζ 1 , . . . , ζ k ) and σ 2 k ≥ S j,j (X k ) 2 .
Let us mention that these two examples are very particular. The analysis conducted here allows to go way beyond the i.i.d. case, as long as (ζ k ) is a martingale increment.

Remark 1. The results given in Section 2 are stated in a setting where one observes (X k-1 , Y k ) N k=1 with N a stopping time. Of course, this contains the usual case N ≡ n, where n is a fixed sample size. This framework includes situations where the statistician decides to stop the sampling according to some design of experiment rule. This is the case when obtaining data has a cost, that cannot be more than a maximum value, for instance. [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] for examples).

Remark 2. Note that while ζ k = ε k /σ k-1 is conditionally subgaussian, ε k is not in general, (see

The Lepski's method

In what follows, |x| stands for the Euclidean norm of x ∈ R d . An object of importance in the analysis conducted below is the following. For h > 0, we define

L(h) = N k=1 1 σ 2 k-1 1 |X k-1 -x|≤h ,
which is the occupation time of (X k ) k≥0 at x renormalized by (σ k ). Then, if h is such that L(h) > 0 (there is at least one observations in the interval [x -h, x + h]), we define the kernel estimator

f (h) = 1 L(h) N k=1 1 σ 2 k-1 1 |Xi-1-x|≤h Y k .
Let (h i ) i≥0 be a decreasing sequence of positive numbers, called bandwidths, and define the following set, called grid, as

H := {h j : L(h j ) > 0}.
For the sake of simplicity, we will consider only on a geometrical grid, where h j = h 0 q j for some parameters h 0 > 0 and q ∈ (0, 1). The Lepski's method selects one of the bandwidths in H. Let b > 0 and for any h > 0, define

ψ(h) := 1 + b log(h 0 /h).
For u > 0, define, on the event L(h 0 ) -1/2 ≤ u , the bandwidth

H u = min h ∈ H : ψ(h) L(h) 1/2 ≤ u , (3) 
and let u 0 > 0. The estimator of f (x) is f ( Ĥ) defined on the set {L(h 0 ) -1/2 ≤ u 0 }, where Ĥ is selected according to the following rule:

Ĥ := max h ∈ H : h ≥ H u0 and ∀h ′ ∈ [H u0 , h] ∩ H, | f (h) -f (h ′ )| ≤ ν ψ(h ′ ) L(h ′ ) 1/2 , ( 4 
)
where ν is a positive constant. This is the standard Lepski's procedure, see [START_REF] Lepski | On a problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepski | On problems of adaptive estimation in white gaussian noise[END_REF][START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF][START_REF] Lepski | Optimal pointwise adaptive methods in nonparametric estimation[END_REF]. In the next Section, we give an upper bound for f ( Ĥ), with a normalization (convergence rate) that involves L(h). This result is stated without any further assumptions on the model.

Remark 3. The number u 0 is a fixed constant such that the largest bandwidth h 0 in the grid satisfies L(h 0 ) -1/2 ≤ u 0 . This deterministic constraint is very mild: if we have some data close to x, and if h 0 is large enough (this is the largest bandwidth in the grid), then L(h 0 ) should be large, at least such that L(h 0 ) -1/2 ≤ u 0 . Consider the following basic example: X k ∈ [-1, 1] d almost surely for any k and σ k ≡ 1, then by taking h 0 = √ d and u 0 = 1 the event {L(h 0 ) -1/2 ≤ u 0 } has probability one. In Section 4 (see Proposition 1) we prove that a mixing assumption on (X k ) k≥0 entails that this event has an overwhelming probability.

Adaptive upper bound

The usual way of stating an adaptive upper bound for f ( Ĥ), see for instance [START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF], is to prove that it has the same convergence rate as the oracle estimator f (H * ), which is the "best" among a collection { f (h) : h ∈ H}. The oracle bandwidth H * realizes a bias-variance trade-off, that involves explicitly the unknown f . For h ∈ H define

f (h) := 1 L(h) N k=1 1 σ 2 k-1 1 |X k-1 -x|≤h f (X k-1 ). ( 5 
)
Consider a family of non-negative random variables (W (h); h ∈ H) that bounds from above the local smoothness of f (measured by its increments):

sup h ′ ∈[Hu 0 ,h]∩H f (h ′ ) -f (x) ≤ W (h), ∀h ∈ H. (6) 
Nothing is required on (W (h) : h ∈ H) for the moment, one can perfectly choose it as the left hand side of (6) for each h ∈ H for instance. However, for the analysis conducted here, we need to bound W from below and above (see Remark 5): introduce

W (h) := [W (h) ∨ (δ 0 (h/h 0 ) α0 )] ∧ u 0 , (7) 
where δ 0 and α 0 are positive constants. On the set

L(h 0 ) -1/2 ≤ W (h 0 ) ,
define the random oracle bandwidth

H * := min h ∈ H : ψ(h) L(h) 1/2 ≤ W (h) , (8) 
and consider the event

Ω ′ := L(h 0 ) -1/2 ≤ W (h 0 ), W (H * ) ≤ u 0 .
The event Ω ′ is the "minimal" requirement for the proof of an upper bound for f ( Ĥ), see Remarks 5 and 6 below.

Theorem 1. Let Assumption 1 hold and let f ( Ĥ) be the procedure given by the Lepski's rule [START_REF] Bercu | Exponential inequalities for selfnormalized martingales with applications[END_REF]. Then, for any ρ ∈ (0, bµν 2 /(64α 0 (1 + γ))), we have

P | f ( Ĥ) -f (x)| ≥ t W (H * ) ∩ Ω ′ ≤ C 0 (log(t + 1)) 1+ρ/2 t ρ
for any t ≥ t 0 , where C 0 , t 0 > 0 are constants depending on ρ, µ, γ, q, b, u 0 , δ 0 , α 0 , ν.

The striking fact in this Theorem is that we don't use any stationarity, ergodicity or concentration property. In particular, we cannot give at this point the behaviour of the random normalization W (H * ). It does not go to 0 in probability with N → +∞ when L(h 0 ) does not go to +∞ in probability, which happens if (X k ) k≥0 is a transient Markov chain for instance. Hence, without any further assumption, Theorem 1 does not entail that f ( Ĥ) is close to f (x). On the other hand, when (X k ) k≥0 is mixing, we prove that W (H * ) behaves as the deterministic minimax optimal rate, see Section 4. The cornerstone of the proof of this Theorem is a new result concerning the stability of self-normalized martingales, see Theorem 2 in Section 3 below. Remark 4. The parameter ρ of decay of the probability in Theorem 1 is increasing with the threshold parameter ν from (4). So, for any p > 0 and ν large enough, Theorem 1 entails that the expectation of ( W (H

* ) -1 | f ( Ĥ) -f (x)|) p 1 Ω ′ is finite.
Remark 5. The definition of W is related to the fact that since nothing is required on the sequence (X k ), the occupation time L(h) can be small, even if h is large. In particular, L(h) has no reason to be close to its expectation. So, without the introduction of W above, that bounds from below W by a power function, we cannot give a lower estimate of H * (even rough), which is mandatory for the proof of Theorem 1. Remark 6. On the event Ω ′ , we have

{L(h 0 ) -1/2 ≤ W (h 0 )}, meaning that the band- width h 0 (the largest in H) is large enough to contain enough points in [x-h 0 , x+h 0 ], so that L(h 0 ) ≥ W (h 0 ) 2 . This is not a restriction when W (h) = Lh s [f has a local Hölder exponent s] for instance, see Section 4.
Remark 7. In the definition of f ( Ĥ), we use kernel estimation with the rectangular kernel K(x) = 1 [-1,1] (x)/2. This is mainly for technical simplicity, since the proof of Theorem 1 is already technically involved. Consequently, Theorem 1 does not give, on particular cases (see Section 4), the adaptive minimax rate of convergence for regression functions with an Hölder exponent s larger than 1. To improve this, one can consider the Lepski's method applied to local polynomials (LP) (see [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF], and see [START_REF] Fan | Local polynomial modelling and its applications[END_REF] about (LP)). This would lead, in the framework considered here, to strong technical difficulties.

Stability for self-normalized martingales

We consider a local martingale (M n ) n∈N with respect to a filtration (G n ) n∈N , and for n ≥ 1 denote its increment by ∆M n := M n -M n-1 . The predictable quadratic variation of M n is

M n := n k=1 E[∆M 2 k |G k-1 ].
Concentration inequalities for martingales have a long history. The first ones are the Azuma-Hoeffding's inequality (see [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF], [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]) and the Freedman's inequality (see [START_REF] Freedman | On tail probabilities for martingales[END_REF]). The latter states that, if (M n ) is a square integrable martingale such that |∆M k | ≤ c a.s. for some constant c > 0 and M 0 = 0, then for any x, y > 0:

P[M n ≥ x, M n ≤ y] ≤ exp - x 2 2(y + cx) . (9) 
Later on, an alternative to the assumption |∆M k | ≤ c was proposed. This is the so-called Bernstein's condition, which requires that there is some constant c > 0 such that for any p ≥ 2:

n k=1 E |∆M k | p |G k-1 ≤ p! 2 c p-2 M n , (10) 
see [START_REF] Victor | A general class of exponential inequalities for martingales and ratios[END_REF], and [START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF]. In [START_REF] Van De Geer | Applications of empirical process theory, volume 6 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] (see Chapter 8), inequality ( 9) is proved with M n replaced by a G n-1 -measurable random variable nR 2 n , under the assumption that

n k=1 E |∆M k | p |G k-1 ≤ p! 2 c p-2 nR 2 n ( 11 
)
holds for any p ≥ 2. There are many other very recent deviation inequalities for martingales, in particular inequalities involving the quadratic variation [M ] n = n k=1 ∆M 2 k , see for instance [START_REF] Victor | A general class of exponential inequalities for martingales and ratios[END_REF] and [START_REF] Bercu | Exponential inequalities for selfnormalized martingales with applications[END_REF]. For the proof of Theorem 1, a Bernstein's type of inequality is not enough: note that in [START_REF] Doukhan | [END_REF], it is mandatory to work on the event { M n ≤ y}. A control of the probability of this event usually requires an extra assumption on (X k ) k≥0 , such as independence or mixing (see Section 4), and this is precisely what we wanted to avoid here. Moreover, for the proof of Theorem 1, we need a result concerning M T , where T is an arbitrary finite stopping-time.

In order to tackle this problem, a first idea is to try to give a deviation for the selfnormalized martingale M T / M T . It is well-known that this is not possible, a very simple example is given in Remark 8 below. In the next Theorem 2, we give a simple solution to this problem. Instead of M T / M T , we consider √ aM T /(a + M T ), where a > 0 is an arbitrary real number, and we prove that the exponential moments of this random variable are uniformly bounded under Assumption 2 below. The result stated in Theorem 2 is of independent interest, and we believe that it can be useful for other statistical problems.

Assumption 2. Assume that M 0 = 0 and that

∆M n = s n-1 ζ n ( 12 
)
for any n ≥ 1, where (s n ) n∈N is a (G n )-adapted sequence of random variables and (ζ n ) n≥1 is a sequence of (G n )-martingale increments such that for α = 1 or α = 2 and some µ > 0, γ > 1:

E exp(µ|ζ k | α )|G k-1 ≤ γ for any k ≥ 1. ( 13 
)
Let us define

V n := n k=1 s 2 k-1 . Note that if (ζ n ) n≥1 is a conditionally normalized sequence (ie E(ζ 2 n |G n-1 ) = 1) then (12) entails that V n = M n . Moreover, if Assumption 2 holds, we have M n ≤ c µ V n for any n ≥ 1 with c µ = ln 2/µ when α = 2 and c µ = 2/µ 2 when α = 1. Denote cosh(x) = (e x + e -x )/2 for any x ∈ R. Theorem 2. Let Assumption 2 holds. • If α = 2, we have for any λ ∈ [0, µ 2(1+γ)
), any a > 0 and any finite stopping-time T :

E exp λ aM 2 T (a + V T ) 2 ≤ 1 + c λ , ( 14 
)
where c λ := exp

λΓ λ 2(1-2λΓ λ ) (exp(λΓ λ ) -1) and Γ λ := 1+2γ 2(µ-λ) . • If α = 1,
we have for any λ ∈ (-µ, µ), any a > 0 and any finite stopping-time T :

E cosh λ √ aM T a + V T ≤ 1 + c ′ λ , (15) 
where c ′ λ = (γ -1)λ 2 exp (γ -1)λ 2 /µ 2 cosh 2 log 2 + 2(γ -1)λ 2 /µ 2 /µ 2 . The proof of Theorem 2 is given in Section 5. Theorem 2 shows that when ζ k is subgaussian (resp. sub-exponential) conditionally to G k-1 , then √ a|M T |/(a + V T ) is also subgaussian (resp. sub-exponential), hence the name stability. Indeed, we cannot expect an improvement in the tails of √ a|M T |/(a + V T ) due to the summation, since the s k-1 are arbitrary (for instance, it can be equal to zero for every k excepted for one).

Remark 8. It is tempting to take "a = V T " in Theorem 2. However, the following basic example shows that it is not possible. Take (B t ) t≥0 a standard Brownian motion, consider M n = B n and define the stopping time T c = inf{n ≥ 1 : B n / √ n ≥ c}, where c > 0. For any c > 0, T c is finite a.s. (use the law of iterated logarithm for instance). So, in this example, one has

M Tc / M Tc = M Tc / √ T c ≥ c, for any c > 0.
4 Consistency with the minimax theory of deterministic rates

In this Section, we prove that, when (X k ) k≥0 is mixing, then Theorem 1 gives the adaptive minimax upper bound. Let us consider again sequences (X k ) k≥0 and (Y k ) k≥1 of random variables satisfying [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF], where (ε k ) k≥0 an (F k ) k≥0 -martingale increment.

For the sake of simplicity, we work under the following simplified version of Assumption 1.

Assumption 3. There is a known σ > 0 and µ, γ > 0 such that :

E exp µ ε 2 k σ 2 | F k-1 ≤ γ ∀k ≥ 1.
Moreover, we consider the setting where we observe (Y 1 , . . . , Y n ) and (X 0 , . . . , X n-1 ), namely the stopping-time N is simply equal to n (the results in this section are proved for n large enough). Note that in this setting, we have L(h) = σ -2 n k=1 1 |x k-1 -x|≤h . We assume also that (X k ) k≥0 is a strictly stationary sequence.

Some preliminaries

A function ℓ : R + → R + is slowly varying if it is continuous and if lim h→0 + ℓ(yh)/ℓ(h) = 1, ∀y > 0.
Fix τ ∈ R. A function g : R + → R + is τ -regularly varying if g(y) = y τ ℓ(y) for some slowly varying ℓ. Regular variation is a standard and useful notion, of importance in extreme values theory for instance. We refer to [START_REF] Bingham | Regular Variation. Encyclopedia of Mathematics and its Applications[END_REF] on this topic.

Below we will use the notion of β-mixing to measure the dependence of the sequence (X k ) k≥0 . This measure of dependence was introduced by Kolmogorov, see [START_REF] Kolmogorov | On a strong mixing condition for stationary Gaussian processes[END_REF], and we refer to [START_REF] Doukhan | [END_REF] for topics on dependence. Introduce the σ-field

X v u = σ(X k : u ≤ k ≤ v)
, where u, k, v are integers. A strictly stationary process (X k ) k∈Z is called β-mixing or absolutely regular if

β q := 1 2 sup I i=1 J j=1 P[U i ∩ V j ] -P[U i ]P[V j ] → 0 as q → +∞, (16) 
where the supremum is taken among all finite partitions (U i ) I i=1 and (V j ) J j=1 of Ω that are, respectively, X 0 -∞ and X +∞ q measurable. This notion of dependence is convenient in statistics because of a coupling result by Berbee, see [START_REF] Henry | Random walks with stationary increments and renewal theory[END_REF], that allows to construct, among β-mixing observations, independent blocks, on which one can use Bernstein's or Talagrand's inequality (for a supremum) for instance. This strategy has been adopted in a series of papers dealing with dependent data, see [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF][START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF][START_REF] Tribouley | L p adaptive density estimation in a β mixing framework[END_REF] among others. In this section, we use this approach to give a deterministic equivalent to the random rate used in Section 2. This allows to prove that Theorem 1 is consistent with the usual minimax theory of deterministic rates, when one assumes that the sequence (X k ) k≥0 is β-mixing.

Deterministic rates

We assume that f has Hölder-type smoothness in a neighbourhood of x. Let us fix two constants δ 0 , u 0 > 0 and recall that h 0 is the maximum bandwidth used in the Lepski's procedure (see Section 1.3).

Assumption 4 (Smoothness of f ).

There is 0 < s ≤ 1 and a slowly varying function ℓ w such that the following holds:

sup y:|y-x|≤h |f (y) -f (x)| ≤ w(h), where w(h) := h s ℓ w (h) for any h ≤ h 0 , w is increasing on [0, h 0 ], w(h) ≥ δ 0 (h/h 0 ) 2 and w(h) ≤ u 0 for any h ∈ [0, h 0 ].
This is slightly more general than an Hölder assumption because of the slowly varying term ℓ w . The usual Hölder assumption is recovered by taking ℓ w ≡ r, where r > 0 is some constant (the radius in Hölder smoothness).

Under Assumption 4, one has that sup

h ′ ∈[Hu 0 ,h]∩H | f (h ′ ) -f (x)| ≤ w(h) ∀h ∈ H.
Under this assumption, one can replace W by w in the statement of Theorem 1 and from the definition of the oracle bandwidth H * (see [START_REF] Sylvain Delattre | Dynamics adaptive estimation of a scalar diffusion[END_REF]). An oracle bandwidth related to the modulus of continuity w can be defined in the following way: on the event

Ω 0 = {L(h 0 ) -1/2 ≤ w(h 0 )}, let us define H w := min h ∈]0, h 0 ] : ψ(h) L(h) 1/2 ≤ w(h) . (17) 
Under some ergodicity condition (using β-mixing) on (X k ) k≥0 , we are able to give a deterministic equivalent to w(H w ). Indeed, in this situation, the occupation time L(h) concentrates around its expectation EL(h), so a natural deterministic equivalent to ( 17) is given by

h w := min h ∈]0, h 0 ] : ψ(h) EL(h) 1/2 ≤ w(h) . (18) 
Note that h w is well defined and unique when (EL(h 0 )) -1/2 ≤ w(h 0 ), ie when n ≥ σ 2 /(P X ([x -h 0 , x + h 0 ])w(h 0 ) 2 ), where P X stands for the distribution of X 0 . We are able to give the behaviour of h w under the following assumption.

Assumption 5 (Local behaviour of P X ).

There is τ ≥ -1 and a slowly varying function ℓ X such that

P X ([x -h, x + h]) = h τ +1 ℓ X (h) ∀h ≤ h 0 .
This is an extension of the usual assumption on P X which requires that it has a continuous density f X wrt the Lebesgue measure such that f X (x) > 0 (see also [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF]). It is met when f X (y) = c|y -x| τ for y close to x for instance (in this case ℓ X is constant). Lemma 1. Grant Assumptions 4 and 5. Then h w is well defined by [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF] and unique when n is large enough and such that

h w = (σ 2 /n) 1/(2s+τ +1) ℓ 1 (σ 2 /n) and w(h w ) = (σ 2 /n) s/(2s+τ +1) ℓ 2 (σ 2 /n),
where ℓ 1 and ℓ 2 are slowly varying functions that depend on s, τ and ℓ X , ℓ w .

The proof of this lemma easily follows from basic properties of regularly varying functions, so it is omitted. Explicit examples of such rates are given in [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF]. Note that in the i.i.d. regression setting, we know from [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF] that w(h w ) is the minimax adaptive rate of convergence. Now, under the following mixing assumption, we can prove that the random rate w(H w ) and the deterministic rate w(h w ) have the same order of magnitude with a large probability. Assumption 6. Let (β q ) q≥1 be the sequence of β-mixing coefficients of (X k ) k≥0 , see [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], and let η, κ > 0. We assume that for any q ≥ 1:

β q ≤ 1 ψ -1 (2q)
,

where ψ(u) = η(log u) κ (geometric mixing) or ψ(u) = ηu κ (arithmetic mixing).

Proposition 1. Let Assumptions 4, 5 and 6 hold. On Ω 0 , let H w be given by [START_REF] Juditsky | Nonparametric estimation of composite functions[END_REF] and let (for n large enough) h w be given by [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF]. Then, if (X k ) is geometrically β-mixing, or if it is arithmetically β-mixing with a constant κ < 2s/(τ + 1), we have

P w(h w ) 4 ≤ w(H w ) ≤ 4w(h w ) ∩ Ω 0 ≥ 1 -ϕ n and P[Ω ∁ 0 ] = o(ϕ n )
for n large enough, where in the geometrically β-mixing case:

ϕ n = exp(-C 1 n δ1 ℓ 1 (1/n)) where δ 1 = 2s (2s + τ + 1)(κ + 1)
and in the arithmetically β-mixing case:

ϕ n = C 2 n -δ2 ℓ 2 (1/n) where δ 2 = 2s 2s + τ + 1 1 κ - τ + 1 2s ,
where C 1 , C 2 are positive constants and ℓ 1 , ℓ 2 are slowly varying functions that depends on η, κ, τ, s, σ and ℓ X , ℓ w .

The proof of Proposition 1 is given in Section 5 below. The assumption used in Proposition 1 allows a geometric β-mixing, or an arithmetic β-mixing, up to a certain order, for the sequence (X k ). This kind of restriction on the coefficient of arithmetic mixing is standard, see for instance [START_REF] Tribouley | L p adaptive density estimation in a β mixing framework[END_REF][START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF][START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF].

The next result is a direct corollary of Theorem 1 and Proposition 1. It says that when (X k ) k≥0 is mixing, then the deterministic rate w(h w ) is an upper bound for the risk of f ( Ĥ).

Corollary 1. Let Assumptions 3, 4 and 5 hold. Let Assumption 6 hold, with the extra assumption that κ < 2s/(s+ τ + 1) in the arithmetical β-mixing case. Moreover, assume that |f (x)| ≤ Q for some known constant Q > 0. Let us fix p > 0. If ν > 0 satisfies bµν 2 > 128p(1 + τ ) (recall that ν is the constant in front the threshold in the Lepski's procedure, see (4)) then we have

E[| f ( Ĥ) -f (x)| p ] ≤ C 1 w(h w ) p
for n large enough, where f ( Ĥ) = -Q ∨ f ( Ĥ) ∧ Q and where C 1 > 0 depends on q, p, s, µ, γ, b, u 0 , δ 0 , ν, Q.

The proof of Corollary 1 is given in Section 5 below. Let us recall that in the i.i.d regression model with gaussian noise, we know from [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF] that w(h w ) is the minimax adaptive rate of convergence. So, Corollary 1 proves that Theorem 1 is consistent with the minimax theory of deterministic rates, when (X k ) is β-mixing. Example 3. Assume that f is s-Hölder, ie Assumption 4 holds with w(h) = Lh s so ℓ w (h) ≡ L and assume that P X has a density f X which is continuous and bounded away from zero on [x -h 0 , x + h 0 ], so that Assumption 5 is satisfied with τ = 0. In this setting, one easily obtains that w(h w ) is equal (up to some constant) to (log n/n) s/(2s+1) , which is the pointwise minimax adaptive rate of convergence, see [START_REF] Lepski | Optimal pointwise adaptive methods in nonparametric estimation[END_REF][START_REF] Lepski | On problems of adaptive estimation in white gaussian noise[END_REF][START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF] for the white-noise model and [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF] for the regression model.

Proof of the main results

Proof of Theorem 2 for α = 2

Let a > 0 and λ ∈ [0, µ 2(1+γ) ). Define Y 0 := 0 and for n ≥ 1:

Y n := aM 2 n (a + V n ) 2 and H n := E exp λ(Y n -Y n-1 ) | G n-1 .
Assume for the moment that H n is finite a.s, hence we can define the local martingale

S n := n k=1 e λY k-1 e λ(Y k -Y k-1 ) -H k , so that exp(λY n ) = 1 + n k=1 e λY k-1 e λ(Y k -Y k-1 ) -1 = 1 + S n + n k=1 e λY k-1 (H k -1).
Using the sequence of localizing stopping times

T p := min n ≥ 0 : n+1 k=1 E(e λY k |G k-1 ) > p
for p > 0, the process (S n∧Tp ) n≥0 is a uniformly integrable martingale. So using Fatou's Lemma, one easily gets that

E(e λYT ) ≤ lim inf p→+∞ E(e λYT ∧Tp ) ≤ lim inf p→+∞ 1 + E(S T ∧Tp ) + E T ∧Tp k=1 e λY k-1 (H k -1) = 1 + lim inf p→+∞ E T ∧Tp k=1 e λY k-1 (H k -1) .
This entails ( 14) if we prove that

n i=1 e λY k-1 (H k -1) ≤ c λ ( 19 
)
for all n ≥ 1. First, we prove that

H n ≤ exp λas 2 n-1 (a + V n ) 2 Γ λ + 2M 2 n-1 a + V n-1 (2λΓ λ -1) , (20) 
which entails that H n is finite almost surely. We can write

Y n -Y n-1 = a M 2 n -M 2 n-1 a + V n 2 + aM 2 n-1 a + V n-1 2 -a + V n 2 a + V n 2 a + V n-1 2 = a M n -M n-1 2 + 2M n-1 M n -M n-1 a + V n 2 - aM 2 n-1 s 2 n-1 (2a + V n-1 + V n ) a + V n 2 a + V n-1 2 ≤ a s 2 n-1 ζ 2 n + 2M n-1 s n-1 ζ n a + V n 2 - 2aM 2 n-1 s 2 n-1 a + V n 2 a + V n-1
where we used that

V n-1 ≤ V n . In other words exp λ(Y n -Y n-1 ) ≤ exp µ n ζ 2 n + ρ n ζ n -δ n , with: µ n = λas 2 n-1 a + V n 2 , ρ n = 2λas n-1 M n-1 a + V n 2 , δ n = 2λas 2 n-1 M 2 n-1 a + V n 2 a + V n-1 .
The random variables µ n , ρ n and δ n are G n-1 -measurable and one has 0 ≤ µ n ≤ λ.

We need the following Lemma. 

E[e mζ 2 +ρζ ] ≤ exp (1 + 2γ)(ρ 2 + m) 2(µ -m) .
The proof of this Lemma is given in Section 6. Conditionally to G n-1 , we apply Lemma 2 to ζ n . This gives

H n ≤ E[exp(µ n ζ 2 n + ρ n ζ n -δ n ) | G n-1 ] ≤ exp Γ λ ρ 2 n + µ n -δ n ,
that can be be written

H n ≤ exp λas 2 n-1 (a + V n ) 2 Γ λ + 2M 2 n-1 2λΓ λ a (a + V n ) 2 - 1 a + V n-1 which yields (20) using a/(a + V n ) 2 ≤ 1/(a + V n-1 ). Since λ < µ/[2(1 + γ)], we have 2λΓ λ -1 < 0, so (20) entails H n -1 ≤ exp λΓ λ as 2 n-1 (a + V n ) 2 -1 ≤ (exp (λΓ λ ) -1)
as 2 n-1 (a + V n ) 2 ,
where we used the fact that e µx -1 ≤ (e µ -1)x for any x ∈ [0, 1/2], and µ > 0. Note that (20) entails also the following inclusion:

{H n > 1} ⊂ 2M 2 n-1 a + V n-1 < Γ λ 1 -2λΓ λ ⊂ e λYn-1 < exp λΓ λ 2(1 -2λΓ λ )
.

It follows that

n k=1

e λY k-1 (H k -1) ≤ c λ n k=1 as 2 k-1 (a + V k ) 2 , so (19) follows, since n k=1 as 2 k-1 (a + V k ) 2 ≤ Vn 0 a (a + x) 2 dx ≤ 1.
This concludes the proof of ( 14) for α = 2.

Proof of Theorem 2 for α = 1

First, note that ( 13) and the fact that the ζ k are centered entails that for any |λ| < µ, we have

E[exp(λζ k ) | G k-1 ] ≤ exp(µ ′ λ 2 ) ( 21 
)
for any k ≥ 1, where µ ′ = (γ -1)/µ 2 . Now, we use the same mechanism of proof as for the case α = 2. Let a > 0 and λ ∈ (-µ, µ) be fixed. Define

Y n = √ aM n a + V n and H n = E cosh(λY n ) -cosh(λY n-1 ) | G n-1 .
Assuming for the moment that H n is finite almost surely, we define the local martingale

S n := n k=1 cosh(λY k ) -cosh(λY k-1 ) -H k .
Thus, inequality (15) follows if we prove that for all n ≥ 1:

cosh(λY n ) ≤ 1 + S n + µ ′ λ 2 exp µ ′ λ 2 cosh 2 log 2 + 2µ ′ λ 2 .
We can write

Y n -Y n-1 = - √ aM n-1 s 2 n-1 (a + V n )(a + V n-1 ) + √ as n-1 ζ n a + V n ,
which gives, together with ( 21):

E exp ±λ(Y n -Y n-1 ) | G n-1 ≤ exp ± λ √ aM n-1 s 2 n-1 (a + V n )(a + V n-1 ) + µ ′ λ 2 as 2 n-1 (a + V n ) 2 .
As we have cosh(λY n ) = 1 2 e λYn-1 e λ(Yn-Yn-1) + 1 2 e -λYn-1 e -λ(Yn-Yn-1) , we derive:

E cosh(λY n ) | G n-1 ≤ 1 2 exp λY n-1 - λ √ aM n-1 s 2 n-1 (a + V n )(a + V n-1 ) + µ ′ λ 2 as 2 n-1 (a + V n ) 2 + 1 2 exp -λY n-1 + λ √ aM n-1 s 2 n-1 (a + V n )(a + V n-1 ) + µ ′ λ 2 as 2 n-1 (a + V n ) 2 , = exp µ ′ λ 2 as 2 n-1 (a + V n ) 2 cosh (1 - s 2 n-1 a + V n )λY n-1 .
So, it remains to prove that

n k=1 exp µ ′ λ 2 as 2 k-1 (a + V k ) 2 cosh (1 - s 2 k-1 a + V k )λY k-1 -cosh(λY k-1 ) ≤ µ ′ λ 2 exp µ ′ λ 2 cosh 2 log 2 + 2µ ′ λ 2 .
We need the following lemma.

Lemma 3. If A > 0, one has sup η∈[0,1] sup z≥0 e Aη cosh((1 -η)z) -cosh(z) ≤ Aηe Aη cosh(2 log 2 + 2A).
The proof of this Lemma is given in Section 6. Using Lemma 3 with

η = s 2 k-1 /(a+ V k ) and A = µ ′ λ 2 a/(a + V k ), we obtain exp µ ′ λ 2 as 2 k-1 (a + V k ) 2 cosh 1 - s 2 k-1 a + V k λY k-1 -cosh(λY k-1 ) ≤ µ ′ λ 2 as 2 k-1 (a + V k ) 2 e µ ′ λ 2 cosh 2 log 2 + 2λ 2 µ ′ ,
and ( 15) follows, since

n k=1 as 2 k-1 (a + V k ) 2 ≤ Vn 0 a (a + x) 2 dx ≤ 1.
This concludes the proof of Theorem 2.

Proof of Theorem 1

Notations

Let us fix λ ∈ (0, µ 2(1+γ) ), to be chosen later. In the following we denote by C any constant which depends only on (λ, µ, γ). Let us recall that on the event

Ω ′ := {L(h 0 ) -1/2 ≤ W (h 0 )} ∩ {W (H * ) ≤ u 0 },
the bandwidths H * and Ĥ are well defined, and let us we set for short

P ′ (A) = P(Ω ′ ∩ A).
We use the following notations: for h > 0 and a > 0, take

M (h) := N k=1 1 σ 2 k-1 1 |X k-1 -x|≤h ε k , Z(h, a) := √ a |M (h)| a + L(h) . (22) 
If h = h j ∈ H, we denote h -:= h j+1 and h + := h j-1 if j ≥ 1. We will use repeatedly the following quantity: for i 0 ∈ N and t > 0, consider

π(i 0 , t) := P sup i≥i0 ψ -1/2 (h i ) sup a∈I(hi) Z h i , aψ(h i ) > t , (23) 
where

I(h) := [u -2 0 , δ -2 0 (h/h 0 ) -2α0
]. Note that this interval is related to the definition of W , see [START_REF] Victor | A general class of exponential inequalities for martingales and ratios[END_REF]. The proof of Theorem 1 contains three main steps. Namely,

the study of the risk of the ideal estimator W (H

* ) -1 | f (H * ) -f (x)|, 2. the study of the risk W (H * ) -1 | f ( Ĥ) -f (x)| when {H * ≤ Ĥ}, 3. the study of the risk W (H * ) -1 | f ( Ĥ) -f (x)| when {H * > Ĥ}.
These are the usual steps in the study of the Lepski's method, see [START_REF] Lepski | On a problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepski | On problems of adaptive estimation in white gaussian noise[END_REF][START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF][START_REF] Lepski | Optimal pointwise adaptive methods in nonparametric estimation[END_REF]. However, the context (and consequently the proof) proposed here differs significantly from the "usual" proof.

On the event {H * ≤ Ĥ}

Recall that ν > 0 is the constant in front of the Lepski's threshold, see [START_REF] Bercu | Exponential inequalities for selfnormalized martingales with applications[END_REF]. Let us prove the following. Lemma 4. For all t > 0 one has

P ′ W (H * ) -1 | f (H * ) -f (x)| > t ≤ π(0, (t -1)/2), (24) 
and

P ′ H * ≤ Ĥ, W (H * ) -1 f ( Ĥ) -f (x) > t ≤ π(0, (t -ν -1)/2). ( 25 
)
Proof. First, use the decomposition

| f (H * ) -f (x)| ≤ | f (H * ) -f (x)| + |M (H * )| L(H * ) ,
where we recall that f (h) is given by ( 5), and the fact that

| f (H * ) -f (x)| ≤ W (H * ), since W (H * ) ≤ W (H * ) on {W (H * ) ≤ u 0 }. Then, use (8) to obtain L(H * ) 1/2 ≥ ψ(H * ) 1/2 W (H * ) -1 , so that |M (H * )| L(H * ) ≤ 2|M (H * )| L(H * ) + ψ(H * ) W (H * ) -2 ≤ 2 W (H * )ψ -1/2 (H * )Z H * , W -2 (H * )ψ(H * ) , and 
W -1 (H * ) |M (H * )| L(H * ) ≤ 2ψ -1/2 (H * ) sup a∈I(H * ) Z H * , aψ(H * ) ≤ 2 sup j≥0 ψ -1/2 (h j ) sup a∈I(hj) Z h j , aψ(h j ) , (26) 
this concludes the proof of [START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF]. On {H * ≤ Ĥ}, one has using ( 4) and ( 8):

| f ( Ĥ) -f (H * )| ≤ ν(ψ(H * )/L(H * )) 1/2 ≤ ν W (H * ).
Hence, since W (H * ) ≤ W (H * ) on {W (H * ) ≤ u 0 }, we have for all t > 0:

P ′ H * ≤ Ĥ, W (H * ) -1 f ( Ĥ) -f (x) > t ≤ P ′ H * ≤ Ĥ, W (H * ) -1 f (H * ) -f (x) > t -ν ,
and (25) follows using [START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF].

5.3.3

On the event {H * > Ĥ} Lemma 5. For any t, η > 0, we have

P ′ H * ≤ η, sup Hu 0 ≤h<H * ,h∈H |M (h)| (L(h)ψ(h)) 1/2 > t ≤ π(i 0 (η), t/2),
where we put i 0 (η) = min {i ∈ N : h i < η} .

Proof. Note that u(h) := (ψ(h)/L(h)) 1/2 is decreasing, so h = H u(h) for h ∈ H, and note that 8), and W (h

|M (h)| (L(h)ψ(h)) 1/2 = u(h) -1 |M (H u(h) )| L(H u(h) ) . If h < H * then u(h) = (ψ(h)/L(h)) 1/2 ≥ W (h) using (
) ≥ ε 0 (h/h 0 ) α0 . So, u(h) ≥ ε 0 (H u(h) /h 0 ) α0 when h < H * . If h ≥ H u0 , then u(h) ≤ u 0 using the definition of H u0 . This entails sup Hu 0 ≤h<H * ,h∈H |M (h)| (L(h)ψ(h)) 1/2 ≤ sup u -1 |M (H u )| L(H u ) ; u : H u < H * and δ 0 (H u /h 0 ) α0 < u ≤ u 0 .
Hence, for any u such that δ 0 (H u /h 0 ) α0 < u ≤ u 0 and H u < H * ≤ η, one has using (3):

u -1 |M (H u )| L(H u ) ≤ 2u -1 |M (H u )| L(H u ) + u -2 ψ(H u ) = 2ψ(H u ) -1/2 Z H u , u -2 ψ(H u ) ≤ 2 sup i:hi<η ψ(h i ) -1/2 sup δ0(hi/h0) α 0 ≤u≤u0 Z h i , u -2 ψ(h j ) .
Lemma 6. For any s, t > 0 define

η s,t := h 0 u 0 s δ 0 t 1/α0 . (27) 
Then, for all 0 < s < t, we have:

P ′ H * > Ĥ, W (H * ) -1 f ( Ĥ) -f (x) > t ≤ π 0, s -1 2 + π i 0 (η s,t ), 1 4 ν - 2s t + π 0, 1 2 νt 2s -1 .
Proof. Let 0 < s < t. One has

P ′ H * > Ĥ, W (H * ) -1 f ( Ĥ) -f (x) > t ≤ P ′ H * > Ĥ, (L( Ĥ)/ψ( Ĥ)) 1/2 f ( Ĥ) -f (x) > s + P ′ H * > Ĥ, (ψ( Ĥ)/L( Ĥ)) 1/2 > (t/s) W (H * ) .
The first term is less than π(0, (s -1)/2), indeed, on {W (H * ) ≤ u 0 , H * > Ĥ} one has

(L( Ĥ)/ψ( Ĥ)) 1/2 f ( Ĥ) -f (x) ≤ (L( Ĥ)/ψ( Ĥ)) 1/2 f ( Ĥ) -f (x) + (L( Ĥ)ψ( Ĥ)) -1/2 |M ( Ĥ)| ≤ (L( Ĥ)/ψ( Ĥ)) 1/2 W ( Ĥ) + (L( Ĥ)ψ( Ĥ)) -1/2 |M ( Ĥ)| ≤ 1 + (L( Ĥ)ψ( Ĥ)) -1/2 |M ( Ĥ)|,
and the desired upper-bound follows from Lemma 5. Let us bound the second term. Consider

ω ∈ W (H * ) ≤ u 0 , H * > Ĥ, (ψ( Ĥ)/L( Ĥ)) 1/2 > (t/s) W (H * ) .
Due to the definition of Ĥ, see ( 4), there exits

h ′ = h ′ ω ∈ [H u0 , Ĥ] such that f (h ′ ) -f ( Ĥ+ ) > ν(ψ(h ′ )/L(h ′ )) 1/2 . But since h ′ ≤ Ĥ < H * , one has ν ψ(h ′ ) L(h ′ ) 1/2 < f (h ′ ) -f ( Ĥ+ ) ≤ f (h ′ ) -f ( Ĥ+ ) + |M (h ′ )| L(h ′ ) + |M ( Ĥ+ )| L( Ĥ+ ) ≤ 2 W (H * ) + |M (h ′ )| L(h ′ ) + |M ( Ĥ+ )| L( Ĥ+ ) ≤ 2s t ψ( Ĥ) L( Ĥ) 1/2 + |M (h ′ )| L(h ′ ) + |M ( Ĥ+ )| L( Ĥ+ ) ≤ 2s t ψ(h ′ ) L(h ′ ) 1/2 + |M (h ′ )| L(h ′ ) + |M ( Ĥ+ )| L( Ĥ+ ) .
So, since h ′ ≤ Ĥ entails (for such an ω) that (ψ(h ′ )/L(h ′ )) 1/2 ≥ (ψ( Ĥ)/L( Ĥ)) 1/2 > (t/s) W (H * ), we obtain

|M (h ′ )| L(h ′ ) + |M ( Ĥ+ )| L( Ĥ+ ) > ν - 2s t ψ(h ′ ) L(h ′ ) 1/2 ≥ ν - 2s t max ψ(h ′ ) L(h ′ ) 1/2 , t s W (H * ) ,
and therefore

ω ∈ sup Hu 0 ≤h<H * ,h∈H |M (h)| (L(h)ψ(h)) 1/2 > 1 2 ν - 2s t ∪ |M (H * )| L(H * ) ≥ t 2s ν - 2s t W (H * ) .
In addition, because of Ĥ ≥ H u0 one has δ 0 (H * /h 0 ) α0 ≤ W (H * ) < (s/t)(ψ( Ĥ)/L( Ĥ)) 1/2 ≤ (s/t)u 0 , so H * ≤ η s,t , where η s,t is given by [START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF]. We have shown that

W (H * ) ≤ u 0 , H * > Ĥ, ψ( Ĥ) L( Ĥ) 1/2 > t s W (H * ) ⊂ H * ≤ η s,t , sup Hu 0 ≤h<H * ,h∈H |M (h)| (L(h)ψ(h)) 1/2 > 1 2 ν - 2s t ∪ |M (H * )| L(H * ) ≥ νt 2s -1 W (H * ) ,
and we conclude using Lemma 5 and (26).

Finalization of the proof

In order to conclude the proof of Theorem 1, we need the following uniform version of Theorem 2: under the same assumptions as in Theorem 2, we have for any 0 < a 0 < a 1 :

E sup a∈[a0,a1] exp λ 2 aM 2 N (a + V N ) 2 ≤ (1 + c λ )(1 + log(a 1 /a 0 )). (28) 
Indeed, since a -1 exp(λY a ) da, so [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] follows taking the expectation and using Theorem 2. Now, using [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] with

∂ ∂a aM 2 N (a + V N ) 2 = M 2 N (a + V N ) 3 (V N -a) ≤ a -1 aM 2 N (a + V N ) 2 = Y a /a,
s k = 1 σ k-1 1 |X k-1 -x|≤h , ζ k = ε k /σ k-1 we obtain E exp (λ/2) sup a∈[a0,a1] Z(h, a) 2 ≤ C(1 + log(a 1 /a 0 )),
where we recall that Z(h, a) is given by [START_REF] Lepski | On a problem of adaptive estimation in Gaussian white noise[END_REF]. So, using Markov's inequality, we arrive, for all h > 0, a 1 > a 0 > 0 and t ≥ 0, at:

P sup a∈[a0,a1] Z(h, a) ≥ t ≤ C(1 + log(a 1 /a 0 ))e -λt 2 /2 . ( 29 
)
A consequence of ( 29), together with an union bound, is that for all i 0 ∈ N and t > 0:

π(i 0 , t) ≤ Ce -λt 2 /2 i≥i0 (h i /h 0 ) bλt 2 /2 1 + 2 log(u 0 /δ 0 ) + 2α 0 log(h 0 /h i ) , (30) 
where we recall that π(i 0 , t) is given by [START_REF] Lepski | On problems of adaptive estimation in white gaussian noise[END_REF]. Now, it remains to use what the grid H is. Recall that for some q ∈ (0, 1), we have h i = h 0 q i and we denote by C any positive number which depends only on λ, µ, γ, q, b, u 0 , δ 0 , α 0 , ν. Using together [START_REF] Lepski | Optimal pointwise adaptive methods in nonparametric estimation[END_REF] and Lemma 6, one gets for 0 < s < t:

P ′ W (H * ) -1 | f ( Ĥ) -f (x)| > t ≤ π 0, t -ν -1 2 + π 0, s -1 2 + π i 0 (η s,t ), 1 4 ν - 2s t + π 0, 1 2 νt 2s -1 ,
and using [START_REF] Van De Geer | Applications of empirical process theory, volume 6 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF], we have for any u > 0, i 0 ∈ N:

π(i 0 , u) ≤ Ce -λu 2 /2 (i 0 + 1)q i0bλu 2 /2 .
Recalling that η s,t is given by [START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF] and that i 0 (η) = min {i ∈ N : h i < η}, we have log(δ 0 /u 0 ) + log(t/s) α 0 log(1/q) < i 0 (η s,t ) ≤ log(δ 0 /u 0 ) + log(t/s)

α 0 log(1/q) + 1. (31) 
Now, recall that 0 < ρ < bµν 2 64α0(1+γ) and consider s = (8ρ log t)/λ + 1. When t is large enough, we have s < t and:

π 0, s -1 2 ≤ C 1 t -ρ , π 0, t -ν -1 2 ≤ C 2 exp(-C ′ 2 t 2 ), π 0, 1 2 νt 2s -1 ≤ C 3 exp -C ′ 3 (t/ log t) 2 ,
for constants C i , C ′ i that depends on λ, b, ν, δ 0 , u 0 , α 0 , q. For the last probability, we have:

π i 0 (η s,t ), 1 4 ν - 2s t ≤ C exp - λ(ν -2s/t) 2 32 (i 0 (η s,t ) + 1)
× exp -i 0 (η s,t )bλ(ν -2s/t) 2 log(1/q) 32 ,

and by taking λ ∈ (0, µ 2(1+γ) ) and t large enough, one has bλ(ν -2s/t) 2 32α 0 > ρ, so we obtain together with (31):

π i 0 (η s,t ), 1 4 ν - 2s t ≤ C (log(t + 1)) 1+ρ/2 t ρ ,
when t is large enough. This concludes the proof of Theorem 1.

Proof of Proposition 1

Let us denote for short

I h = [x -h, x + h].
Recall that h w is well-defined when n ≥ σ 2 /(P X [I h0 ]w(h 0 ) 2 ), and that H w is well defined on the event

Ω 0 = {L(h 0 ) ≥ w(h 0 ) -2 }.
So, from now on, we suppose that n is large enough, and we work on Ω 0 . We need the following Lemma, which says that, when L(h w ) and EL(h w ) are close, then H w and h w are close.

Lemma 7. If Assumption 4 holds, we have for any 0 < ε < 1 that on Ω 0 :

L(h w ) ≥ EL(h w ) (1 + ε) s ⊂ H w ≤ (1 + ε)h w and L(h w ) ≤ EL(h w ) (1 -ε) s ⊂ H w > (1 -ε)h w ,
when n is large enough.

The proof of Lemma 7 is given in Section 6 below. We use also the next Lemma from [START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF] (see Claim 2, p. 858). It is a corollary of Berbee's coupling lemma [START_REF] Henry | Random walks with stationary increments and renewal theory[END_REF], that uses a construction from the proof of Proposition 5.1 in [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF], see p. 484. Lemma 8. Grant Assumption 6. Let q, q 1 be integers such that 0 ≤ q 1 ≤ q/2, q 1 ≥ 1. Then, there exist random variables (X * i ) n i=1 satisfying the following: • For j = 1, . . . , J := [n/q], the random vectors U j,1 := (X (j-1)q+1 , . . . , X (j-1)q+q1 ) and U * j,1 := (X * (j-1)q+1 , . . . , X * (j-1)q+q1 )

have the same distribution, and so have the random vectors U j,2 := (X (j-1)q+q1+1 , . . . , X jq ) and U * j,2 := (X * (j-1)q+q1+1 , . . . , X * jq ).

• For j = 1, . . . , J,

P[U j,1 = U * j,1 ] ≤ β q-q1 and P[U j,2 = U * j,2 ] ≤ β q1 .
• For each k = 1, 2, the random vectors U * 1,k , . . . , U * J,k are independent. In what follows, we take simply q 1 = [q/2] + 1, where [x] stands for the integral part of x, and introduce the event Ω * = {X i = X * i , ∀i = 1, . . . , n}. Assume to simplify that n = Jq. Lemma 8 gives

P[(Ω * ) ∁ ] ≤ J(β q-q1 + β q-q1 ) ≤ 2Jβ [q/2] ≤ 2nβ [q/2] q . (32) 
Then, denote for short L * (h) = n i=1 1 |X * i-1 -x|≤h , and note that, using Lemma 7, we have, for z := 1 -1/(1 + ε) s :

H w > (1 + ε) s h w ∩ Ω * ∩ Ω 0 ⊂ L * (h w ) -EL(h w ) ≥ zEL(h w ) = 1 n n i=1 (1 |X * i-1 -x|≤hw -P X [I hw ]) ≥ zP X [I hw ] .
Use the following decomposition of the sum:

1 n n i=1 (1 |X * i-1 -x|≤hw -P X [I hw ]) ≤ 1 J J j=1 (Z j,1 + Z j,2 ),
where for k ∈ {1, 2}, we put

Z j,k := 1 q i∈I j,k (1 |X * i-1 -x|≤hw -P X [I hw ]),
where I j,1 := {(j -1)q + 1, . . . , (j -1)q + q 1 } and I j,2 := {(j -1)q + q 1 + 1, . . . , jq}. For k ∈ {1, 2}, we have using Lemma 8 that the variables (Z j,k ) J j=1 are independent, centered, such that Z j,k ∞ ≤ 1/2 and E[Z 2 j,k ] ≤ P X [I hw ]/4. So, Bernstein's inequality gives

P H w > 1 (1 -z) 1/s h w ∩ Ω * ∩ Ω 0 ≤ 2 exp - z 2 2(1 + z/3) nP X [I hw ] q ,
and doing the same on the other side gives for any z ∈ (0, 1):

P 1 (1 + z) 1/s h w ≤ H w ≤ 1 (1 -z) 1/s h w ∁ ∩ Ω * ≤ 4 exp - z 2 2(1 + z/3) nP X [I hw ] q .
So, when n is large enough, we have

P[h w /2 ≤ H w ≤ 2h w ] ≥ 1 -4 exp - CnP X [I hw ] q - 2nβ [q/2] q . (33) 
But, since on [0, h 0 ] w is increasing and w(h) = h s ℓ w (h) where ℓ w is slowly varying, we have {h w /2 ≤ H w ≤ 2h w } ⊂ {w(h w )/4 ≤ w(H w ) ≤ 4w(h w )} when n is large enough. Now, Lemma 1 and Assumption 5 gives that

nP X [I hw ] = n 2s/(2s+τ +1) ℓ(1/n),
where ℓ is a slowly varying function that depends on ℓ X , ℓ w , s, τ and σ. When the β-mixing is geometric, we have ψ -1 (p) = exp((p/η) 1/κ ), so the choice q = n 2sκ/((2s+τ +1)(κ+1)) implies

P { w(h w ) 4 ≤ w(H w ) ≤ 4w(h w )} ∩ Ω 0 ≥ 1 -exp(-C 1 n δ1 ℓ 1 (1/n)).
When the mixing is arithmetic, we have ψ -1 (p) = (p/η) 1/κ , so the choice q = n 2s/(2s+τ +1) ℓ(1/n)/(log n) 2 implies

P { w(h w ) 4 ≤ w(H w ) ≤ 4w(h w )} ∩ Ω 0 ≥ 1 -C 2 n -δ2 ℓ 2 (1/n).
So, it only remains to control the probability of Ω 0 . Using the same coupling argument as before together with Bernstein's inequality, we have when n is large enough:

P[L(h 0 ) < w(h 0 ) -2 ] = P[L(h 0 ) -EL(h 0 ) < w(h 0 ) -2 -EL(h 0 )] ≤ P L(h 0 ) -EL(h 0 ) < - nP X [I h0 ] 2 ≤ exp -C 2 nP X [I h0 ] q + 2nβ [q/2] q .
So, when the β-mixing is geometric, the choice q = n κ/(κ+1) implies that P[Ω ∁ 0 ] ≤ exp(-C 1 n 1/(κ+1) ) = o(ϕ n ). When the mixing is arithmetic, we have ψ -1 (p) = (p/η) 1/κ , so the choice q = n/(log n) 2 gives P[Ω ∁ 0 ] ≤ C 2 (log n) 2 n -1/κ = o(ϕ n ). This concludes the proof of Proposition 1.

Proof of Corollary 1

Let us fix ρ ∈ (p, bµν 2 128(1+γ) ) (note that α 0 = 2 under Assumption 4). Using Assumption 4, one can replace W by w in the statement of Theorem 1. This gives P | f ( Ĥ) -f (x)| ≥ tw(H * ) ∩ Ω 0 ≤ C 0 (log(t + 1)) ρ/2+1 t ρ for any t ≥ t 0 , where we recall that Ω 0 = {L(h 0 ) -1/2 ≤ w(h 0 )}, and where

H * := min h ∈ H : ψ(h) L(h) 1/2
≤ w(h) .

Recall the definition ( 17) of H w , and note that by construction of H, one has that H w ≤ H * ≤ q -1 H w . So, on the event {H w ≤ 2h w }, one has, using the fact that w is s-regularly varying, that w(H * ) ≤ w(2q -1 h w ) ≤ 2(2/q) s w(h w ) for n large enough. So, putting for short A := {H w ≤ 2h w } ∩ Ω 0 , we have

P | f ( Ĥ) -f (x)| ≥ c 1 tw(h w ) ∩ A ≤ C 0 (log(t + 1)) ρ/2+1 t ρ
for any t ≥ t 0 , where c 1 = 2(2/q) s . Since ρ > p, we obtain, by integrating with respect to t, that

E |w(h w ) -1 ( f ( Ĥ) -f (x))| p 1 A ≤ C 1 ,
where C 1 is a constant depending on C 0 , t 0 , q, ρ, s, p. Now, it only remains to observe that using Proposition 1, P(A ∁ ) ≤ 2ϕ n , and that ϕ n = o(w(h w )) in the geometrically β-mixing case, and in the arithmetically β-mixing when κ < 2s/(s + τ + 1).

6 Proof of the Lemmas 6.1 Proof of Lemma 7

For n large enough, we have ψ((1 + ε)h w )/ℓ w ((1 + ε)h w ) 2 ≤ (1 + ε) s ψ(h w )/ℓ w (h w ) 2 since ψ/ℓ 2 w is slowly varying. So, ψ((1

+ ε)h w ) w((1 + ε)h w ) 2 ≤ 1 (1 + ε) s ψ(h w ) w(h w ) 2 = 1 (1 + ε) s EL(h w ).
On the other hand, by definition of H w , we have

{H w ≤ (1 + ε)h w } = L((1 + ε)h w ) ≥ ψ((1 + ε)h w ) w((1 + ε)h w ) 2 ,
and L((1 + ε)h w ) ≥ L(h w ), so we proved that the embedding

L(h w ) EL(h w ) ≥ 1 (1 + ε) s ⊂ {H w ≤ (1 + ε)h w }
holds when n is large enough. The same argument allows to prove that

L(h w ) EL(h w ) ≤ 1 (1 -ε) s ⊂ {H w > (1 -ε)h w },
which concludes the proof of the Lemma.

Proof of Lemma 2

Take m ∈ [0, µ) and ρ ∈ R. Note that e y ≤ 1 + ye y ≤ 1 + y + y 2 e y for any y ≥ 0, so e mζ 2 +ρζ ≤ e ρζ + mζ 2 e mζ For the choice m 1 = µ/(1 + 2γ) + 2γm/(1 + 2γ) one has γ/(µ -m 1 ) = 1/[2(m 1 -m)], so the Lemma follows using that 1 + ye y/2 ≤ e y for all y ≥ 0. This concludes the proof of the Lemma.

Proof of Lemma 3

Let η ∈ [0, 1] and z ∈ R + be such that e Aη cosh((1 -η)z)cosh(z) ≥ 0. Let us show that one has z ≤ 2 log 2 + 2A.

Since cosh(z)/ cosh((1 -η)z) ≥ e ηz /2 one has z ≤ η -1 log 2 + A. Thus (35) holds if η ≥ 1/2. If η < 1/2 and z ≥ log(3), it is easy to check that the derivative of x → cosh((1 -x)z)e ηx/2 is non-positive, hence cosh(z) ≥ e ηz/2 cosh((1 -η)z) in this case. Thus, we have either z ≤ log(3) or z ≤ 2A which yields (35) in every case. Finally, from (35), we easily derive e Aη cosh((1 -η)z)cosh(z) = cosh((1 -η)z) e Aηcosh(z) cosh((1 -η)z) ≤ cosh(z)(e Aη -1) ≤ cosh 2 log(2) + 2A Aηe Aη . This concludes the proof of the Lemma.

Lemma 2 .

 2 Let ζ be a real random variable such that E[ζ] = 0 and such that E[exp(µζ 2 )] ≤ γ for some µ > 0 and γ > 1. Then, for any ρ ∈ R and m ∈ [0, µ), we have

  a /2) ≤ exp(λY a0 /2) + a1 a0 a -1 exp(λY a /2)λY a /2 da ≤ exp(λY a0 ) + a1 a0

2 +ρζ≤ 1 +

 21 ρζ + (ρ 2 + m)ζ 2 e mζ 2 +ρζ , andE[e mζ 2 +ρζ ] ≤ 1 + (ρ 2 + m)E[ζ 2 e mζ 2 +ρζ ],(34)sinceEζ = 0. Take m 1 ∈ (m, µ). Since ρζ ≤ ερ 2 /2 + ζ 2 /(2ε) for any ε > 0, we obtain for ε = [2(m 1 -m)] -1 : e mζ 2 +ρζ ≤ exp ρ 2 4(m 1 -m) e m1ζ 2 .Together withζ 2 ≤ 1 µ -m 1 e (µ-m1)ζ 2and the definition of µ, this entailsE[ζ 2 e mζ 2 +ρζ ]
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