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Abstract 

In this paper, we focus on a production system where a single product is manufactured on a 

single facility and delivered to the subsequent stage in batch shipments. In contrast to earlier 

works, we assume that the inventory on the producing stage is depleted at discrete time 

intervals, and analyse the effect of a variable production rate on the inventory build-up and 

the total costs of the system. We develop formal models for the case of equal- and unequal-

sized batch shipments and propose solution procedures for the models. In a numerical study, 

we illustrated that deviating from the “design production rate” of a production system may 

reduce inventory carrying costs and thus lead to lower total costs. 

 

Keywords: inventory control; production; variable production rate; batch sizing 
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Introduction 

The SCM-related literature contains a broad variety of models that deal with the control of 

inventories in different application areas. This is an important field of research, since it has 

been shown that the total inventory in a supply chain may exceed 100 days of supply (see Lee 

et al. 1997), wherefore the reduction of excess inventories may lead to many benefits. Lot-

sizing models, in this context, aim on balancing lot-proportional costs (i.e. costs that depend 

on the lot size, such as inventory carrying costs) and lot-fixed costs (i.e. fixed costs incurred 

with each lot produced, such as setup costs) by determining a production quantity for the 

system under study. 

One major drawback we identified when studying the literature on lot-sizing is that the 

production rate of a facility is often treated as a constant and not as a decision variable. In 

contrast, the mean output per unit of time of a production system can be influenced in many 

practical situations, either by directly varying the rate of performance of the production 

equipment, or by inserting idle time between task elements and by thus varying the time 

which is effectively spent on manufacturing (see for example Buzacott and Ozkarahan, 1983; 

Schweitzer and Seidmann, 1991). Since the production rate can, for example, influence 

inventory build-up or the life-span of the tools used in the manufacturing process, controlling 

the production rate may help to reduce the total costs of the system under study. 

In recent years, several authors have studied the effect of a variable production rate on the 

performance of inventory systems. Thereby, some authors permit the production rate to be 

changed during the production process, while other authors assume that the production rate 

has to be fixed before a production run starts. The first case, which is commonly referred to as 

the “flexible case”, may occur if setup costs are only incurred when switching to a different 

item, but not when adjusting the speed of the production equipment, while the latter, which is 

termed the “rigid case”, may occur if changing the setup of a machine during a production run 

is technically impossible or associated with prohibitively high costs. 

One of the first models dealing with the rigid case is due to Buzacott and Ozkarahan (1983), 

who consider the problem of scheduling two products on a single or two machines. The 

authors assume that the production rate can be varied by inserting idle time over the 

production run, and show that it is optimal to choose the production rates for both models in 

such a way that the machines are always fully utilised, i.e. that no inserted idle time occurs 

between runs of the products. 

A variation of the model is introduced by Silver (1990), who analyzes the production of a 

family of items on a single facility. The author assumes that the products are produced once in 
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a common production cycle, and permits the production rate to be varied between prescribed 

limits. In contrast to Buzacott and Ozkarahan (1983), operating costs which occur per unit 

operating time are considered in the model formulation. Thus, since running the production 

equipment is no longer free of cost, it is not generally optimal to avoid idle time on the 

machine. 

The effect of a variable production rate on the production of items with a limited shelf life is 

first analyzed by Sarker and Babu (1993). The authors show that in case certain products can 

be stored in the inventory only for a limited time span, it may be beneficial either to reduce 

the production cycle or the production rate to shorten the storage time of the products and to 

avoid spoilage. Extensions to the model can be found in Silver (1995), Goyal (1994), 

Viswanathan (1995), and Viswanathan and Goyal (1997), who permit a simultaneous 

reduction of both model parameters or a different scheduling strategy, among others. 

Larsen (1997) and Sharma (2008) study both a variable demand and a variable production rate 

in an EPQ-model. Both authors assume that the demand rate may fluctuate, and analyze how 

the production rate should be adjusted to compensate these fluctuations. It is shown that the 

appropriate response to an increased demand rate is a reduction of the production rate, which 

leads to reduced inventory build-up and consequently lower inventory carrying costs. 

The effect of a variable production rate on product quality is analyzed by Khouja and Mehrez 

(1994) and Khouja (1999). Khouja and Mehrez (1994) assume that product quality 

deteriorates with an increased production rate and integrate different production cost and 

quality functions into an EPQ-model. The authors show that in case an increased production 

rate leads to a significant decrease in quality, the optimal production rate may be smaller than 

the rate that minimises unit production cost. Similarly, Khouja (1999) assumes that the 

production process may shift out of control with a probability depending on the production 

rate. The author extends the model proposed by Silver (1990) and shows that incorporating 

quality leads to a reduction in the optimal lot sizes and cycle time.  

The flexible case is first analyzed by Moon et al. (1991), who extend the model due to Silver 

(1990) to allow production rates to be varied during the production run. The authors show that 

it is optimal first to reduce the production rate of a particular item to meet the demand rate in 

order to avoid inventory build-up, and then to produce the item at its maximum rate to build 

enough inventory to satisfy demand until the item is produced again. Since the authors do not 

consider production costs, there is no idle time in the optimal schedule. An extension to the 

model is provided by Gallego (1993), who applies a power-of-two-policy, instead of a 

common cycle-policy, and shows that in minimising a lower bound on the average cost it is 
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optimal to reduce the production rate of at most one item. A further extension is introduced by 

Elhafsi and Bai (1997), who allow backordering in their model and show that varying the 

production rate might again lead to a substantial reduction in average cost. 

An EPQ-model which considers the flexible case is finally provided by Larsen (2005), who 

assumes that the production rates and their corresponding run times are decision variables. 

The author shows that the production rates should be chosen in the interval between the 

demand rate and the production rate which minimises unit production costs, and that they 

should be used in an increasing order. 

In this paper, we focus on the case where a single product is manufactured on a single facility 

and delivered to the subsequent stage in batch shipments. In contrast to earlier works, we 

assume that the inventory on the producing stage is depleted at discrete time intervals, and 

analyze the effect of a variable production rate on the inventory build-up and the total costs of 

the system. Thereby, we illustrated that deviating from the “design production rate” of a 

production system may reduce inventory in the system and thus lead to lower total costs. In 

conformity with the literature, we analyze both the “rigid case” and the “flexible case” in the 

following and study their impact on the system for the cases of equal- and unequal-sized batch 

shipments. 

Our research is especially important for companies facing high in-process inventories or 

bottleneck-problems. As will be shown, varying the production rate of a machine may 

significantly influence waiting time-related inventory and may thus help to control queues in 

front of subsequent production stages. This is consistent with the OPT-Philosophy (see for 

example Goldratt 1988), which aims on maximizing the throughput of the production system 

as a whole, instead of the throughput of a single machine, and the JIT-philosophy, which aims 

on reducing in-process inventories. 

The remainder of the paper is organised as follows: in the next section, the article describes 

the problem we focus and outlines the assumptions and definitions which will used in the 

remaining sections of the paper. Accordingly, we develop formal models for the rigid and the 

flexible case and the case of equal- and unequal-sized batch shipments and propose solution 

procedures for the models. Section 4 contains a numerical study and section 5 concludes the 

article. 

 

Problem description 

In the following, we study a system where a single product is manufactured on a single 

facility and assume that partial shipments to the subsequent stage can be made before the 
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entire production lot is completed. This problem has frequently been discussed in the 

literature, but thus far under the assumption that production rates are predefined and constant 

during the production process. 

In principle, two alternative types of transporting batch shipments to the subsequent stage are 

discussed in the literature. Szendrovits (1975) proposed the first alternative, which is to ship 

batches of equal size to the subsequent stage. This allows an overlap between operations on 

the producing and the consuming stage, which reduces the manufacturing cycle time and the 

inventory in the system. The second alternative is to ship batches to the next stage that 

increase by a fixed factor, which is equal to the production rate divided by the demand rate 

(see Goyal, 1977). Under the assumption that the maximum size of the batch shipments is not 

restricted, Goyal’s policy leads to lower total system inventory and lower total costs than the 

one proposed by Szendrovits. In the next section, we analyze both alternatives under the 

assumption that the production rate can be varied. 

The following assumptions and notations are used to formulate the problem: 

 

Assumptions: 

1. All parameters are deterministic and constant over time. 

2. The production rate can be varied between given limits pmin and pmax. 

3. We exclude synchronous production, where the facility is constantly producing and 

where there is no setup, from the analysis and assume that pmin > d. 

4. The unit production costs are a function of the production rate. 

5. The unit production cost function is convex in p and p0 is the “design production rate” 

that minimises unit production costs. 

6. Batches are only sent to the consuming stage when the inventory level at this stage 

reaches zero. 

7. We explicitly focus on a time weighted cost function to enhance the practical 

applicability of our model. As Higgins et al. (1996) note, production plans are often 

made with planning horizons rolling through time as time progresses. Thus, companies 

who wish to implement our model as a heuristic planning tool may specify a planning 

period and repeat the planning process after the planning time has elapsed. Note that 

this assumption is not uncommon in the literature, cf. for example Bogaschewsky et 

al. (2001). However, normalizing the planning period to 1 time unit results in the 

common money-per-unit-time cost function.  

8. Shortages are not allowed. 
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Notations: 

 cp(p) = unit production cost function 

 cS = setup costs per setup 

 cT = transportation costs per shipment 

 d = demand rate in units per unit time 

 D = total demand in the planning period 

 h = inventory carrying charges per unit per unit of time 

 qj = size of the jth batch shipment 

 λ = the proportional increase in successive shipments within a batch production run 

 m = number of batch shipments in a production cycle 

 p = production rate in units per unit time 

 p0 = design production rate 

 Q = production lot size 

 

Definitions: 

 I
reg

 = “regular” inventory 

 I
wait

 = inventory due to waiting times  

IC = inventory carrying costs 

 PC = production costs 

 TC = total costs in the planning period 

TWI = time weighted inventory 

 

Model formulation and solution 

The rigid case 

a) Equal-sized batch shipments 

The first scenario we analyze is the case where equal-sized batch shipments are transported to 

the subsequent stage and where the production rate may be varied only before the start of a 

production run. The corresponding inventory time plots are illustrated in figure 1 (cf. the bold 

lines. Note that the dashed lines represent the case of a reduced production rate). It is shown 

that the producing stage manufactures a lot of size Q in mtp time units, and that the first batch 

is shipped to the subsequent stage directly after its completion. Due to p > d, the second batch 

is finished before the first batch is completely used up, wherefore it has to be kept in stock for 

tw,1 = tv-tp time units. 
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---------- 

Figure 1 

---------- 

The time weighted inventory in this case consists of a “regular” inventory, which corresponds 

to the triangles shown in figure 1, and inventory due to waiting times. The “regular” inventory 

can be expressed as follows: 

(1) 







+=

dpm

Q
I

reg 11

2

2

 

Inventory due to waiting times can be calculated as: 

(2)  ( ) 







−−=




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


−= ∑

= pd
m

m

Q

pd
i

m

Q
I

m

i

wait 11
1

2

11 2

2
2

2

 

The time weighted inventory is given as the sum of (1) and (2). The inventory carrying costs 

in the planning period thus equal: 

(3) ( ) h
d

m
m

pm

DQ
IC 








+−= 2

1

2
 

Apart from the inventory carrying costs, the system encounters production costs which vary 

with a varying production rate. In the following, we assume that the unit production cost 

function is of the form specified by Eiamkanchanalai and Banerjee (1999), wherefore we can 

conclude that: 

(4) PC = Dcp(p) = D(a0p
2
-a1p+a2) 

The total costs consist of the sum of (3) and (4) and the setup and transportation costs in the 

planning period, which amount to (cS+mcT)D/Q. Thus, it follows that: 

(5) ( ) ( )pDc
Q

D
mcch

p

m

d

m

m

DQ
TC pTS +++







 −
+=

2

2
 

As might be easily shown, (5) is convex in Q for given values for m and p. Thus, the optimal 

solution for Q is given as: 

(6) 
( )

h
p

m

d

m

mccm
Q TS








 −
+

+
=

2

2
*  

Substituting (6) in (5), the total cost function reduces to: 

(7) ( ) ( )pDcmcch
p

m

d

m

m
DTC pTS ++







 −
+=

22
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As could be shown by Szendrovits and Drezner (1980), (7) is quasi-convex in m. Thus, for a 

given value for p, an optimal solution for m may be calculated with the help of the following 

optimality condition: 

(8) TC(m*-1) ≥ TC(m*) ≤ TC(m*+1) 

However, since (7) is not necessarily convex in p, we state the following theorems to derive a 

solution: 

  

Theorem 1: For m = 1, producing with p < p0 cannot be optimal. 

Proof: see appendix 1. 

 

Theorem 2: For m = 2, it is optimal to produce with p = p0. 

Proof: see appendix 2. 

 

Theorem 3: For m > 2, producing with p > p0 cannot be optimal. 

Proof: see appendix 3. 

 

To calculate a good, but not necessarily optimal, value for p, we can apply a one-dimensional 

line search algorithm. The following procedure can be used to find a solution for m*, p*, and 

Q*: 

 

Step 1:  Set m = 1 and search p ∈ [p0; pmax] that minimises TC. Set TC* = TC, m* = m, and p* 

= p. 

Step 2:  Set m = 2 and p = p0. If TC > TC*, Goto Step 4. 

 Set TC* = TC, m* = m, p* = p, and m =  m+1 

Step 3: Search p ∈ [pmin; p0] that minimises TC. If TC > TC*, Goto Step 4. 

 Set TC* = TC, m* = m, p* = p, and m =  m+1. Goto Step 3. 

Step 4: Find Q* from (6). 

 

b) Unequal-sized batch shipments 

In the case where unequal-sized batches are shipped to the subsequent stage, the size of the jth 

batch can be calculated as follows (see Goyal, 1977): 

(9) qj = q1λj-1
 = q1(p/d)

j-1
   with ∑∑

=

−

=

==
m

i

i
m

i

i qqQ
1

1

1

1

λ  
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The corresponding inventory time plots that result if tp,j = tv,j-1 are illustrated in figure 2 (cf. 

the bold lines. The dashed lines again illustrate the case of a reduced production rate). As can 

be seen, there is no inventory due to waiting times if subsequent batches increase by λ = p/d. 

---------- 

Figure 2 

---------- 

The time weighted inventory can be calculated as follows: 
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The total costs can now be derived if the time weighted inventory is multiplied with the 

number of lots in the planning period (D/Q) and the unit inventory carrying charges per unit 

of time h, and if the setup costs per order and the transportation costs per batch are considered 

in addition: 
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Note that (11) equals (5) for λ = 1 and q1 = Q/m. Since (11) is convex in q1 for given values 

for m and p, a solution for the optimal first batch size can be calculated with the help of 

differential calculus. It follows: 

(12) 
( )( )( )
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Substituting (12) in (11), the total cost function reduces to: 
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Since (13) has a unique minimum in m for given values of p (see Goyal, 1977), an optimal 

solution may be derived with the help of the following optimality condition: 

(14) TC(m*-1) ≥ TC(m*) ≤ TC(m*+1) 

However, (13) is not necessarily convex in p. To derive a solution for the production rate, we 

state the following theorem and proposition: 
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Theorem 4: For m = 1, producing with p < p0 cannot be optimal. 

Proof: follows directly from theorem 1. 

 

Proposition 1: Assume that p̂ is the production rate that minimises inventory carrying cost. If 

2|ˆ =mp  > p0, the optimal solution for p is contained in the interval [pmin; ( )21+d ], and 

otherwise in the interval [pmin; p0] 

Explanation: see appendix 4. 

 

To calculate a good, but not necessarily optimal, value for p, we can again apply a one-

dimensional line search algorithm over the intervals identified above. The following 

procedure can be used to find a solution for m*, p*, and q1*: 

 

Step 1:  Set m = 1 and search p ∈ [p0; pmax] that minimises TC. Set TC* = TC, m* = m, and p* 

= p. Set m = m+1. 

Step 2:  Search p ∈ [pmin; Max[p0, ( )21+d ]] that minimises TC. If TC > TC*, Goto Step 3. 

 Set TC* = TC, m* = m, p* = p, and m =  m+1. Goto Step 2. 

Step 3: Find q1* from (12). 

 

The flexible case 

a) Equal-sized batch shipments 

So far, we assumed that the production rate has to be fixed before a production run starts. In 

the following, we relax this assumption and suppose that each batch may be produced with a 

separate production rate. In compliance with earlier work, we assume that the costs of 

changing the production rate are negligible. 

If each batch is manufactured with a separate production rate, the “regular” inventory given in 

(1) has to be reformulated as follows: 
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Similarly, inventory due to waiting times can be calculated as: 

(16) ( ) ( ) 









−−=










−−= ∑∑∑∑

= ===

m

i

i

j j

i

j j

m

i

wait

pd
mm

m

Q

p

Q

d

Q
i

m

Q
I

2 2
2

2

22

1
2

1
1

2
1  

The time weighted inventory is again given as the sum of (15) and (16). The inventory 

carrying costs in the planning period thus equal: 
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(17) h
pppd

m

m

Q
h

ppd

m

m

Q
IC

m

i

i

j j

i

j j

m

i

i

j j

m

i i























+−+=










−+= ∑ ∑∑∑∑∑

= =

−

== == 2 2

1

21

2

2

2

2 21

2

2

2 111

2

1
2

1

2
 

Considering production costs and setup and transportation costs leads to the total cost 

function: 
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Since (18) is convex in Q for given values for m and a given p-vector, the optimal solution for 

Q is given as follows: 

(19) 
( )

h
pppd

m

mccm
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m

i
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j j
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TS
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Substituting (19) in (18) leads to: 

(20) ( ) ( )








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
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2 111
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Since (20) is not necessarily convex in pi and m, we state the following theorems to derive a 

good solution: 

 

Theorem 5: Producing the first batch with p1 < p0 cannot be optimal. Producing the batches 2 

to m with pi > p0 cannot be optimal. 

Proof: see appendix 5. 

 

Theorem 6: For j > k, pj < pk cannot be optimal. 

Proof: see appendix 5. 

 

To calculate a good, but not necessarily optimal, value for pi, we can again apply a line search 

algorithm over the intervals identified above. Further, we calculate a solution for m with the 

help of the following condition: 

(21) TC(m*-1) ≥ TC(m*) ≤ TC(m*+1) 

The following procedure can be applied to find a solution for m*, Q*, and the p-vector: 

 

Step 1:  Set m = 1 and search p1 ∈ [p0; pmax] that minimises TC. Set TC* = TC, m* = m, and 

p1* = p1. Set m = m+1. 
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Step 2:  Search pj ∈ [pmin; Max[p0, ( )21+d ]] ∀j∈[2,…,m] that minimises TC. If TC > TC*, 

Goto Step 3. 

 Set TC* = TC, m* = m, pj* = pj ∀j∈[2,…,m], and m =  m+1. Goto Step 2. 

Step 3: Find q1* from (12). 

 

b) Unequal-sized batch shipments 

In the case where unequal-sized batches are transported to the subsequent stage, the size of 

the jth batch depends on the size of the first shipment and the production rate of batches 2 to j 

(cf. figure 3). Thus, it follows that 

(22) ∏
=

=
j

i

i
j

d

p
qq

2

1    and   ∑∏∑
= ==

=
m

j

j

i

i
m

j

j
d

p
qq

1 2

1

1

 

---------- 

Figure 3 

---------- 

The time weighted inventory can be calculated as follows: 
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The total costs are again given if the time weighted inventory is multiplied with the number of 

lots in the planning period (D/∑qi) and the unit inventory carrying charges per unit of time h, 

and if the setup costs per order and the transportation costs per batch are considered in 

addition: 
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Since (24) is convex in q1 for given values for m and pi, the optimal solution for q1 is given as: 

(25) 
( )

h
dpd

p
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q

m

i i

i
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
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+
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Substituting (25) in (24) leads to: 
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Since (26) is not necessarily convex in pi and m, we state the following theorems to derive a 

good solution: 

 

Theorem 7: Producing the first batch with p1 < p0 cannot be optimal. Producing batches 2 to m 

with pi > p0 cannot be optimal. 

Proof: see appendix 6. 

 

To calculate a good, but not necessarily optimal, value for pi, we can again apply a line search 

algorithm over the intervals identified above. Further, we calculate a solution for m with the 

help of the following condition: 

(21) TC(m*-1) ≥ TC(m*) ≤ TC(m*+1) 

The following procedure can be applied to find a solution for m*, q1*, and the p-vector: 

 

Step 1:  Set m = 1 and search p1 ∈ [p0; pmax] that minimises TC. Set TC* = TC, m* = m, and 

p1* = p1. Set m = m+1. 

Step 2:  Search pj ∈ [pmin; pj-1,max] ∀j∈[2,…,m] with p2,max = p0 that minimises TC. If TC > 

TC*, Goto Step 3. 

 Set TC* = TC, m* = m, pj* = pj ∀j∈[2,…,m], and m =  m+1. Goto Step 2. 

Step 3: Find q1* from (12). 

 

Numerical Examples 

To illustrate the effect of a variable production rate on a two-stage production system with 

discrete inventory depletions, we solved a set of test problems shown in table 1. In addition to 

the data given below, we assumed that D = 1000 and cS = 250. Each of these test problems 

were solved using the procedures described above. The results for the rigid case are given in 

tables 2 and 3 and the results for the flexible case in tables 4 and 5. 

---------- 

Table 1 

---------- 

For problem one, reducing the production rate resulted in lower total costs if the rigid case 

was assumed. As can be seen, the reduction in p is smaller in case unequal-sized batch 
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shipments are transported to the subsequent stage. This is due to the fact that unequal-sized 

batch shipments reduce the total inventory in the system, wherefore a reduction in p leads to a 

relatively smaller reduction in inventory carrying costs. Providing that each batch may be 

produced with a separate production rate, we found a major difference between the two 

shipment policies analyzed above: in case equal-sized batch shipments are transported to the 

subsequent stage, the batches follow the pattern identified above, i.e. p2* ≤ p3* ≤ ... ≤ pm* ≤ 

p1*. For the case of unequal-sized batch shipments, we found that the production rate of the 

first batch is increased with p1 > p0, and that the production rate of subsequent batches is at 

first gradually reduced and then increased again. However, pm < p0 holds. This effect can be 

explained as follows: If the number of shipments that succeed a particular batch i with i ≥ 2 is 

large, a high production rate for batch i leads to an increase of the respective and all 

subsequent batch sizes (cf. expression (22)). This effect is enhanced if the size of batch i is 

large. Thus, a large difference between m and i and a large batch size qi favour a low 

production rate. If the difference m-i is reduced, the production rate is increased again. 

Finally, it can be seen that the flexible case leads to lower total costs than the rigid case for all 

problems we tested, which supports the findings of prior studies. 

---------- 

Table 2 

---------- 

Problems two and three illustrate the effect of a variation of the inventory carrying charges 

per unit per unit of time on the selection of the production rate. An increase in h leads to 

higher inventory carrying costs, which enhances the advantage that results from varying the 

production rate. In contrast, if cT is increased, the number of batch shipments and the 

proportion of inventory due to waiting times in the total inventory are decreased. This leads to 

a lower variation in pi in the rigid case and a higher production rate for the first batch in case 

different production rates are allowed for each batch shipment. 

---------- 

Table 3 

---------- 

The impact that results from varying the shape of the unit production cost function is 

illustrated in problems five and six. If the function is compressed, increasing or decreasing the 

production rate leads to a sharp increase in PC. Thus, the higher the slope of the unit 

production cost function, the lower the variation in pi for both the rigid and the flexible case. 
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Finally, problems seven and eight illustrate the effect of a variation in the interval of feasible 

production rates. 

---------- 

Table 4 

---------- 

 

---------- 

Table 5 

---------- 

 

Conclusion 

In this paper, we considered a two-stage production system with equal- and unequal-sized 

batch shipments. We extended earlier work by treating the production rate as a decision 

variable and analyzed the resulting problem for both the cases where the production rate is 

fixed and variable during a production run. In a numerical study, we illustrated that deviating 

from the “design production rate” of a production system may reduce inventory carrying costs 

and thus lead to lower total costs. In order to increase the scope of our analysis, the model 

presented in this article could be extended to include costs of changing the production rate or 

a different unit production cost function (see for example Khouja (1995) or Moon and Christy 

(1998)). 

 

Appendices 

Appendix 1 

For m = 1, (7) reduces to: 

(A-1) ( ) ( )pDccch
pd

DTC pTS ++







+=

11
2  

As can be seen, the first addend in (A-1) decreases with an increasing production rate, while 

the second increases for both an increasing and a decreasing production rate. Consequently, it 

cannot be optimal to produce with a production rate smaller than p0, since there is always a p 

∈ [p0,pmax] that leads to lower total costs. 

 

Appendix 2 

For m = 2, (7) reduces to: 
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(A-2) ( ) ( )pDccch
d

DTC pTS ++= 2
2

 

As can be seen, the first addend in (A-2) is independent of p, while the second increases for 

both an increasing and a decreasing production rate. Consequently, (A-2) is minimised with p 

= p0. 

To explain this effect, it is first necessary to analyze the variation of I
reg

 and I
wait

 for the case 

that p is varied to p’. It follows that: 

(A-3) ( ) ( ) 

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
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−=−=∆

'
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2
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2
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Q
pIpII

regregreg  
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


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−−=−=∆
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Q
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waitwaitwait 1

'

1
1

2
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The sum of (A-3) and (A-4) equals: 

(A-5) 







−







 −=∆+∆=∆
'

11
1

2

2

2

ppm

Q
III

waitreg  

For m = 2, (A-5) equals 0. It follows that in case m = 2, a variation in p leads to a decrease 

(increase) in I
reg

 that is exactly compensated by an increase (decrease) in I
wait

 (it can be seen 

in figure 1 by comparing the bold and dashed lines that a decrease in p leads to a higher 

regular inventory and a lower inventory due to waiting times). Thus, since cp(p) increases 

with an increasing or a decreasing production rate, it is optimal to produce with p = p0. 

 

Appendix 3 

It is obvious that the expression (2-m)/p in (7) is negative for m > 2. Thus, the first addend in 

(7) can be reduced by lowering the production rate.  

To explain this effect, we analyze the variation of I
reg

 and I
wait

 for the case that p is varied to 

p’. As can be seen in (A-3) and (A-4), an increase in p leads to a decrease in I
reg

 and an 

increase in I
wait

. To assess the total effect, we refer to (A-5), which is positive for m > 2 and p’ 

< p. Thus, we conclude that in case m > 2, a reduction in p leads to an increase in I
reg

, which is 

always compensated by a decrease in I
wait

. Further, it follows that a decrease in p is especially 

beneficial for high values for m, since the multiplier (2/m-1) enhances the effect of 

manufacturing with a reduced production rate for high values for m. However, the marginal 

decrease in inventory which results if p is reduced to p’ decreases with an increase in m. 

 

Appendix 4 

Minimising inventory carrying costs is equivalent to minimising 
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As can be seen, α increases with an increasing production rate and approaches 1/d if p 

approaches infinity. In contrast, β is negatively correlated with p and approaches 1 if p 

approaches infinity. If m approaches infinity, β approaches -1 for p < d and 1 for p > d.  

Further, we conclude that a decrease in β, which occurs if p is increased to p’, is larger for m 

than m’ with m < m’. 

If m = 2, (A-6) is convex in p and p̂ minimises (A-6) with 

(A-7) ( )21ˆ += dp  

If m > 2, it is difficult to derive a closed-form solution for p̂. However, we identified (A-6) to 

be quasi-convex in p with the form shown in figure 4 in numerical studies. Further, we 

conclude that ( )mp̂  > ( )1ˆ +mp  and ( ) dmp =∞→ˆ  due to the relations identified above. 

---------- 

Figure 4 

---------- 

Figure 5 illustrates the range of possible values for p that contains the optimal solution. Thus, 

if 2|ˆ =mp  > p0, the value for p that minimises (13) can be found in the interval [pmin; ( )21+d ], 

and otherwise in the interval [pmin; p0]. 

---------- 

Figure 5 

---------- 

 

Appendix 5 

Minimising inventory carrying costs in pi is equivalent to minimising 

(A-8) ∑ ∑∑
= =

−

=










+−

m

i

i

j j

i

j j ppp 2 2
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21

111
 

As can be easily seen, both minuend and subtrahend decrease with an increasing production 

rate. Thus, (A-8) can be minimised by increasing p1 and decreasing p2,...,pm. In addition, it 

can be seen that the sum function in the subtrahend leads to a higher weight for the production 

rate of earlier batch shipments, which is due to the fact that the production rate of batch j with 

j > 1 influences the waiting times of all subsequent batch shipments. Thus, since a variation in 
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pi always leads to higher unit production costs, we conclude that p1* ∈ [p0,pmax] and pi* ∈ 

[pmin; p0] for i > 1. Further, due to the relations identified above, we conclude that p2* ≤ p3* ≤ 

... ≤ pm*. 

 

Appendix 6 

As can be seen in figures 2 and 3, p1 influences the inventory build-up of the first batch, but 

not the size of the shipments 2 to m. Thus, a decrease (increase) in p1 leads to a slower (faster) 

inventory build-up and consequently higher (lower) inventory carrying costs. Since unit 

production costs are convex in pi with a unique minimum in p0, it cannot be optimal to 

produce with a production rate p1 < p0, which would lead to both an increase in IC and PC. 

In contrast, a variation in pi with i > 2 influences both the inventory build-up of batch i and 

the size of the shipments i to m. This is due to the fact that the batches 2 to m are produced in 

the consumption time of the preceding batch, wherefore a decrease (increase) in pi with i > 2 

leads to a lower (higher) batch size and consequently lower (higher) inventory carrying costs. 

Thus, we can conclude that p1* ∈ [p0; pmax] and pi* ∈ [pmin; p0]. 
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Table 1 

# h cT {a0,a1,a2} {pmin,pmax} 

1 5 200 {1/6000, 0.12, 24} {320,500} 

2 10 200 {1/6000, 0.12, 24} {320,500} 

3 15 200 {1/6000, 0.12, 24} {320,500} 

4 5 400 {1/6000, 0.12, 24} {320,500} 

5 5 200 {1/600, 1.2, 218.4} {320,500} 

6 5 200 {1/60, 12, 2162.4} {320,500} 

7 5 200 {1/6000, 0.12, 24} {340,500} 

8 5 200 {1/6000, 0.12, 24} {320,360} 
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Table 2 
# m* Q* p* TC* 

1 4 472.07 345.14 6885.26 

2 6 481.66 320 8687.46 

3 6 393.28 320 10040.60 

4 3 493.58 349.92 8292.36 

5 4 465.39 358.64 6915.44 

6 4 464.82 359.87 6918.18 

7 4 472.07 345.14 6885.26 

8 4 472.07 345.14 6885.26 
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Table 3 
# m* q1* Q* p* TC* 

1 7 71.30 826.66 349.52 6410.29 

2 7 52.24 586.10 346.34 8061.51 

3 8 42.22 539.88 339.20 9325.47 

4 5 114.74 832.24 356.09 7809.66 

5 6 73.15 721.59 359.22 6419.91 

6 6 72.68 721.26 359.92 6420.84 

7 7 71.30 826.66 349.52 6410.29 

8 7 71.30 826.66 349.52 6410.29 
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Table 4 
# m* Q* {p1*,…,pm*} TC* 

1 5 582.63 {366.51, 320, 320, 336.90, 352.99} 6818.53 

2 5 414.13 {369.12, 320, 320, 324.63, 349.85} 8591.36 

3 5 338.92 {371.08, 320, 320, 320, 347.36} 9945.83 

4 3 503.05 {369.23, 324.04, 349.71} 8242.14 

5 4 466.20 {360.67, 356.56, 357.95, 359.32} 6911.57 

6 4 464.90 {360.07, 359.66, 359.80, 359.93} 6917.80 

7 4 475.69 {366.64, 340, 340, 352.84} 6851.92 

8 5 582.23 {360, 320, 320, 336.92, 352.99} 6819.89 
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Table 5 
# m* q1* Q* {p1*,…,pm*} TC* 

1 7 73.51 830.09 
{364.16, 352.44, 344.86, 341.58, 342.73, 348.26, 

358.07} 
6401.01 

2 8 52.24 663.97 
{365.85, 349.28, 337.64, 331.09, 329.79, 333.80, 

343.03, 357.36} 
8041.99 

3 9 43.43 605.92 
{367.25, 347.49, 333.11, 324.03, 320.17, 321.48, 

328.01, 339.87, 357.18} 
9289.88 

4 5 116.99 833.84 {366.53, 355.02, 350, 351.78, 360.29} 7804.21 

5 6 73.34 721.82 {360.42, 359.27, 358.64, 358.52, 358.91, 359.81} 6419.26 

6 6 72.70 721.29 {360.04, 359.93, 359.86, 359.85, 359.89, 359.98} 6420.77 

7 7 73.51 830.09 
{364.16, 352.44, 344.86, 341.58, 342.73, 348.26, 

358.07} 
6401.01 

8 7 73.47 829.96 
{360, 352.49, 344.90, 341.61, 342.74, 348.27, 

358.07} 
6401.27 
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Captions for Figures and Tables 

Figure 1: Inventory-time plots for the case of equal-sized batch shipments 

Figure 2: Inventory-time plots for the case of unequal-sized batch shipments 

Figure 3: Development of batch sizes for the case of a variable production rate 

Figure 4: Shape of function (A-6) 

Figure 5: Range of values for p that contains the optimal solution 

 

Table 1: Test problems used for computational experimentation 

Table 2: Computational results for the rigid case with equal-sized batch shipments 

Table 3: Computational results for the rigid case with unequal-sized batch shipments 

Table 4: Computational results for the flexible case with equal-sized batch shipments 

Table 5: Computational results for the flexible case with unequal-sized batch shipments 
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