
HAL Id: hal-00530447
https://hal.science/hal-00530447

Submitted on 29 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Perspective on the Order-n Algorithm for
Computing Correlation Functions

David Dubbeldam, Denise Ford, Donald Ellis, Randall Snurr

To cite this version:
David Dubbeldam, Denise Ford, Donald Ellis, Randall Snurr. A New Perspective on the Order-n
Algorithm for Computing Correlation Functions. Molecular Simulation, 2009, 35 (12-13), pp.1084-
1097. �10.1080/08927020902818039�. �hal-00530447�

https://hal.science/hal-00530447
https://hal.archives-ouvertes.fr

For Peer Review
 O

nly

A New Perspective on the Order-n Algorithm for Computing
Correlation Functions

Journal: Molecular Simulation/Journal of Experimental Nanoscience

Manuscript ID: GMOS-2008-0273.R1

Journal: Molecular Simulation

Date Submitted by the
Author:

05-Feb-2009

Complete List of Authors: Dubbeldam, David; University of Amsterdam, Van 't Hoff Institute
for Molecular Sciences
Ford, Denise; Northwestern University, Chemical & Biological
Engineering Department
Ellis, Donald; Northwestern University, Department of Physics and

Astronomy
Snurr, Randall; Northwestern University, Chemical & Biological
Engineering Department

Keywords: correlations, diffusion, order-n

http://mc.manuscriptcentral.com/tandf/jenmol

For Peer Review
 O

nly

A New Perspective on the Order-n Algorithm for Computing

Correlation Functions

David Dubbeldam1, Denise C. Ford1, Donald E. Ellis2, and Randall Q. Snurr1

1 Chemical and Biological Engineering Department,

Northwestern University, 2145 Sheridan Road, Evanston IL 60208 USA

2 Department of Physics and Astronomy, Northwestern University,

2145 Sheridan Road, Evanston IL 60208 USA

(Dated: February 5, 2009)

Abstract

A method to measure correlations is presented that can be shown to be identical to the original

’order-n algorithm’ from Frenkel and Smit (Understanding Molecular Simulation, Academic Press,

2002). In contrast to their work, we present the algorithm without the use of ’block sums of

velocities’. We show that the algorithm gives identical results compared to standard correlation

methods for the time points at which the correlation is computed. We apply the algorithm to

compute diffusion of methane and benzene in the metal-organic framework IRMOF-1 and focus

on the computation of the mean-squared displacement, the velocity autocorrelation function, and

the angular velocity autocorrelation function. Other correlation functions can readily be computed

using the same algorithm. The savings in computer time and memory result from a reduction of

the number of time points, as they can be chosen non-uniformly. In addition, the algorithm is

significantly easier to implement than standard methods. Source code for the algorithm is given.

1

Page 1 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

I. INTRODUCTION

Before working on special and general relativity, Albert Einstein published papers on

diffusion, viscosity, and the photo-electric effect. Diffusion had been studied extensively

by that time, starting with the pioneering work of Fick but was described in a completely

phenomenological framework. Einstein proposed that Brownian motion of particles was ba-

sically the same process as diffusion. He connected the macroscopic process of diffusion with

the microscopic thermal motion of individual molecules, proposing that 〈x2〉 = 6Dt. This

fundamental equation relates the average square of the molecular displacements 〈x2〉 to the

self-diffusion coefficient D and the time t [1]. In the 1950s, Green and Kubo proved an exact

expression relating linear transport coefficients (including the self-diffusivity) to integrals

over time-correlation functions [2–5]. Green was the first to obtain expressions involving

time-correlation function for coefficients of shear and bulk viscosity, thermal conductivity,

diffusion and thermal diffusion. The expressions are based on the principle that the dynami-

cal underlying process is a Markov process and that the deviations from thermal equilibrium

are small. A rigorous general formalism of transport processes is presented by McQuarrie [6].

The formal equivalence of the Green-Kubo and Einstein expressions for self-and transport

coefficients is well known. However, from a practical point of view, the Einstein formulation

has the advantage that the integration over the velocities is already carried out at each time

step by the integration scheme and does not need to be performed afterwards. This leads to

less statistical errors and the interval between frames where data are stored to disk can be

taken longer [7, 8]. Both formulations are frequently used in molecular dynamics computer

simulations to compute self- and transport coefficients [8, 9].

Conventional methods to measure correlation functions are unable to measure fast and

slow decay simultaneously. This limitation arises due to the fixed sampling frequency. A

high sample frequency leads to large memory requirements as well as high cpu-time demands.

With a low sampling frequency one can obtain long-time correlations, but any fast decay will

be missed. The order-n algorithm by Frenkel and Smit allows for an adjustable sampling

frequency, and fast and slow decay can be sampled simultaneously at minimal computational

cost. The method as described in Ref. [10] is presented using block sums of velocities,

blocked averaged velocities and coarse graining. In this paper, we revisit the algorithm and

present versions for the Einstein and the Green-Kubo formulation. The reformulation of

2

Page 2 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

the algorithm without the use of blocked averaged velocities is easier to understand in our

opinion.

The remainder of this paper is organized as follows. After a short summary of the

background material, we describe 3 algorithms in increasing efficiency and show that the

last one is equal to the order-n algorithm of Frenkel and Smit, albeit that our approach

omits the block sums of velocities in both the derivation and the implementation. In fact,

this variant gives results in exact agreement with the conventional algorithm for the chosen

time points. In the result section we show for several systems the advantages of the non-

conventional approach over the conventional method for both the Einstein and Green-Kubo

formalisms. The appendix contains a basic outline of the code.

II. BACKGROUND

We focus here on the correlation functions required to compute the self-diffusion coeffi-

cients in fluids or nanoporous materials. Other transport coefficients such as the transport

diffusivities, bulk and shear viscosity, thermal conductivity etc. can be calculated in a sim-

ilar fashion from different correlation functions [6]. The discussion presented here applies

to these as well. For self-diffusion, two main routes are adapted: (a) the Einstein equation,

relating the self-diffusivity and the mean-squared displacement (MSD), and (b) the Green-

Kubo formulation, relating the self-diffusivity to the integral of the velocity autocorrelation

function (VACF). The Green-Kubo and Einstein formalisms can be applied to self-diffusivity

as well as to transport (or Fickian) diffusion. Transport diffusivity was originally described

by Fick in a non-equilibrium diffusion framework. Even transport diffusivities can nowadays

be computed from equilibrium simulations using the Einstein and Green-Kubo formalisms.

Some recent work on self- and/or transport diffusion in nanoporous materials include Refs.

[11–16].

In MD simulations [8, 10, 17], successive configurations of the system are generated

by integrating Newton’s laws of motion, which then yields a trajectory that describes the

positions, velocities and accelerations of the particles as they vary with time. The self-

diffusivity describes the motion of individual particles. In an equilibrium molecular dynamics

simulation the self-diffusion coefficient Dα of component α is computed by taking the slope

3

Page 3 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

of the mean-squared displacement at long times

Dα =
1

2dNα

lim
t→∞

d

d t

〈
Nα∑
i=1

(rαi (t)− rαi (0))2

〉
(1)

where Nα is the number of molecules of component α, d is the spatial dimension of the

system, t is the time, and rαi is the center-of-mass of molecule i of component α. Equivalently,

Dα is given by the time integral of the velocity autocorrelation function

Dα =
1

dNα

∫ ∞

0

〈
Nα∑
i=1

vαi (t) · vαi (0)

〉
dt (2)

where vαi is the center-of-mass velocity of molecule i of component α. Rotational diffusion

can be studied using the angular velocity autocorrelation function

DR
α =

1

dNα

∫ ∞

0

〈
Nα∑
i=1

ωα
i (t) · ωα

i (0)

〉
dt (3)

where ω is the angular velocity. Eq. 1 is known as the Einstein equation and Eq. 2 is often

referred to as the Green-Kubo relation. Similar equations exist for computing transport

(collective) diffusion [15, 18, 19].

The Einstein and Green-Kubo equations given above can be applied to each x, y, z-

direction individually (when the dimension of the system is taken in each case as d = 1),

applied to the two dimensional case d = 2, or applied to the three dimensional system d = 3.

In this case the directionally averaged diffusion coefficient is given by

D =
Dx +Dy +Dz

3
(4)

III. ALGORITHMS FOR COMPUTING CORRELATIONS

A. Conventional algorithm

The conventional algorithm to measure autocorrelation functions can be implemented in

several ways. Rapaport [17] presented the method as follows. Figure 1 shows the general

framework for computing any kind of correlation function. In this example, time indices

80 to 95 are shown. First, we need a buffer to store the correlation function. The size

of this buffer is chosen in advance and thus limits the correlation function to a predefined

maximum time interval. At time index 80, an origin is stored. The data after the origin are

4

Page 4 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

then correlated with the origin. In this simplified example the buffer is of size 10, so the

maximum correlation time is 9 ∆t, where ∆t = δt× τ is the integration time step δt times

the sampling interval τ . The sampling interval τ is taken as 1 in Fig. 1 but it is often 5-10

integration steps in practice. After 10 time sampling steps, the buffer is full. In general, the

time average of a property A in a simulation is computed as 〈A〉 = 1
N

∑N
i=1Ai. Here, Ai is

the current buffer that is full. We keep track of the summation of all these values during

the simulation in an array denoted as the accumulation buffer (not shown in the figure) and

a counter N keeps track of the number of buffers added. The average correlation function

can be plotted at the end of the run or anytime during the run by printing the accumulated

buffer divided by the counter. After the update of the accumulated buffer, a new time origin

is stored, and the process is repeated. An important improvement is the use of overlapping

buffers. In the example, not just one, but three buffers are used, each with a different offset

in time. This offset is evenly spaced. Each time step contributes multiple data points to the

various buffers and therefore improves the efficiency of the algorithm. Ideally, the overlap

should be confined to time intervals over which the correlation between measurements has

vanished, i.e. using 10 buffers in this example does not produce the maximum improvement

in accuracy because successive samples of the buffers are usually correlated.

Each of the buffers contains a full sample of the autocorrelation function, which is added

to the accumulated ACF when completely filled. An alternative is to store just the origins

(instead of the buffers), and add the contribution to the accumulated ACF immediately

while keeping track with an additional array of the amount of times a contribution has been

added per index. This adds one array, but the need for storing the buffers is removed. This

version is similar to the conventional algorithm present in Allen and Tildesley [8] and Frenkel

and Smit[10].

B. Window algorithm

As mentioned, taking every step as a new time origin does not give the optimal improve-

ment in efficiency, because the amount of cpu time increases without a corresponding gain

in accuracy for highly correlated successive measurements. However, if the cpu time penalty

is limited or the correlation between measurements is reduced, it could be advantageous to

use every index as a new time origin. One can reduce the amount of correlation between

5

Page 5 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

samples by changing the sample frequency from, for example, every time step to every 10

time steps. The increase in cpu time can be limited by using a single buffer containing the

values to be correlated for a certain buffer length. At each time step the elements in the

buffer can be correlated with the first element.

There are two basic ways of computing correlations: ”post-processing” after the simula-

tion has finished and ”on-the-fly” during the simulation. Figure 2 shows a post-processing

example by imagining all the values produced by the simulation as one long array containing

positions for MSD, velocities for the VACF, etc. The ACF is computed by ’sliding’ the ACF

buffer over all the data to the right and taking a sample every step, or every few steps. The

computed ACF sample is added to the accumulated buffer. The buffer can be viewed as

a ’window’ over the data produced by the simulation. A wider window provides a correla-

tion function that is longer in time. The downside of post-processing is the extensive file

input/output and storage requirements. However, one is always able to reprocess the data

afterwards.

Figure 3 shows the ”on-the-fly” alternative, here for the MSD. In this example, a block of

data of size 10 is used to store the last 10 positions, from r(−10∆t) for the left-most element

corresponding to the position at time index 100 to r(−∆t) corresponding to the position at

time index 109 (both are relative to the current time index 110). The left-most element is

the origin in time, and the other positions are relative to that value. From the block data

one can easily compute the MSD and add it to the accumulated array. The resulting graph

is shown in the top. The current time index is 110. For an update by ∆t the data in the

block are simply shifted to the left and the current value is copied to the most right element

in the block data.

C. Multiple window algorithm

A downside of the window technique is that the buffer size has to be chosen in advance.

A sample frequency at every time step leads to missing the long-time data (due to memory

and cpu constraints), while a sample frequency of every 100th time step misses the first 100.

We propose a new method in the same spirit as the conventional method. The key idea

is to use several windows using the conventional window technique, but each of the windows

has a different sampling frequency [10]. In Figure 4 we show an example of three buffers of

6

Page 6 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

size 10. The first buffer (block 0) samples every step, the second buffer (block 1) samples

every 10 steps, the third buffer (block 2) every 100 steps, and buffer n samples every 10n

time steps. At every step, we examine whether to update the buffers. If the time step is

a multiple of the buffer size to the power n we sample a value for the buffer n. The whole

correlation function can be constructed by placing the accumulated buffers next to each

other, from left to right, each producing a different time region for the complete graph (see

MSD results in the next section).

D. Comparison to the order-n algorithm

In our approach we have simply chosen the position (instead of the sum of the velocities)

to compute the mean-squared displacement. For this algorithm, the value inside the buffers

are shifted to left when updating the right-most element. Note that when using positions,

one needs to be careful to account properly for periodic boundary effects. Instead of the

position, one can also use the velocity, even for the mean-squared displacement, if one

replaces shifting to the left by adding the value in a given element to the value in the

element on the left. This will lead to a summation of velocities which can be related to

the position by ∆r = v × ∆t. An integration algorithm like velocity Verlet exactly obeys

this relation. The version using summed velocities is equivalent to the order-n algorithm

presented in Frenkel and Smit. The order-n algorithm is depicted in Figure 5. The order-n

algorithm samples from the left-most elements of the next lower block, except for the first

block which samples from the velocities. This is not essential, because the current value has

the same time separation as the left-most elements and one can just as well always sample

from the current value, provided one uses the position and not the sum of the velocities.

Therefore our code is shorter and perhaps easier to understand, because it is basically the

conventional window approach extended to multiple windows that each sample at a different

frequency. Our presentation of the algorithm allows us to make three additional statements

about the approach:

• The algorithm gives equal results to the conventional algorithm for all time points

chosen. The main advantage is the reduction of the number of time points and control

of sample frequency.

7

Page 7 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

• Block sums of velocities are not essential. The use of positions instead of velocities is

more convenient for mean-squared displacements.

• The order-n method for the MSD correlates backwards in time. For time correlations

that are time-reversible, this presents no problem for systems at equilibrium. The

multiple window technique can be simplified even more for this case (see the code in

the appendix).

As mentioned by Frenkel and Smit, the required storage of data using this algorithm

is the ’block-size’ times ’the number of blocks’, compared to the ’block-size’ to the power

’number of blocks’ for the conventional algorithm (for the same correlation range). The

sample frequencies chosen in Ref. [10] lead to an order-n algorithm. The gain originates

from a significant reduction of the number of time points. One is, of course, free to tune the

number and spacing of sampling points to specific applications. We have therefore avoided

the use of the term order-n. The number of floating point operations scales as t2 for the

conventional scheme, where t is the simulation time, and as t for the ’multiple-window’

technique. Another often used method makes use of the Fourier technique, which reduces

the conventional t2 to t ln t. However, this analysis assumes one would correlate longer for

a longer simulation time. In practice, for the conventional algorithm one usually fixes the

maximum correlation time in advance. No such restriction is necessary for the multiple

windows technique, because new blocks can be allocated on the fly. Choosing a single block

reduces the method to the conventional ’window’ technique.

IV. RESULTS

We present here some correlation functions that are often used in the study of diffusion in

nanoporous materials. The structure we use here is the metal-organic framework IRMOF-1

[20–24]. Methane is chosen as an adsorbate for its simplicity and we also study benzene as

a rigid molecule to compute rotational diffusion.

Figure 6 shows the mean-squared displacement of methane at 298 K in IRMOF-1.

IRMOF-1 is a prototypical metal-organic framework [20, 21]. The time step was 0.5 fs

and the classical force field was taken from Ref. [25]. The framework was kept rigid. The

ensemble was NVT using the Nose-Hoover chain method of Martyna and Tuckerman [26–

8

Page 8 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

28]. The open symbols are the multiple window technique data, the lines are results for the

conventional algorithm. The conventional algorithm uses a buffer size of 10000 and a sam-

pling frequency of every step, every 100 steps, and every 1000 steps for the top, middle, and

bottom graphs respectively. The multiple windows technique has 25 elements per block and

6 blocks. The different blocks are clearly distinguished in the log-log curves, because within

a block the data has the same spacing in time, but each block corresponds to a different

order of magnitude in time. The multiple window technique and the conventional algorithm

give identical results for the chosen time points. However, the multiple window technique

can capture both short and long times during a single run. The conventional algorithm is

limited in time mainly because of memory storage. Figure 7 shows for the same system the

velocity autocorrelation function using the conventional method and the multiple window

technique. Again, the latter technique allows both short and long times to be measured.

The integral of the VACF can be used to compute the diffusion coefficient.

A second case study is benzene in IRMOF-1. Benzene is simulated as a rigid molecule

using a quaternion integration scheme [27]. Figure 8 shows that for runs that last 5 nanosec-

onds using a time step of 2.0 fs, no observable energy drift occurs. During the run the angular

velocity autocorrelation was measured, see Figure 9. Several options are available: (a) re-

orientation of the molecule as a whole, (b) reorientation of the individual molecular axes,

(c) the angular velocity in the laboratory framework, and (d) the angular velocity in the

molecular frame [29]. Here, we used the last method, which allows the calculation of rota-

tional diffusion coefficients along individual molecular axes. The rotational self-diffusivity is

related to the area underneath the correlation function. As expected, the angular velocity-

autocorrelation function in the molecular frame shows that rotation around the out-of-plane

(x) axis is the fastest, whereas rotation around the short in-plane axes (y and z) is the slow-

est. The latter motion is severely restricted by the framework as evidenced by the reversal

of sign. Compared to 10 benzene molecules per unit cell, the rotational diffusion is slower

at 40 molecules per unit cell.

The main drawback of the Green-Kubo formulation is that, in principle, the integra-

tion limits of the autocorrelation function are from zero to infinity. Fortunately, correlation

functions usually decay fast enough to allow a finite integration region. However, it remains

difficult to distinguish noise from a real contribution to the diffusion coefficient, i.e. the

long-time tail. The mean-squared displacement as plotted in Fig. 10 provides more prac-

9

Page 9 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

tical guidelines how to accurately obtain diffusivities. At very short time scales the MSD

has a quadratic dependence on time (a slope of two on a log-log plot). This is known as the

ballistic regime, where particles on average do not yet collide. In nanoporous materials, an

intermediate regime starts when particles are colliding with the framework and the other

particles in the same confinement. Only when particles are able to escape the local envi-

ronment and explore the full periodic lattice length l is the diffusional regime reached. The

time required to travel an effective length l is related to the ’residence time’. It is the time a

particle on average spends in a cage-like environment before escaping to the next repeating

part of the pore space.

In the diffusive regime, the mean-squared displacement has bent over to attain a different

slope and becomes linear with time (a slope of unity on a log-log plot). It is the long-time

diffusion coefficient that is of interest for macroscopic diffusion. The start of the linear

regime is often directly related to the squared length of the smallest repeating length, i.e.

the unit cell length or the length of a cage. The region to use for fitting should preferably

not include all data because data have a progressively bigger error bar as the correlation

time increases. Note that for simulation length of T , one can have T − 1 samples of ∆t, but

only 1 of length T . Correlation functions are therefore most accurate at small times and

generally decrease greatly in accuracy for longer times. In Fig. 10 it is clear that the data

at the longest times are unreliable, because they are not linear. Moreover, the MSD data

at 450 K and 500 K cross. It is therefore advisable to restrict the fitting to a smaller region

starting from where the linear regime starts.

From a practical point of view the error can be reduced even further by a ”parallel

farming approach”. As an example, instead of running a single job, one can run several

jobs at different temperatures. Very often, when plotting ln (D) vs 1/T the data shows

a straight line (Arrhenius type behavior). Another approach is to run several jobs as a

function of loading around the region of interest. The essential point is that from physical

arguments one can reason that the curves should be rather smooth and continuous. Thus

the accuracy of each of the individual runs can be examined conveniently from a broader

set of simulation data. In one possible approach one could simulate without a set end time,

examine the MSD’s once in while, study the Arrhenius behavior, and decide to stop the

simulations when a sufficient accuracy has been reached. As an example, Figure 10 shows

the behavior of benzene in IRMOF-1 as a function of temperature. After 20 nanoseconds, the

10

Page 10 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

diffusivities have converged sufficiently to achieve Arrhenius behavior. Note that, of course,

there are many systems that show non-Arrhenius behavior [30], but also these systems

usually show different regimes that by themselves are linear. It is always beneficial to view

sets of simulation data in a bigger picture to estimate the accuracy, rather then focusing on

individual runs.

V. CONCLUSIONS

We have presented a method to sample correlation functions that is able to capture short

and long times simultaneously. As an example, the diffusion of methane and benzene in the

nanoporous material IRMOF-1 was studied. The algorithm gives identical results compared

to the conventional algorithm, but at minimal computational cost. The summed velocity

variant of the algorithm is almost identical to the Frenkel and Smit order-n algorithm.

However, the presented variant using positions for the mean-squared displacement is more

convenient. The implementation is straightforward for any correlation function and perhaps

even simpler than the conventional algorithms.

Acknowledgments

This material is based upon work supported by the National Science Foundation un-

der the following NSF programs: Partnerships for Advanced Computational Infrastructure,

Distributed Terascale Facility (DTF) and Terascale Extensions: Enhancements to the Ex-

tensible Terascale Facility. This work was also supported by the National Science Founda-

tion (CTS-0507013) and the Defense Threat Reduction Agency. Correspondence should be

addressed to Randall Q. Snurr (email: snurr@northwestern.edu).

Appendix

We present two general c-routines for computing correlation functions, one using the

Einstein formulation and one for the Green-Kubo formalism. Both routines should be called

using the argument ’ALLOCATE’ before the MD run, to allocate the required memory (can

be dynamically or using static arrays); using ’SAMPLE’ during the MD run to sample during

11

Page 11 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

the run; using ’PRINT’ to output the data to files; and optionally using ’DEALLOCATE’

to free the memory (the operating system will do that anyway when the program finishes).

These names are defined as an enumeration in c:

enum{ALLOCATE,INITIALIZE,SAMPLE,PRINT,FINALIZE};

Many unneeded lines are removed for clarity, such as error checking etc. A more detailed

implementation would include diffusion in x, y, z directions independently, computation of

collective diffusion, etc. Note that in c, arrays start from index 0 (in contrast to Fortran

where arrays start at index 1). The characters ’//’ denote comments and the ’%’ operator

means modulus. We note that in a detailed implementation the ’fmod’ operator for modulus

on floating point numbers is available to avoid overflow when using integers. The routines

’GetCenterOfMassPosition(int m)’ and ’GetCenterOfMassVelocity(int m)’ return the center-

of-mass position and center-of-mass velocity for molecule m, respectively. They return a

’VECTOR’ which is a structure with three elements ’x’, ’y’, and ’z’.

typedef struct vector

{

double x;

double y;

double z;

} VECTOR;

For simplicity we use here static allocation using global variables:

#define MAX_NUMBER_OF_BLOCKS 50

#define MAX_NUMBER_OF_BLOCKELEMENTS 25

#define MAX_NUMBER_OF_MOLECULES 1000

int BlockLength[MAX_NUMBER_OF_BLOCKS];

VECTOR BlockData[MAX_NUMBER_OF_BLOCKS][MAX_NUMBER_OF_MOLECULES][MAX_NUMBER_OF_BLOCKELEMENTS];

double MsdCount[MAX_NUMBER_OF_BLOCKS][MAX_NUMBER_OF_BLOCKELEMENTS];

double MsdAv[MAX_NUMBER_OF_BLOCKS][MAX_NUMBER_OF_BLOCKELEMENTS];

double VacfCount[MAX_NUMBER_OF_BLOCKS][MAX_NUMBER_OF_BLOCKELEMENTS];

12

Page 12 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

double VacfAv[MAX_NUMBER_OF_BLOCKS][MAX_NUMBER_OF_BLOCKELEMENTS];

The Einstein routine has the following general outline:

int SampleMeanSquareDisplacementMultipleWindows(int Switch)

{

int i,j,k,index,index_origin;

int CurrentBlock,CurrentBlocklength;

VECTOR value,drift,origin;

FILE *FilePtr;

char buffer[256];

switch(Switch)

{

case ALLOCATE:

// allocate memory

break;

case SAMPLE:

// determine current number of blocks

NumberOfBlocks=1;

i=count/NumberOfBlockElements;

while(i!=0)

{

NumberOfBlocks++;

i/=NumberOfBlockElements;

}

// loop over all the blocks to test which blocks need sampling

for(CurrentBlock=0;CurrentBlock<NumberOfBlocks;CurrentBlock++)

{

// test for blocking operation, i.e. when count is a multiple

// of NumberOfBlockElements^CurrentBlock

13

Page 13 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

if ((count)%((int)pow(NumberOfBlockElements,CurrentBlock))==0)

{

// increase the current block-length

BlockLength[CurrentBlock]++;

// compute the current length of the block, limited to size ’NumberOfBlockElements’

CurrentBlocklength=MIN(BlockLength[CurrentBlock],NumberOfBlockElements);

// loop over the molecules in the system

for(k=0;k<NumberOfMolecules;k++)

{

// shift to the left, set last index to the correlation value

for(i=1;i<NumberOfBlockElements;i++)

BlockData[CurrentBlock][k][i-1]=BlockData[CurrentBlock][k][i];

BlockData[CurrentBlock][k][NumberOfBlockElements-1]=GetCenterOfMassPosition(k);

// get the origin, take into account that blocks can be partially filled

index_origin=NumberOfBlockElements-CurrentBlocklength;

origin=BlockData[CurrentBlock][i][index_origin];

// sample msd using proper reference position

for(i=0;i<CurrentBlocklength;i++)

{

MsdCount[CurrentBlock][i]+=1.0;

MsdAv[CurrentBlock][i]+=

SQR(BlockData[CurrentBlock][k][index_origin+i].x-origin.x)+

SQR(BlockData[CurrentBlock][k][index_origin+i].y-origin.y)+

SQR(BlockData[CurrentBlock][k][index_origin+i].z-origin.z);

}

}

}

14

Page 14 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

}

// count the current sampling

count++;

break;

case PRINT:

FilePtr=fopen("output_msd.dat","w");

for(CurrentBlock=0;CurrentBlock<MIN(MaxNumberOfBlocks,NumberOfBlocks);CurrentBlock++)

{

CurrentBlocklength=MIN(BlockLength[CurrentBlock],NumberOfBlockElements);

for(j=1;j<CurrentBlockLength;j++)

{

// write time-index

fprintf(FilePtr,"%g ",(double)(j*DeltaT*pow(NumberOfBlockElements,CurrentBlock)));

// isotropic self-diffusion

if(MsdCount[CurrentBlock][j]>0.0)

fprintf(FilePtr,"%g\n",(double)(MsdAv[CurrentBlock][j]/MsdCount[CurrentBlock][j]));

}

}

fclose(FilePtr);

break;

case DEALLOCATE:

// free memory

break;

}

The Green-Kubo routine, here for the velocity autocorrelation function, has the following

general outline:

int SampleVelocityAutocorrelationFunctionMultipleWindows(int Switch)

15

Page 15 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

{

int i,j,k,index,index_origin;

int CurrentBlock,CurrentBlocklength;

VECTOR value,drift;

FILE *FilePtr;

char buffer[256];

switch(Switch)

{

case ALLOCATE:

// allocate memory

break;

case SAMPLE:

// determine current number of blocks

NumberOfBlocks=1;

i=count/NumberOfBlockElements;

while(i!=0)

{

NumberOfBlocks++;

i/=NumberOfBlockElements;

}

// loop over all the blocks to test which blocks need sampling

for(CurrentBlock=0;CurrentBlock<NumberOfBlocks;CurrentBlock++)

{

// test for blocking operation, i.e. when count is a multiple

// of NumberOfBlockElements^CurrentBlock

if ((count)%((int)pow(NumberOfBlockElements,CurrentBlock))==0)

{

// increase the current block-length

BlockLength[CurrentBlock]++;

16

Page 16 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

// compute the current length of the block, limited to size ’NumberOfBlockElements’

CurrentBlocklength=MIN(BlockLength[CurrentBlock],NumberOfBlockElements);

// loop over the molecules in the system

for(k=0;k<NumberOfMolecules;k++)

{

// shift to the left, set last index to the correlation value

for(i=1;i<NumberOfBlockElements;i++)

BlockData[CurrentBlock][k][i-1]=BlockData[CurrentBlock][k][i];

BlockData[CurrentBlock][k][NumberOfBlockElements-1]=GetAdsorbateCenterOfMassVelocity(k);

// get the origin, take into account that blocks can be partially filled

index_origin=NumberOfBlockElements-CurrentBlocklength;

origin=BlockData[CurrentBlock][i][index_origin];

// sample vacf using proper reference velocity

for(i=0;i<CurrentBlocklength;i++)

{

VacfCount[CurrentBlock][i]+=1.0;

VacfAv[CurrentBlock][i]+=

(BlockData[CurrentBlock][k][index_origin+i].x*origin.x)+

(BlockData[CurrentBlock][k][index_origin+i].y*origin.y)+

(BlockData[CurrentBlock][k][index_origin+i].z*origin.z);

}

}

}

}

// count the current sampling

count++;

break;

17

Page 17 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

case PRINT:

FilePtr=fopen("output_vacf.dat","w");

for(CurrentBlock=0;CurrentBlock<MIN(MaxNumberOfBlocks,NumberOfBlocks);CurrentBlock++)

{

CurrentBlocklength=MIN(BlockLength[CurrentBlock],NumberOfBlockElements);

for(j=1;j<CurrentBlocklength;j++)

{

if(VacfCount[CurrentBlock][j]>0.0)

{

fprintf(FilePtr,"%g %g\n",

(j*SampleEvery*DeltaT*pow(NumberOfBlockElements,CurrentBlock)),

(VacfAv[CurrentBlock][j]/VacfCount[CurrentBlock][j]),

}

}

}

fclose(FilePtr);

break;

case DEALLOCATE:

// free memory

break;

}

Lastly, we note that if the correlation function obeys time-reversibility, then the algorithm

can be simplified. For example, the VACF becomes (only the difference is shown below):

for(k=0;k<NumberOfMolecules;k++)

{

orgin=GetAdsorbateCenterOfMassVelocity(k);

// shift to the right, set index 0 to the correlation value

18

Page 18 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

for(i=CurrentBlocklength-1;i>0;i--)

BlockData[CurrentBlock][k][i]=BlockData[CurrentBlock][k][i-1];

BlockData[CurrentBlock][k][0]=origin;

// sample vacf using proper reference velocity

for(i=0;i<CurrentBlocklength;i++)

{

VacfCount[CurrentBlock][i]+=1.0;

VacfAv[CurrentBlock][i]+=(BlockData[CurrentBlock][k][i].x*origin.x)+

(BlockData[CurrentBlock][k][i].y*origin.y)+

(BlockData[CurrentBlock][k][i].z*origin.z);

}

}

This routine actually stores the data from left to right in the arrays using right-shifts and

therefore correlates backwards in time when the current value is used as the time origin.

Newton’s equation of motion are time-reversible. Modern integrators are time-reversible [26]

and even sympletic [27].

19

Page 19 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

. . . 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 . . .

8∆t

5∆t

2∆t

save O save O

save O save O

save O save O

Figure 1: Conventional technique to sample correlation functions. Shown here are simulation steps

80 through 95 and 3 buffers of size 10 with different origins in time that are in simultaneous use.

The time origins of the blocks are evenly spaced. The current simulation step is 88. At this step,

the current value is combined with the stored origin of buffer 1 to compute the correlation at a

time difference of 8∆t. But it is also combined with the two other blocks for time differences of

5∆t and 2∆t, respectively. The use of multiple buffers increases efficiency. Each of the buffers

contains, when full, a sample of the ACF. At the end of the next time step 89, buffer 1 is full.

The ACF is added to an array containing the accumulated ACFs (not shown in the figure), and

the value at step 90 is stored as the new origin O. In real applications, about 10-20 buffers of size

100-500 are usually used, and often the sampling is only every 5-10 MD steps.

20

Page 20 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

Accumulated

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t 8∆t 9∆t

0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t 8∆t 9∆t

0 1∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t 8∆t 9∆t

•

•
• • • • • • • •

Figure 2: Window technique (”post-processing”): a single buffer is used which represents a window

of values over time. In the example the buffer is of size 10, and therefore the correlation can be

computed up to 9∆t. Using a post-processing point of view where all the data is available after a

simulation run, one can imagine moving the window from left to right over the simulation results

and to take at every step a sample of the correlation function, i.e. each index in the (red+green)

window is correlated with the (red) time origin. At each update the sample ACF is added to an

array containing the accumulated ACF. The accumulated ACF divided by the amount of samples

is the current average ACF. The resulting curve looks schematically like the bottom graph, a

decaying function in time as properties become decorrelated due to the particle interactions.

21

Page 21 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
r(−1∆t)r(−2∆t)r(−3∆t)r(−4∆t)r(−5∆t)r(−6∆t)r(−7∆t)r(−8∆t)r(−9∆t)r(−10∆t)Block

Accumulated

99 100 101 102 103 104 105 106 107 108 109 110

0 1∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t 8∆t 9∆t

•
•

•
•

•
•

•
•

•

Figure 3: Window technique (”on-the-fly”): a single buffer is used which represents a window

of values over time. The example is for computing the MSD and therefore positions are stored.

For the VACF the velocities would be used. The buffer is of size 10 and contains the positions

separated in time. The (red) left element is first in time (r(−10∆t) with respect to the position at

time index 110), and therefore serves as the origin. The elements of the block of data are correlated

to the origin to compute the mean-squared displacement that is immediately added to an array

containing the accumulated MSD. The accumulated MSD divided by the amount of samples is

the current average MSD. The resulting graph is shown schematically at the top. In this MSD

example, the current time step is 110 and the block-data actually contains the positions at time

steps 100 up to and including 109. We update the block data by ∆t by shifting the values to the

left and placing the position of time step 110 in the right-most element (green line).

22

Page 22 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
r(−1∆t)r(−2∆t)r(−3∆t)r(−4∆t)r(−5∆t)r(−6∆t)r(−7∆t)r(−8∆t)r(−9∆t)r(−10∆t)

r(−10∆t)r(−20∆t)r(−30∆t)r(−40∆t)r(−50∆t)r(−60∆t)r(−70∆t)r(−80∆t)r(−90∆t)r(−100∆t)

r(−100∆t)r(−200∆t)r(−300∆t)r(−400∆t)r(−500∆t)r(−600∆t)r(−700∆t)r(−800∆t)r(−900∆t)r(−1000∆t)

Block 0

Block 1

Block 2

Block 3

109 100 101 102 103 104 105 106 107 108 109 110

Figure 4: The multiple windows technique (”on-the-fly”). In this MSD example the block length is

chosen as 10 and only the first 3 blocks are shown. Each block represents measurements at different

time scales. Block 0 is sampled every ∆t: the block is shifted to the left to update ∆t in time and

the new, last element is taken as the position of the particle. Block 1 samples every 10∆t, Block

2 samples every 100∆t. One can use the modulus operation to decide whether to update a block.

Suppose we are at time index 110, then blocks 0 and 1 are updated, because 110 modulus 1 and

110 modulus 10 are zero. At every processing step, these blocks are used to update the appropriate

parts of the MSD using the left (red) elements as the origins for the blocks. Each block element i

stores the position with a time difference of i ×∆t × 10Block compared to the current position of

the particle. The position at index i and index 0 (the origin) are used to compute the MSD for

that time interval and added to the accumulated MSD.

23

Page 23 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

1X
i=1

vi

2X
i=1

vi

3X
i=1

vi

4X
i=1

vi

5X
i=1

vi

6X
i=1

vi

7X
i=1

vi

8X
i=1

vi

9X
i=1

vi

10X
i=1

vi

1X
i=1

v′
i

2X
i=1

v′
i

3X
i=1

v′
i

4X
i=1

v′
i

5X
i=1

v′
i

6X
i=1

v′
i

7X
i=1

v′
i

8X
i=1

v′
i

9X
i=1

v′
i

10X
i=1

v′
i

1X
i=1

v′′
i

2X
i=1

v′′
i

3X
i=1

v′′
i

4X
i=1

v′′
i

5X
i=1

v′′
i

6X
i=1

v′′
i

7X
i=1

v′′
i

8X
i=1

v′′
i

9X
i=1

v′′
i

10X
i=1

v′′
i

Block 0

Block 1

Block 2

Block 3

99 100 101 102 103 104 105 106 107 108 109 110

Figure 5: The order-n algorithm for the MSD from Ref. [10]. The difference with the multiple

window technique is that instead of sampling from the current value at time step 110, the values of

the left-most element of the next lower block are used. The current value is only used for the first

block. A second difference is that velocities instead of positions are used. The update therefore

consists of a left shift where the values are not overwritten, but added to the next left element.

This is because a position difference is the sum of the previous velocities (∆r = ∆t ×∑
v). A

third difference is that the correlation is actually backwards in time (because the (red) origins are

the last elements on the right which are the most recent values).

24

Page 24 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
10−6

10−4

10−2

100

102

104

106

10−4 10−3 10−2 10−1 100 101 102 103 104 105

M
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t
[Å

2]
Time t [ps]

MWT
conv. short

10−6

10−4

10−2

100

102

104

106

10−4 10−3 10−2 10−1 100 101 102 103 104 105

M
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t
[Å

2]

Time t [ps]

MWT
conv. medium

10−6

10−4

10−2

100

102

104

106

10−4 10−3 10−2 10−1 100 101 102 103 104 105

M
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t
[Å

2]

Time t [ps]

MWT
conv. long

Figure 6: Mean-squared displacement of methane in IRMOF-1. The loading is 64 molecules per

unit cell and the temperature is 298 K. The multiple window technique (MWT) is compared to

the conventional algorithm using a buffer of size 10000 and three different sample frequencies:

(top) every 10 integrations steps, (middle) every 100 steps, and (bottom) every 1000 steps. The

integration time step was 0.5 fs.

25

Page 25 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
−5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

10−4 10−3 10−2 10−1 100 101 102

V
A

C
F

 [Å
2 /p

s]
Time t [ps]

MWT
conv. short

Figure 7: Velocity autocorrelation function of 64 methane molecules in a single unit cell of IRMOF-

1 at 298K. The open symbols are data of the multiple window technique, the line is the data of

the conventional algorithm using a buffer of size 10000 and sampling every 10 integration steps.

26

Page 26 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
−5x104

−4x104

−3x104

−2x104

−1x104

0

1x104

2x104

1 2 3 4 5

E
ne

rg
y

[K
]

Time t [ns]

Nose−Hoover energy, Kinetic energy

Adsorbate−adsorbate energy

Conserved energy

Host−adsorbate energy

Figure 8: The energies and conserved quantity of 10 benzene molecules in a single unit cell of

IRMOF-1 at 298 K during a MD run of 5 nanoseconds. Relative energy conservation is on the

order of 10−4.

27

Page 27 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

10−3 10−2 10−1 100 101

R
V

A
C

F
 [r

ad
2 /p

s]

Time t [ps]

x

y,z 10 mol/uc
40 mol/uc

Figure 9: The angular velocity autocorrelation function of benzene, computed using the MWT

technique, at 298 K and a loading of 10 molecules and 40 molecules per unit cell, respectively. The

data for y and z coincide due to geometric symmetry.

28

Page 28 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
10−4

10−2

100

102

104

10−3 10−2 10−1 100 101 102 103 104 105

M
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t [

Å
2]

Time t [ps]

l2

residence times

slope 1

slope 2

500K
450K
400K
350K
298K

10−9

10−8

10−7

1/500 1/450 1/400 1/350 1/298

S
el

f d
iff

us
io

n
co

ef
fic

ie
nt

 [m
2 /s

]

Inverse temperature 1/T [K−1]

Figure 10: Diffusion of benzene in IRMOF-1 at 10 molecules per unit cell as a function of tem-

perature: (left) the mean-squared displacements from top to bottom at 500, 450, 400, 350 and

298 K, (right) the Arrhenius behavior after 20 nanoseconds of simulation. The mean-squared

displacements become linear after approximately l2, where l = 25.83 Åis the periodic length of

the IRMOF-1 unit cell. The intersections of the mean-squared displacements with l2 are directly

related to the residence times of the particle inside the cages. An Arrhenius plot after several

nanoseconds shows scatter (not shown), implying the simulations are not properly converged yet.

For this system, it takes simulations of at least 20 nanoseconds to obtain reliable results.

29

Page 29 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly
[1] Kärger, J., Leipzig, Einstein, Diffusion Leipziger Universitätsverlag; Leipzig, 2007.

[2] Green, M.S. J. Chem. Phys. 1952, 20, 1281-95.

[3] Green, M.S. J. Chem. Phys. 1954, 22, 398-413.

[4] Kubo, R. J. Phys. Soc. Japan 1957, 12, 570-586.

[5] Kubo, R.; Yokota, M.; Nakajima, S. J. Phys. Soc. Japan 1957, 12, 1203-1211.

[6] McQuarrie, D.A., Statistical Thermodynamics HarperCollinsPublishers Inc.; New York, 1968.

[7] Tepper, H. L.; Briels, W. J. J. Chem. Phys. 2002, 116, 9464-9474.

[8] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids Clarendon Press; Oxford, 1987.

[9] Evans, D.J.; Morriss, D.G, Statistical Mechanics of Nonequilibrium Liquids Academic Press;

London, 1990.

[10] Frenkel, D.; Smit, B., Understanding Molecular Simulation 2nd edition Academic Press; Lon-

don, UK, 2002.

[11] Skoulidas, A.I.; Sholl, D. S. J. Phys. Chem. A 2003, 107, 10132-10141.

[12] Beerdsen, E.; Dubbeldam, D.; Smit, B. J. Phys. Chem. B 2006, 110, 22754-22772.

[13] Skoulidas, A. I.; Sholl, D. S. J. Phys. Chem. B 2005, 109, 15760-15768.

[14] Krishna, R.; van Baten, J.M. Chem. Eng. Sci. 2008, 63, 3120-3140.

[15] Dubbeldam, D.; Snurr, R.Q. Mol. Sim. 2007, 33, 305-325.

[16] Sarkisov, L.; Düren, T.; Snurr, R. Q. Mol. Phys. 2004, 102, 211-221.

[17] Rapaport, D. C., The Art of Molecular Dynamics Simulation 2nd edition Cambridge Univer-

sity Press; Cambridge, 2004.

[18] Theodorou, D. N.; Snurr, R. Q.; Bell, A. T., in Comprehensive Supramolecular Chemistry,

edited by Alberti, G.; Bein, T. Pergamon Oxford; Oxford, 1996, Vol. 7, Chap. Chap. 18, pp.

507–548.

[19] Krishna, R.; van Baten, J. M. J. Phys. Chem. B 2005, 109, 6386-6396.

[20] Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276-279.

[21] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keefe, M.; Yaghi, O. M. Science

2002, 295, 469-472.

[22] Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003,

423, 705-714.

30

Page 30 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

[23] Kitagawa, S.; Kitaura, R.; Noro, S. Nature 2003, 423, 705-714.

[24] Snurr, R. Q.; Hupp, J. T.; Nguyen, S. T. AIChE Journal 2004, 50, 1090-1095.

[25] Dubbeldam, D.; Walton, K.S.; Ellis, D.E.; Snurr, R.Q. Angew. Chem. Int. Ed. 2007, 46,

4496-4499.

[26] Martyna, G. J.; Tuckerman, M.; Tobias, D. J.; Klein, M. L. Mol. Phys. 1996, 87, 1117-1157.

[27] Miller, T. F.; Eleftheriou, M.; Pattnaik, P.; Ndirango, A.; Newns, D.; Martyna, G. J. J. Chem.

Phys. 2002, 116, 8649-8659.

[28] Tuckerman, M.E.; Alejandre, J.; Lopez-Rendon, R.; Jochim, A.L.; Martyna, G.J. J. Phys. A

2006, 39, 5629-5651.

[29] Jas, G.S.; Larson, E.J.; Johnson, C.K.; Kuczera, K. J. Phys. Chem. A 2000, 104, 9841-9852.

[30] Schüring, A.; Auerbach, S. M.; Fritzsche, S.; Haberlandt, R. J. Chem. Phys. 2002, 116,

10890-10894.

31

Page 31 of 31

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

