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SECONDARY STRUCTURE SIMULATIONS OF TWIN-ARGININE SIGNAL 

PEPTIDES IN DIFFERENT ENVIRONMENTS 

Miguel A. San-Miguel,* Colin Robinson†, P. Mark Rodger 
Department of Chemistry and †Department of Biological Sciences. University of Warwick 

Coventry CV4 7AL, UK 

 

ABSTRACT 

The twin-arginine translocation (Tat) system transports folded proteins across bacterial 

plasma membranes and the chloroplast thylakoid membrane. A twin arginine motif in the 

signal peptide sequence plays a key role in the signal process. In this article we report the 

results of molecular dynamics simulations on a typical E. coli RR-signal peptide and two 

mutant variants in both aqueous and trifluoroethanol (TFE) solutions. It has been found that 

the peptide switches between two distinct states: random coil in water and some helical 

content in TFE. Our simulations demonstrate that the wild-type peptide is considerably more 

flexible than either of the mutants in both the solvents investigated. The twin arginine motif 

was found to provide a nucleation point for the formation of an α-helix in water, but also 

appears to destabilise α-helices in other regions of the peptide when dissolved in TFE. 
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1 INTRODUCTION 

Protein translocation processes across biological membranes have attracted 

considerable attention from scientists, particularly during the last two decades [1-7]. Because 

membrane bilayers are tightly sealed, and in many cases impermeable even to inorganic ions, 

sophisticated systems have evolved to accomplish the difficult process of transporting large 

globular proteins in a highly specific manner. It had been believed that the translocation 

process required the proteins to unfold — either prior to, or during, translocation across the 

membrane. However, within the last decade studies on thylakoid protein targeting identified a 

novel protein translocase, which facilitates translocation in the folded state [8-9]. This 

translocation mechanism has since been shown to operate in a wide variety of bacteria, 

chloroplasts and plant mitochondria [10]. The system recognises proteins bearing an 

aminoterminal signal peptide containing a twin-arginine (RR) motif and has been termed the 

twin-arginine translocase, or Tat system. Several mutagenesis studies have demonstrated that 

this RR signal peptide contains all of the information required for precise recognition by the 

Tat system, and have identified certain essential features of the sequence. Of particular 

importance is the presence of adjacent arginines at the junction between an N-terminal basic 

domain and hydrophobic core domain, together with the presence of a strongly hydrophobic 

residue at the second or third position after the twin arginine [11-13]. However, while much 

is known about the required primary structure there is still little knowledge of the secondary 

structure. In a previous study [14] we analysed circular dichroism (CD) spectra of a typical 

Escherichia coli RR-signal peptide and two inactive mutant variants in different 

environments. It was found that in aqueous solvent the peptides are unstructured, whereas 

some α-helix character (up to ca. 40%) emerged in hydrophobic solvents. The CD showed no 

significant differences in percentage helical content for the active and inactive sequences. 

However, analogous molecular dynamics (MD) simulations [14] suggested that there were 

differences in the location of the α-helix between the wild-type and the mutants, with only 

the wild-type peptide showing helix formation in the vicinity of the RR motif. From those 

results it was clear that the peptide structure switches between two distinct states according to 

the environment, and that the Tat motif appeared to effect rather subtle changes in the 

secondary structure associated with these two states. However, a more detailed study of the 
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secondary structure and dynamics is required in order to characterise the nature of these 

variations. 

In this paper we present the results of a detailed MD study of the structural and 

dynamical properties of an E. coli RR-signal peptide together with two mutations known to 

render the peptides inactive in translocation. The three peptides have been simulated in water 

and in trifluoroethanol (TFE) solution (an apolar environment that mimics the membrane 

bilayer). 

Different isotropic solvents have been chosen in molecular modelling in the literature 

to create a hydrophobic environment surrounding the peptide similar to that experienced 

when inserted in the membrane. Some solvents used have been chloroform [15], methane 

[16], octane [17], hexane [18], and methanol [19]. 

However, TFE has gained popularity because for more than three decades has been 

used in CD and NMR studies of peptides in solution showing that it is a α-helix promoting 

solvent [20-27]. 

More recently, Bemporad et al have analysed in detail the behaviour of different 

solutes inside a lipid membrane and they concluded that the membrane core does not behave 

like a simple liquid solvent [28]. 

The use of explicit membrane has also been extended to numerous studies although 

only when the protein structure is known. Since the dynamics is slower and the number of 

atoms involved use to be larger than in isotropic fluids, therefore the simulations become 

highly time consuming [29-32]. 

In this paper fully atomistic models of the solvent have been used in each case. The 

dynamical behaviour of the peptide, in particular, is found to differ substantially between the 

wild-type and the two inactive mutants, suggesting that a propensity for forming an α-helix 

on binding to a membrane may be a key factor in determining Tat activity. In next section we 

describe the different peptides and solvent models used, and give details of the simulation 

methodology. Thereafter, we focus on the results obtained from the dynamics when the 

peptides are inserted into water, TFE or a vacuum; some of the implications of these results 

are also discussed. In the final section the main conclusions are briefly summarized. 
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2 METHOD 

2.1 PEPTIDES 

Molecular dynamics (MD) simulations have been performed in order to investigate the 

influence of the twin arginine motif on both the secondary structure and dynamical behaviour 

of SufI peptides in two different environments: aqueous and trifluoroethanol (TFE) solutions. 

The latter was chosen as it is known to be a membrane mimicking solvent. 

The wild type sequence (SufI–RR) is 

 

 SufI-RR MSLSRRQFIQASGIALCAGAVPLKASA 

 

while the two mutants chosen for this study (SufI–KK) and SufI–AA) are 

  

 SufI-KK MSLSKKQFIQASGIALCAGAVPLKASA 

 SufI-AA MSLSRRQAAQASGIALCAGAVPLKASA 

 

Secondary structure predictions were carried out using a number of different protein 

structure prediction servers: PSIPRED [33], JPRED [34], Prof [35] and PHD [36]. All 

predicted an α-helix in the central region, although each predicted a slightly different length. 

The PHD method gave what was essentially a consensus result and so was used in this work 

to construct the initial configurations for subsequent MD simulations. The coordinates and 

force field for all three peptides were constructed by using Quanta/CHARMm version 28 [37] 

and then exported to DL_POLY [38] format for the MD simulations. All the sequences 

included a right-handed α-helix with a length of 16 amino acid residues, as predicted by the 

PHD method. Initial structures were optimised using the conjugate gradient method. 

2.2 SOLVATED STRUCTURES 

Each peptide conformation was then inserted into a solvent box (previously 

equilibrated at 300 K, 1 atm) and all solvent molecules that overlapped with the peptide were 

removed; three additional solvent molecules were converted to Cl– ions to compensate for the 

charge of +3e on these peptides. The resulting system contained 3173 water molecules, or 

990 TFE molecules, in a periodic truncated octahedral simulation box of maximum length 65 

Å. The system was then relaxed by (i) performing a 5 ps MD simulation at 300 K, 1 atm in 

which the peptide was treated as a rigid body, and (ii) performing a 2 ps MD simulation with 
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a fully flexible peptide at 2 K; these stages served to remove any strain introduced on 

solvation without destroying the initial secondary structure. A further 1 ns simulation in the 

water solvated systems and 6 ns simulation in the TFE system were then accumulated to 

study the evolution of the secondary structure. As will be shown in the next section, this time 

scale was sufficiently long for the water systems to converge to a steady random coiled state. 

Secondary structure was analysed using STRIDE [39]. 

This study does not intend to analyse the secondary structure of the sequences during 

extended periods of time, but the propensity of the peptides to change the initial secondary 

structure from different initial conditions during the first stage of exposition to two different 

environments. 

2.3 SIMULATION PROTOCOL 

All MD simulations were performed at constant temperature and pressure (NPT) using 

the Nosé-Hoover method [40-41] with thermostat and barostat relaxation constants of 0.5 ps 

and 1.0 ps, respectively. A time step of 2 fs was used in all calculations and the equations of 

motion were integrated using the leap frog algorithm [42]. Configurations were stored every 

2 ps for statistical analysis. 

The peptide was modelled with the CHARMM-22 force field [43], water with the 

rigid SPC model [44] and TFE using the Model 5 reported by Chitra and Smith [27]; 

previous studies had shown the CHARMM potential for TFE to underestimate the stability of 

α-helices [14,45]. Long range forces were evaluated using the reaction field method, with the 

explicit solvent sphere around each site having radius 15 Å and a relative dielectric constant 

of 80 and 27 for water and TFE, respectively; all other non-bonded interactions were also 

truncated at a cutoff atom radius of 15 Å. 

 

2.4 SIMULATIONS IN VACUUM 

In addition to the solvated systems, we have carried out simulations of the three 

sequences in vacuum. These have been used both to identify significant intramolecular 

interactions and to compare with solvent effects. Since the primary purpose of these vacuum 

simulations was to identify peptide configurations that were intrinsically stable, and not to 

simulate equilibrium properties, a temperature of 500 K was used to speed up the exploration 

of configuration space. Trajectories of 48 ns were generated and configurations saved every 2 
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ps for statistical analysis. All charge-charge interactions were truncated at 15 Å based on an 

atom-atom scheme within a direct coulombic approach. 

3 RESULTS 

3.1 SUFIS IN WATER 

CD measurements of the SufI and the mutant peptides in water indicated that all 

sequences are random coils in water [14]. Our MD simulations are in good agreement with 

this evidence. Figure 1 shows the number of aminoacid residues participating in an α-helix at 

any given time. The starting configurations contain a 16-residue helix, but for each peptide 

this rapidly degrades to give a random coil structure. Some differences in the dynamics of the 

three peptide sequences are evident. The initial α-helix is seen to decay 4–5 times faster in 

SufI-RR than in the inactive mutants, persisting for only 30 ps in SufI-RR, but for about 110–

150 ps in the two mutants. At the same time, SufI-RR shows a much greater propensity to 

reform the helices subsequently, with transient 6-residue α-helices forming on at least 7 

separate occasions during the time interval 400-800 ps. In contrast, subsequent helix re-

formation in SufI-KK was much less frequent (3 events) and gave shorter helices, while no 

subsequent secondary structure was observed in SufI-AA. Close inspection of these transient 

configurations showed that, for SufI-RR, the helix always appeared in the fragment between 

Ser(2) and Arg(6) and between Leu(3) and Gln(7), i.e. in the region of the key motif for the 

Tat translocation. In contrast, the transient helices in SufI-KK involved Ile(14) at ca. 250 ps 

and Ala(18) at 750 ps. 

The origin of these helices is the formation of strong intramolecular hydrogen bonds 

and so we have computed the number of intramolecular H-bonds within each peptide as a 

function of time; the results are plotted in Figure 2. As can be seen, the number of H-bonds 

fluctuates significantly, with most of the data indicating only short excursions during which 

more than one intra-molecular H-bond is found. The main exception to this is for SufI-RR 

between 550 and 650 ps. During this time interval, SufI-RR consistently shows two 

intramolecular H-bonds, and frequently as many as 4–5. This is precisely the time interval 

during which transient helices are seen to form in SufI-RR. (Figure 1) 

The root mean square atomic displacements from the first configuration have also 

been calculated and are presented in Figure 3. Plots indicate that SufI-RR and SufI-AA 

change much more rapidly at the beginning than SufI-KK, which increases monotonically 

and does not reach a stable plateau region on this time scale. SufI-RR and SufI-AA appear to 
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have reached a plateau region after 100 ps but SufI-RR shows larger fluctuations around the 

mean value than SufI-AA. 

3.2 SUFIS IN TFE 

MD simulations of all three peptides in TFE have been carried out, each with a total 

duration of 6 ns, and the time dependence of the resultant helix lengths is shown in Figure 4. 

In this case the mutant sequences retain most of the original secondary structure throughout 

the simulation: SufI-AA exhibits only minor fluctuations away from the 16 amino acid α-

helix, while the helix in SufI-KK shortens slightly — initially to about 15 residues and then 

to 13 amino acids at about 3.5 ns. The response of the wild-type sequence to immersion in 

TFE contrasts strongly with the stable helices observed in the mutants. The helix reduces to 

around 10 amino acids during the first 30–40 ps, and then at about 1.5 ns shortens again up to 

just four residues. Thereafter there are frequent fluctuations in the length of the helix, with 

values in the range 4–8 amino acids throughout the rest of the simulation. The length of these 

simulations is long enough to indicate different behaviour between the wild-type peptide and 

the mutants.    

In our previous work we reported results from CD measurements where we found that 

the helical content in TFE was around 45% for all the peptides, although slightly higher for 

SufI-AA and slightly lower for SufI-KK than for SufI-RR. The simulations presented in this 

work predict a variation in helical content: 59% for SufI-AA, 48% for SufI-KK and 25% for 

SufI-RR. The results for SufI-AA and SufI-KK would seem to be in line with experiment, 

while the results for SufI-RR give too little helical content. In fact, both mutants and in 

particular SufI-AA, show almost no conformational changes on the simulation timescale 

keeping their initial helical content.  

One point that emerges clearly from Figure 4 is that the wild-type peptide shows much 

greater flexibility than either of the mutants, and develops many different configurations with 

different helical content during the course of the simulation. 

The assignment of secondary structure for each configuration in a trajectory also 

allows one to calculate the probability of finding each amino acid within an α-helix, Pα. The 

results are depicted in Figure 5. The plot for SufI-AA emphasises the lack of conformational 

change noted above, with unit probability of finding residues 3–17 forming an α-helix. 

Similar stability is seen in residues 7–15 of SufI-KK, although some breakdown of the α-

helix is seen on either side of these residues. In particular, there is substantial dip in Pα at the 
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6th residue, i.e. at the second lysine mutation, that is not seen in the presence of the RR motif. 

SufI-KK also shows a small decrease in Pα for amino acids 16–17, corresponding to the 

changes evident at ca. 3.5 ns in Figure 4. For SufI-RR, two different helix regions are 

identified. The first of these (which we shall denote by H1) is 4–6 residues long, and is 

centred on three amino acids (Arg-Arg-Gln) that include the twin arginine motif required for 

translocation. The second helix (H2) is centred on residues 15–17 (Ala-Leu-Cys), with 

transient involvement from the residues on either side of this region. 

The time evolution of the helix distributions, Pα, has been calculated by finding the 

average probabilities during successive 1 ns segments of the simulation. The results for SufI-

RR are shown in Figure 6. Analogous plots are not presented for the mutants since they 

showed no significant variation with time. The two helix regions (H1 and H2) are clearly 

defined at all times. The H1 region appears to have converged to an equilibrium distribution 

after ca. 2 ns, with the helix present about 50% of the time. The secondary structure in the H2 

region becomes more stable as the simulation continues, reaching a plateau of about 70% by 

4–6 ns. 

Visual inspection of the trajectory indicates that a very stable interaction emerges 

between Arg(6) and Gln(10), and this probably stabilises the H1 region. A typical 

conformation is shown in Figure 7 and shows the presence of a second, intra-residue, H-bond 

within Arg(6) in addition to the one between Arg(6) and Gln(10). A long-lived H-bond is also 

seen in the H2 region, between a hydrogen atom in Cys(17) and oxygen atom in Ile(14) 

(Figure 7); this H-bond persisted throughout the whole simulation. In general, the total 

number of intra-peptide H-bonds was consistent with stability of the α-helices, as noted 

above (Figure 8). No long-term changes are evident in the total number of H-bonds. SufI-RR 

presents the lowest number of H-bonds (8±4), whereas SufI-KK, which is the most stable 

structure, has 12±3 and SufI-AA 10±3.  

The decreased stability, or increased flexibility, of the wild-type sequence relative to 

the two mutants is also seen in the atomic RMSDs (Figure 9 and Figure 10). SufI-RR shows 

the largest deviations for the whole peptide from the initial structure at all times. (Figure 9) 

The deviations can be assigned mainly to the atoms in the N-terminal and secondly to those 

ones in the H-domain. (Figure 10) 

The number of dihedral transitions for the backbone angles φ and ψ have also been 

computed for every aminoacid residue in each peptide in TFE and they have been plotted in 

Figure 11. It can be seen that the number of ψ transitions for most of the residues is only 

Formatted: Font: Not Italic, English

U.K.

Formatted: English U.K.

Deleted: Figure 6

Deleted: Figure 6

Deleted: Figure 7

Deleted: Figure 7

Deleted: Figure 7

Deleted: Figure 7

Deleted: Figure 8

Deleted: Figure 8

Deleted: Figure 9

Deleted: Figure 9

Page 8 of 34

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

significant for SufI-RR, indicating a higher flexibility for this peptide. This fact can be related   

to the presence of the twin-arginine motif in the N-terminal region where the number of φ 

and ψ transitions is much higher than for the mutants. 

3.3 SUFIS IN VACUUM 

The dynamics of solvated proteins is a competition between intra-peptide forces and 

solute-solvent interactions. The absence of solvent in vacuum simulations leaves just the 

intra-peptide interactions to govern the dynamical behaviour, and so provides a useful 

comparison with the solvated calculations. We have therefore performed additional 

simulations of the various peptides in vacuum at 500 K in vacuum. Trajectories of 48 ns were 

generated and configurations stored every 2 ps for statistical analysis. 

Figure 12 shows the helix length as a function of time. Very different behaviour is 

exhibited by the three sequences. The starting helix in SufI-RR decays to just four residues in 

the first nanosecond and then vanishes completely after 24 ns, with a transient reappearance 

after 42 ns. The mutants, on the other hand, exhibit substantial helix content during most of 

the trajectory, albeit with large, dynamic fluctuations in the helix length. The location of 

these α-helices also shows interesting variations between the three peptides (see Figure 13).  

The α-helix in SufI-RR tends to include the twin arginine motif, with a fairly homogeneous 

distribution along the rest of the peptide. In contrast, both the mutants show a bimodal 

distribution, with probably the dominant helix-forming tendency arising from residues 15–20. 

From these results, we conclude that the wild-type sequence is considerably more 

flexible than either of the mutants, with much more frequent—albeit transient—variations in 

secondary structure. The twin arginine motif does appear to provide a nucleation point for the 

formation of an α-helix, but does also appear to destabilise α-helices in the middle of the 

peptide when dissolved in TFE. 

4 CONCLUDING REMARKS 

In this report, we have investigated the dynamical behaviour of the Tat signal peptide 

in a hydrophilic (water) and hydrophobic (trifluoroethanol, TFE) solvent. A wild-type SufI 

peptide and two mutant variants known to be inactive were examined.  

In our previous study [14] circular dichroism measurements were performed and 

showed that the two non-functional peptides exhibit almost identical spectra to the wild-type 

SufI peptide in both solvents. In water, all the peptides were random coil structured, whereas 

in TFE, they showed a similar α-helical content (up to about 45%). In the same study our 
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molecular dynamics simulations, in agreement with the experiments, indicated that SufI-RR 

and SufI-KK switch between two distinct states: random coil in water and helical structured 

in TFE. However, the α-helical content predicted was for both sequences about 20%, which 

is much lower than that one from the experiments. It was claimed that it might be caused by 

the TFE model used, which has been observed previously to underestimate the helical 

content. The fact that the helical extents were similar between the wild-type and the mutant 

lead us to conclude that the arginine sidechains, and not their contribution to the helical 

structure, are the critical factors in this class of peptide.  

In this work we have explored all these issues and extended our study to all the 

mutants. First of all, we have adopted a more accurate TFE model. We have also chosen a 

longer electrostatic cut-off radius (extended up to 15 Å, instead of 10 Å as in the previous 

work) to use in the reaction field method, taking into account explicitly a much higher 

number of interactions with neighbor residues and solvent molecules.  

The simulations in water show that all the peptides rapidly lose the helical content 

during the first picoseconds. Surprisingly, transient α-helices structures involving the twin-

arginine motif can be observed during the trajectory for SufI-RR but not for any of the 

mutants.   

The new TFE model seems to provide a better description of the system and the 

helical content predicted are higher than in the previous work. Our results show no significant 

conformational changes in the mutants during 6 ns. However, SufI-RR exhibits many 

different configurations during the same timescale, thus showing a much greater flexibility. 

The analysis of its secondary structure demonstrates that all of these configurations contain 

α-helices that involve the twin-arginine motif. These studies do not intend to explore the 

conformational changes in much extended periods of time, but the response of the system to 

insertion in two different solvents in the initial stages. Different repeats in the same timescale 

have showed similar results and demonstrate the different behaviour between the wild-type 

sequence and the mutants, which can be assigned to the only difference between the peptides: 

the presence of the twin arginine motif.  

Extended simulations were performed in vacuum up to much longer timescales (48 

ns). SufI-RR again showed a flexible behaviour, with frequent conformational changes, and 

helices forming around the key twin-arginine motif. The mutants, on the other hand, exhibit 

substantial helix content in a bimodal distribution during most of the trajectory, with 
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probably the dominant helix-forming tendency arising in a different region from the twin-

arginine motif. 

From our results, we conclude that the wild-type sequence is considerably more 

flexible than either of the mutants, with much more frequent variations in secondary 

structure. The twin arginine motif appears to provide a nucleation point for the formation of 

an α-helix, but does also appear to destabilise α-helices in other regions of the peptide when 

dissolved in TFE. Therefore, the presence of the twin arginine motif in the wild-type 

sequence does exert some control over the formation and stability of α-helices within the 

peptide 
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FIGURES CAPTURE 

Figure 1. Helix length (number of aminoacid residues) as a function of time for SufIs in 

aqueous solution. 

Figure 2. Number of intramolecular hydrogen bonds as a function of time for SufIs in 

aqueous solution. 

Figure 3. Atom positional root-mean-square distance (RMSD) variations with the first 

configuration during the simulation for SufIs in aqueous solution. 

Figure 4. Helix length (number of aminoacid residues) versus time for SufIs in TFE. 

Figure 5. Probability of finding each amino acid residue within an α-helix structure for SufIs 

in TFE. 

Figure 6. Probability of finding each amino acid residue within an α-helix structure 

calculated in portions of 1 ns for SufI-RR in TFE. 

Figure 7. Snapshot of SufI-RR. Arg(6) and Gln(10) residues are shown in different colour in 

(a) and Cys(17) and Ile(14) in (b). The H-bonds are indicated in broken lines. The images 

were generated with VMD [46]. 

Figure 8. Number of intramolecular hydrogen bonds as a function of time for SufIs in TFE. 

Figure 9. Atom positional root-mean-square distance (RMSD) variations for all atoms from 

the first configuration during the simulation for SufIs in TFE. 

Figure 10. Atom positional root-mean-square distance (RMSD) variations for atoms in the 

different peptide regions from the first configuration during the simulation for SufIs in TFE. 

Figure 11. Number of dihedral transitions for the backbone angles φ and ψ in each aminoacid 

residue for SufIs in TFE during the whole trajectory. 

Figure 12. Helix length (number of aminoacid residues) as a function of time for SufIs in 

vacuum. 

Figure 13. Probability of finding each amino acid residue within an α-helix structure for 

SufIs in vacuum. 
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