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A PROBABILISTIC SCHEME FOR FULLY NON-LINEAR NON-LOCAL

PARABOLIC PDES WITH SINGULAR LÉVY MEASURES

ARASH FAHIM

Abstract. We introduce a Monte Carlo scheme for the approximation of the solutions of fully

non–linear parabolic non–local PDEs. The method is the generalization of the method proposed

by [Fahim-Touzi-Warin, 2011] for fully non–linear parabolic PDEs. As an independent result, we

also introduce a Monte Carlo Quadrature method to approximate the integral with respect to Lévy

measure which may appear inside the scheme. We consider the equations whose non–linearity

is of the Hamilton–Jacobi–Belman type. We avoid the difficulties of infinite Lévy measures by

truncation of the Lévy integral by some κ > 0 near 0. The first result provides the convergence

of the scheme for general parabolic non–linearities. The second result provides bounds on the rate

of convergence for concave non–linearities from above and below. For both results, it is crucial to

choose κ appropriately dependent on h.

1. Introduction

The present paper generalizes the probabilistic numerical method in [10] for approximation of

the solution of fully non–linear parabolic PDEs to non–local PDEs (integro partial differential

equations). Here by non–local PDE, we mean the integro–partial differential equations which

sometimes are simply referred to as IPDEs. The method is originated from [8] where a similar

probabilistic numerical method is suggested based on 2BSDEs, i.e. second order backward stochastic

differential equations.

A probabilistic numerical (Monte Carlo) method is introduced in [10] for fully non–linear par-

abolic local PDEs. A convergence result is established for a class of non–linearities and bounds

for the rate of convergence for concave and Lipschitz non–linearities for the Monte Carlo method

is derived. Moreover, it is shown that the error due to estimation of the conditional expectations

does not change the results if enough number of sample paths are used. Finally, some numerical

results are provided for mean curvature flow problem and two and five dimensional continuous–time

portfolio optimization problems.

Fully non–linear PDEs arise in many problems in applied mathematics and engineering including

finance. For example the problem of motion by curvature, portfolio optimization under different

type of constraints, option pricing under illiquidity cost, etc. Non–local fully non–linear PDEs

arise from stochastic optimization problems for controlled jump–diffusion processes e.g. problem
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2 A PROBABILISTIC SCHEME FOR FULLY NON-LINEAR NON-LOCAL PARABOLIC PDES

of portfolio optimization in Lévy markets. There are only few examples with explicit and quasi-

explicit solution; for example [3] and [4]. In some applications the dimension of the PDE is so large

that classical algorithms like finite element and finite difference fail to approximate the solution

in a reasonable time. The advantage of Monte Carlo methods is that they are less sensitive with

respect to dimension on comparison with other methods.

As in [10], the main idea is to separate the equation into a purely linear part and a fully non–linear

part. Then, we use the time discretization of a suitable jump–diffusion process to approximate the

derivatives and integral term in the non–linear part. The separation into linear and non–linear part

is arbitrary up to the satisfaction of some assumptions. The assumptions needed for this result are

degenerate ellipticity condition for the remaining non–linearity and that the diffusion coefficient is

needed to dominate the partial gradient of the remaining non–linearity with respect to its Hessian

component.

The other contribution of this paper is the Monte Carlo method for approximation of the integral

with respect to Lévy measure which appears in the non–local PDEs. The method is referred to

in this chapter as Monte Carlo Quadrature (MCQ). We treat the jumps as in [7] for finite activity

jump–diffusion processes. For infinite activity jump–diffusion processes, we truncate the Lévy

measure near zero and then treat them as in the finite measure case. We introduce bounds for the

truncation error with respect to the derivatives of integrand and truncation level.

Although MCQ is independent of the numerical scheme, we choose to approximate the Lévy

integral inside the non–linearity by MCQ. In this case, we also need to choose appropriate truncation

bound with respect to time step which retains the convergence and rate of convergence as in the

local case in [10].

The idea of the proof is captured from [1] and [10] for the convergence result and from [5] and [10]

for the rate of convergence. However, in the non–local PDEs, we need to conquer the new difficulties

due to lack of Lipschitz continuity of non–linearities appearing in many interesting IPDEs e.g. HJB

equations. More precisely, if Lévy measure inside the non–local integral is not finite, then the

non–local non–linearity is of HJB type will not be Lipschitz. This difficulty makes it impossible to

use directly the method in [10]. We show that if the truncation level; κ; is properly dependent on

time step; h; then one can produce the approximate solution which converges to the solution of the

non–local problem.

The first result concerns the convergence of the approximate solution obtained from the Monte

Carlo scheme to the viscosity solution of the final value problem. As mentioned before, infinite

Lévy measure in the non–linearity makes the direct use of the method in [10] impossible due to

the lake of Lipschitz continuity of the non–linearity. Moreover, if we truncate the Lévy measure,

the non–linearity is Lipschitz but as truncation level tends to 0, the Lipschitz constant blows up.

We solve this problem through manipulation of the original final value problem to another one

whose corresponding scheme is monotone. Turning the manipulation back, we obtain a bounded

approximate solution. This approximation is near the approximate function created by the proposed

scheme, if the truncation level depends appropriately on h.
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The second result provides the rate of convergence in the case of concave non–linearity. The

proof of the rate of convergence uses the results in [5] and [6] which generalizes the result of [1] to

non–local case. The method is based on approximation of the solution of the equation with regular

sub and super–solutions. Plugging the regular sub or super–solution into scheme and then usage of

consistency provide the upper and lower bounds. Here, we also need to impose the condition that

truncation level depend appropriately on the time step in order to preserve the rate of convergence

after truncation. For the rate of convergence, we also need to manipulate the equation to obtain

strict monotonicity for the scheme which is a crucial requirement in using the method in [5].

Finally, as mentioned in [10] for non–local case, it is worthy of noticing the relation with the

generalization of [12] to non–local case introduced in [11] which provides a deterministic game

theoretic interpretation for fully non–linear parabolic problems. The game consists of two players.

At each time step in a predetermined time horizon, one tries to maximize her gain and the other to

minimize it by imposing a penalty term to her gain. More precisely, she starts in an initial position

and chooses a vector p, a matrix Γ, and a function ϕ. Then, he will plug an arbitrary vector w

together with p, Γ and ϕ in a non–linear penalty term which she should pay to be allowed to change

her position by taking one step with appropriate length in the direction of vector w. At the final

stage, she will earn as much as a function of her final position. As time step goes to zero, her value

function at any time and any position will converge to the solution of a fully nonlinear parabolic

IPDE whose non–linearity relates to the penalty term. Vector p, a matrix Γ and a function ϕ

represent the first and second derivatives and the solution function, respectively.

The parer is organized as follows: In Section 2, the problematic features of non–local fully non–

linear PDE is discussed on a na1̈Ive generalization of the Monte Carlo method from local case in

[10] to non–local case. In Section 3 the Monte Carlo quadrature (MCQ) is presented as a purely

Monte Carlo approximation of with the error analysis. Section 4 contains the results of convergence

and asymptotic properties of the scheme.

Notations For scalars a, b ∈ R, we write a∧b := min{a, b}, a∨b := max{a, b}, a− := max{−a, 0},
and a+ := max{a, 0}.
By M(n, d), we denote the collection of all n × d matrices with real entries. The collection of all

symmetric matrices of size d is denoted Sd, and its subset of nonnegative symmetric matrices is

denoted by S+d . For a matrix A ∈ M(n, d), we denote by AT its transpose. For A,B ∈ M(n, d), we

denote A ·B := Tr[ATB]. In particular, for d = 1, A and B are vectors of Rn and A ·B reduces to

the Euclidean scalar product.

We denote by Cd, the space of bounded continuous functions from [0, T ] to Rd. For a suitably

smooth function ϕ on QT := (0, T ] × Rd, we define |ϕ|∞ := sup(t,x)∈QT
|ϕ(t, x)| and |ϕ|1 := |ϕ|∞ +

sup
QT×QT

|ϕ(t,x)−ϕ(t′,x′)|

(x−x′)+|t−t′|
1
2
.
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2. Preliminaries and features for non–local PDEs

Let µ, σ be functions from [0, T ]×Rd to Rd and M(d, d) and η be a function from [0, T ]×Rd×Rd

to Rd and M(d, d) and a = σTσ. Suppose the following non–local Cauchy problem:

−LXv(t, x)− F
(
t, x, v(t, x),Dv(t, x),D2v(t, x), v(t, ·)

)
= 0, on [0, T ) ×Rd, (2.1)

v(T, ·) = g, on ∈ Rd. (2.2)

where F : R+ × Rd × R×Rd × Sd × Cd → R and LX given by:

LXϕ(t, x) :=

(
∂ϕ

∂t
+ µ ·Dϕ+

1

2
a ·D2ϕ

)
(t, x)

+

∫

Rd
∗

(
ϕ(t, x+ η(t, x, z)) − ϕ(t, x) − 1{|z|≤1}Dϕ(t, x)η(t, x, z)

)
dν(z).

LX is the infinitesimal generator of a jump–diffusion, Xt, satisfying SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫

{|z|>1}
η(t,Xt−, z)J(dt, dz) +

∫

{|z|≤1}
η(t,Xt−, z)J̃(dt, dz),

where J and J̃ are respectively a Poisson jump measure and its compensation who associate to

Lévy measure ν by:

ν(A) = E

[∫

A
J([0, 1], dz)

]

J̃(dt, dz) = J(dt, dz) − dt× ν(dz).

For more detailes on jump–diffusion processes, see [2] and the references therein or the classic work

of [13].

The classical solution for the problem (2.1)–(2.2) does not exist in general and therefore we

appeal to the notion of viscosity solutions for non–local parabolic PDEs.

Definition 2.1. • The viscosity sub(super)–solution of (2.1)-(2.2) is a upper semi–continuous

(lower semi–continuous) function v(v): [0, T ]× Rd → R such that:

(1) for any (t0, x0) ∈ [0, T )× Rd and any smooth function ϕ with:

0 = max(min){v − ϕ} = (v − ϕ)(t0, x0)

We have:

0 ≥ (≤) −LXϕ(t0, x0)− F
(
·, ϕ,Dϕ,D2ϕ,ϕ(·)

)
(t0, x0).

(2) g(·) ≥ v(T, ·)(≤ v(T, ·)).
The function v which is both viscosity sub and super solution, is called viscosity solution of (2.1)-

(2.2).

• We say that (2.1) has comparison for bounded functions if for any bounded upper semi–continuous

viscosity super–solution v and any bounded lower semi–continuous sub–solution v, satisfying

v(T, ·) ≥ v(T, ·),

we have v ≥ v on [0, T ] × Rd.
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2.1. Discretization of the jump–diffusion process. Our purpose is to introduce a Monte Carlo

method which approximates the solution of problem (2.1)-(2.2). For this purpose, we first need to

provide a discretization for the process X.

Suppose that h = T
n , ti = ih, and κ ≥ 0. We define the Euler discretization of jump–diffusion

process Xt with truncated Lévy measure by:

X̂t,x,κ
h = x+ µ̃(t, x)h+ σ(t, x)Wh +

∫

{|z|>κ}
η(t, x, z)J̃ ([0, h], dz), (2.3)

X̂x,κ
ti+1

= X̂
ti,X̂

x,κ
ti

,κ

h and X̂x,κ
0 = x. (2.4)

where µ̃(t, x) = µ(t, x) +
∫
{|z|>1} η(t, x, z)ν(dz) and we make the choice of κ = 0 when ν is a finite

measure. Let Ñκ
t and Nκ

t be respectively the Poisson process derived from jump measure J by

counting all jumps of size greater than κ which happen in time interval [0, t] and its compensation,

i.e.

Nκ
t =

∫

{|z|>κ}
J([0, t], dz) and Ñκ

t =

∫

{|z|>κ}
J̃([0, T ], dz). (2.5)

One can write the jump part of X̂t,x,κ
h as a compound Poisson process (see for example [9])

X̂t,x,κ
h = x+ µκ(t, x)h + σ(t, x)Wh +

Nκ
h∑

i=1

η(t, x, Zi), (2.6)

where µκ(t, x) = µ(t, x) −
∫
{κ<|z|≤1} η(t, x, z)ν(dz), Zis are i.i.d. Rd

∗−valued random variables,

independent of W and Nκ, and distributed as 1{|z|>κ}
1
λκ
ν(dz).

2.2. The scheme for non–local fully non–linear parabolic PDEs. In this section, we intro-

duce a probabilistic scheme by following directly the same idea as the scheme for the local PDEs.

Then, we consider some problems which prevents us to utilize the scheme in many interesting ap-

plications. Therefore, we introduce a modified version of the scheme which works for the class of

non–linearities of HJB type (Hamilton–Jacobi–Bellman).

Following the same idea as in [10], one can obtain the following immature scheme.

vh(T, .) = g and vh(ti, x) = Th[v
h](ti, x), (2.7)

where for every function ψ : R+ × Rd −→ R with exponential growth:

Th[ψ](t, x):=E

[
ψ
(
t+ h, X̂t,x

h

)]
+ hFh (t, x,Dhψ,ψ(t + h, ·)) , (2.8)

Dhψ :=
(
D0

hψ,D1
hψ,D2

hψ
)
,

where

Dk
hψ(t, x) := E

[
ψ(t+ h, X̂t,x,κ

h )Hh
k (t, x)

]
, k = 0, 1, 2, (2.9)

where

Hh
0 = 1, Hh

1 =
(
σT
)−1 Wh

h
, Hh

2 =
(
σT
)−1 WhW

T
h − hId
h2

σ−1.

The details of approximation of derivatives with (4.5) can be found in Lemma 2.1 in [10].
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We intend to extend the result of [10] to the non–local case. First observe that there is an obvious

extension which could be done immediately by adding the following assumptions to Assumption F

in [10], i.e.

Assumption F (i) The nonlinearity F is Lipschitz-continuous with respect to (x, r, p, γ, ψ) uni-

formly in t, and |F (·, ·, 0, 0, 0, 0)|∞ <∞;

(ii) F is elliptic and dominated by the diffusion of the linear operator LX , i.e.

∇γF ≤ a on Rd × R×Rd × Sd × Cd; (2.10)

(iii) Fp ∈ Image(Fγ) and
∣∣FT

p F
−
γ Fp

∣∣
∞
< +∞.

We remind that the non–local non–linearity F is called elliptic if

(1) F is non–decreasing on the second derivative component, i.e.

F (t, x, r, p, γ1, ψ) ≤ F (t, x, r, p, γ2, ψ) for γ1 ≤ γ2.

(2) F is non–decreasing on the non–local component, i.e.

F (t, x, r, p, γ, ψ1) ≤ F (t, x, r, p, γ, ψ2) for ψ1 ≤ ψ2.

Then we have the following Theorem.

Theorem 2.1. Let Assumption F in hold true, and |µ|1, |σ|1 <∞ and σ is invertible. Also assume

that the fully nonlinear PDE (2.1) has comparison for bounded functions. Then for every bounded

Lipschitz function g, there exists a bounded function v so that

vh −→ v locally uniformly.

In addition, v is the unique bounded viscosity solution of problem (2.1)-(2.2).

The proof is an straight forward implementation of the Subsection 3.2 of [10].

One of the major class of fully non–linear PDEs, is the class of HJB equations which come

from stochastic control problems arising in many application including finance. However, The non–

linearity of HJB equations do not satisfies Assumption F in general. Even for local PDEs of HJB

type, Assumption F is not valid, because F is not uniformly Lipschitz with respect to x. In addition,

when the Lévy measure ν is an infinite Lévy measure, there is no chance for F to be uniformly

Lipschitz within respect to ψ. Therefore, we need to develop another theory for HJB equations.

The other problem which occurs in many applications is the lack of explicit form for non–linearity

F . We present the following example in order to mention this problem.

Example 2.1. Suppose we want to implement the scheme for the fully non–linear equation of the

form:

−vt − F (x,Dv(t, x),D2v(t, x), v(t, ·)) = 0

v(T, ·) = g(·),
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where

F (x, p, γ, ψ) := sup
θ∈R+

{
Lθ(p, γ) +

∫

R∗

ψ(x+ θz)ν(dz)

}
(2.11)

Lθ(p, γ) := θbp+
1

2
θ2a2γ (2.12)

I(x, ψ)θ :=

∫

R∗

ψ(x+ θz)ν(dz). (2.13)

This fully non-linear equation solves the problem of portfolio management for one asset in the

Black–Scholes model including jumps in asset price. For the sake of simplicity, for the moment we

forget about infinite activity jumps. Observe that if ν = 0 (the asset price do not jump) then F

becomes of the form:

F (x, p, γ, ψ) := sup
θ∈R+

{
θbp+

1

2
θ2a2γ

}
.

which could be given in explicit form by:

F (x, p, γ, ψ) := −(bp)2

2a2γ
,

and the scheme could be easily implemented as in [10] as well as more complicated examples. But,

when ν 6= 0 (jump do exists), the explicit form for F is not known and the supremum should

be approximated. This problem is in common with other numerical methods for fully non–linear

PDEs e.g. finite difference. Although his problem is obviously beyond the subject of this paper, we

addressed it in this paper in order to mention that why we need to approximate the integral inside

the supremum.

The other problem, which appears in high dimensions, is the calculation of Lévy integral inside

supremum. Some numerical methods to approximate the supremum based on the calculation of the

linear operator Lθ+Iθ inside the supremum for different θs. Therefore, we proposed a Monte Carlo

Quadrature method to approximate the integral in a purely probabilistic way. The MCQ could be

considered independently in other applications.

From now on, we relax the assumption that ν is a finite measure. To be precise, we need to

suppose that (2.13) is of the form

I(x, ψ) :=

∫

R∗

(
ψ(x+ θz)− ψ(x)− 1{|z|≤1}θDψ(x) · z

)
ν(dz).

In this case, there are two ways to work with singular Lévy measure in numerical experiments; one

is to truncate Lévy measure near zero (as we also did for discretization of X) and the other is to

approximate infinite small jumps by a Brownian motion. In both cases, the general form for the

approximate F is

Fκ(x, r, p, γ, ψ) := sup
θ∈R+

{
cκr + θbκp+

1

2
θ2a2γ +

∫

{|z|>κ}
ψ(x+ θz)ν(dz)

}
.
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where

cκ :=

∫

{|z|>κ}
ν(dz) and bκ := b

∫

{1≥|z|>κ}
zν(dz).

We will introduce the modified scheme (4.3) in Section 4 based on the approximation of non–

linearity F obtained from truncation of infinite Lévy measure and MCQ and then provide asymp-

totic results as in [10] for non–local case.

The generalization of the result of [10] for non–local PDEs would be easy if the function Fκ were

Lipschitz uniform on κ. But, for infinite Lévy measures, this is never the case. To overcome this

problem, we will show that κ could be chosen dependent on h, so that the corresponding scheme

satisfies the requirements of [1] for the proof of convergence.

3. Monte Carlo Quadrature (MCQ)

In this section, we propose a Monte Carlo method the value of the following Lévy generator:

I[ϕ](x) :=

∫

Rd
∗

(
ϕ (x+ η(z))− ϕ(x) − 1{|z|≤1}η(z) ·Dϕ(x)

)
ν(dz). (3.1)

The method is pure Monte Carlo method to approximate (3.1) and, therefore could be used in

the approximation of Lévy integral inside the scheme (4.3). Because, the result of this section is

independent of the numerical scheme (4.3) introduced in this paper, we organize this Section so

that one can read it independently from other Section.

Through out this Section, we drop the dependency with respect to (t, x) or other variables and for

the sake of simplicity and just write η(z). (For example in assumption F in Section 4 ηα,β(t, x, z)

which depends on (t, x, z, α, β) will be considered as η(z)).

Notice that in order for (3.1) to be well–defined for regular functions, we impose the following

assumption on η:

|η(z)|
|z| ∧ 1

≤ C, for some constant C. (3.2)

We present MCQ in three cases with respect to the behavior of Lévy measure near zero:

• finite measure;
∫
{|z|≤1} ν(dz) <∞,

• infinite measure;

– case I:
∫
{|z|≤1} |η(z)|ν(dz) <∞,

– case II:
∫
{|z|≤1} |η(z)|2ν(dz) <∞.

3.1. Finite Lévy Measure. When Lévy measure is finite, we choose κ = 0. In this case, we

introduce Lemma 3.1 which proposes a way to approximate the Lévy integral of general form:
∫

Rd
∗

ϕ(x+ η(z))ζ(z)dν(z), (3.3)

and then we use this Lemma to approximate the Lévy infinitesimal generator (3.1).
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Let J be a jump Poisson measure with intensity given by Lévy measure ν, and {Nt}t≥0 be the

Poisson process given by Nt =
∫ t
0

∫
Rd
∗
J(ds, dz) whose intensity is λ :=

∫
Rd
∗
ν(dz). By (2.6), we can

write X̂x by

X̂x
t = x+ µ0t+ σWt +

Nt∑

i=1

η(Zi) (3.4)

where Zis are i.i.d. random variables with law 1
λν(dz). We also introduce a Lévy process Yt by

Yt =
Nt∑

i=1

ζ(Zi). (3.5)

Next Lemma shows that (3.3) could be approximated by a Monte Carlo formula purely free of

integration.

Lemma 3.1. Let

ν̂η,ζh (ϕ)(x) := E

[∫

Rd
∗

ϕ(X̂x
h + η(z))ζ(z)dν(z)

]
. (3.6)

Then, for every bounded function ϕ : Rd → R:

ν̂η,ζh (ϕ)(x) =
1

h
E[ϕ(X̂x

h )Yh].

Proof. For the sake of simplicity, we just concentrate on the jump part of process X̂x and without

loss of generality, we write X̂x
h = x+

∑Nh

i=1 η(Yi). The right hand side can be expressed as:

E

[
ϕ(X̂x

h )Yh

]
= e−λh

∞∑

n=0

E

[
ϕ(X̂x

h )Yh|Nh = n
] (λh)n

n!
.

Then by (3.4)–(3.5),

E

[
ϕ(X̂x

h )Yh

]
= e−λhλh

∞∑

n=1

E


ϕ
(
x+

n∑

i=1

η(Zi)

)( n∑

j=1

ζ(Zj)

)
 (λh)n−1

n!

= e−λhλh

∞∑

n=1

(λh)n−1

n!

n∑

j=1

E

[
ϕ

(
x+

n∑

i=1

η(Zi)

)
ζ(Zj)

]
.

Notice that in the above expression, the summation starts from n = 1 because Yh = 0 when Nh = 0.

Because Zis are i.i.d. one can conclude that,

n∑

j=1

E

[
ϕ

(
x+

n∑

i=1

η(Zi)

)
ζ(Zj)

]
= nE

[
ϕ

(
x+

n∑

i=1

η(Zi)

)
ζ(Z1)

]

Then, one can write

E

[
ϕ

(
x+ η(Z1)+

n∑

i=2

η(Zi)

)
ζ(Z1)

]
=E
[
ϕ
(
η(Z) + X̂x

h

)
ζ(Z)|Nh = n− 1

]
,
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where Z is dependent of Zis but has the same law az Zis. Therefore, we can conclude that:

E

[
ϕ(X̂x

h )Yh

]
= e−λhλh

∞∑

n=1

E

[
ϕ(η(Z) + X̂x

h)ζ(Z)|Nh = n− 1
] (λh)n−1

(n− 1)!
.

But, we know that

e−λh
∞∑

n=1

E

[
ϕ(η(Z) + X̂x

h )ζ(Z)|Nh = n− 1
] (λh)n−1

(n− 1)!
= E

[
ϕ(η(Z) + X̂x

h)ζ(Z)
]

Therefore,

E

[
ϕ(X̂x

h )Yh

]
= λhE [ϕ(η(Z) +Xx

h)ζ(Z)] .

Because the density of Z is ν(dz)
λ ,

E

[
ϕ(X̂x

h )Yh

]
= hE

[∫

Rd
∗

ϕ(η(z) + X̂x
h)ζ(z)dν(z)

]
.

2

In the light of Lemma (3.1), we propose the following approximation for (3.1):

Ih[ϕ](x) := ν̂η,1h − ϕ(x)

∫

Rd
∗

ν(dz)−Dϕ(x) ·
∫

Rd
∗

η(z)ν(dz).

Next Lemma provide error bound for this approximation.

Lemma 3.2. For any Lipschitz function ϕ we have:

|(Ih − I)[ϕ]|∞ ≤ C
√
h|Dϕ|∞. (3.7)

Proof. As a direct consequence of Lemma (3.1), ν̂η,1h = 1
hE[ϕ(X̂

x
h )Nh]. Therefore, one can conclude

that,

|(I − Ih)[ϕ]|∞ ≤ C|Dϕ|∞E

[
|X̂x

h − x|
]
.

So, because

E

[
|X̂x

h − x|
]

≤ C

(
h

∫

Rd
∗

|η(z)|ν(dz) +
√
h

)
, (3.8)

which provides the result. 2

3.2. Infinite Lévy Measure. In the case of singular Lévy measure, we truncate Lévy measure

near zero and reduce the problem to a finite measure. In other words, for any κ > 0 we have the

truncation approximation of integral operator (3.1).

Iκ[ϕ](x) :=

∫

{|z|>κ}

(
ϕ (x+ η(z)) − ϕ(x)− 1{|z|≤1}η(z) ·Dϕ(x)

)
ν(dz).

Then, we use Lemma (3.1) to present the MCQ approximation for (3.1).

Iκ,h[ϕ](x) := ν̂η,1κ,h − ϕ(x)

∫

{|z|>κ}
dν(z)−

∫

{1≥|z|>κ}
η(t, x, z) ·Dϕ(x)dν(z),
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where by Lemma (3.1)

ν̂η,1κ,h :=

∫

{|z|>κ}
ϕ(X̂x,κ

h + η(t, x, z))ν(dz) = h−1E

[
ϕ(X̂x,κ

h )Nκ
h

]

Following Lemma provides the error of MCQ approximation of (3.1) in the case of infinite Lévy

measure.

Lemma 3.3. Let function ϕ be Lipschitz.

(1) If
∫
{|z|≤1} |z|ν(dz) <∞, then

|(Iκ,h − I)[ϕ]|∞ ≤ C|Dϕ|∞
(
√
h+

∫

{0<|z|≤κ}
|z|ν(dz)

)
. (3.9)

(2) If
∫
{|z|≤1} |z|2ν(dz) <∞, then

|(Iκ,h − I)[ϕ]|∞ ≤ C

(
|Dϕ|∞

(√
h+ h

∫

{|z|>κ}
|z|ν(dz)

)
+ |D2ϕ|∞

∫

{0<|z|≤κ}
|z|2ν(dz)

)
. (3.10)

Proof.

(1) Notice that,

|(I − Iκ,h)[ϕ]|∞ ≤ |(I − Iκ)[ϕ]|∞ + |(Iκ − Iκ,h)[ϕ]|∞.

By (3.2), the truncation error is given by:

|(I − Iκ)[ϕ]|∞ ≤ 2|Dϕ|∞
∫

{0<|z|≤κ}
|η(z)|ν(dz). (3.11)

On the other hand, by (3.8) and (3.2), we observe that

|(Iκ − Iκ,h)[ϕ]|∞ ≤ C|Dϕ|∞
(
h

∫

{|z|>κ}
|η(z)|ν(dz) +

√
h

)

≤ C|Dϕ|∞
(
h

∫

{|z|>κ}
|z|ν(dz) +

√
h

)

which together with (3.11) provides the result.

(2) By (3.2), the truncation error is given by:

|(I − Iκ)[ϕ]|∞ ≤ C|D2ϕ|∞
∫

{0<|z|≤κ}
|z|2ν(dz), (3.12)

for any function ϕ with bounded derivatives up to second order. On the other hand, (3.8)

allows us to calculate the Monte Carlo error by:

|(Iκ − Iκ,h)[ϕ]|∞ ≤ C|Dϕ|∞
(
h

∫

{|z|>κ}
|z|ν(dz) +

√
h

)

which completes the proof. 2
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4. Asymptotic results

This section is devoted to the convergence result for the scheme (4.3). We first remind the notion

of viscosity solution and provide the assumptions required for the main results together with the

statement of main results. Then we provide the proof of the results in two following subsection.

we need to impose the following assumption on the non–linearity F to obtain the convergence

Theorem.

Assumption IHJB1: Function F satisfies:

1

2
a(t, x) · γ + µ(t, x) · p+ F (t, x, r, p, γ, ψ) := inf

α∈A
sup
β∈B

{
Lα,β(t, x, r, p, γ) + Iα,β(t, x, r, p, γ, ψ)

}

for given sets A and B where

Lα,β(t, x, r, p, γ) :=
1

2
aα,β(t, x) · γ + bα,β(t, x) · p+ cα,β(t, x)r + kα,β(t, x),

and

Iα,β(t, x, r, p, ψ) :=

∫

Rd
∗

(
ψ
(
x+ ηα,β(t, x, z)

)
− r − 1{|z|≤1}η

α,β(t, x, z) · p
)
ν(dz)

where for any (α, β) ∈ A× B, aα,β, bα,β, cα,β, kα,β and ηα,β satisfy

sup
α∈A,β∈B

{
|aα,β |1 + |bα,β|1 + |cα,β|1 + |kα,β |1 +

|ηα,β(·, z)|1
|z| ∧ 1

}
<∞.

The non–linearity is dominated by the diffusion of the linear operator LX , i.e. for any t, x, z, α

and β

|a− · aα∗,β∗ |1 <∞ and 0 ≤ aα,β ≤ a, (4.1)

ηα,β , bα,β ∈ Image(aα,β) and sup
α∈A,β∈B

|(bα,β)T(aα,β)−bα,β|∞ <∞, (4.2)

sup
α∈A,β∈B

|(ηα,β)T(aα,β)−bα,β|∞
1 ∧ |z| <∞

sup
α∈A,β∈B

|(ηα,β)T(aα,β)−ηα,β|∞
1 ∧ |z|2 <∞.

Remark 4.1. A function F which satisfies Assumption IHJB1 is not well–defined for arbitrary

(t, x, r, p, γ, ψ) ∈ R+×Rd×R×Rd×Sd×Cd. But, for any second order differentiable function, ψ, with

bounded derivatives with respect to x, F (t, x, ψ(t, x),Dψ(t, x),D2ψ(t, x), ψ(t, ·)) is well–defined.

Now, we propose a Monte Carlo scheme for (2.1)-(2.2) based on the same idea as in [10], and

also the approximation of the non–linearity.

vκ,h(T, .) = g and vκ,h(ti, x) = Tκ,h[v
κ,h](ti, x), (4.3)

where for every function ψ : R+ × Rd −→ R with exponential growth:

Tκ,h[ψ](t, x):=E

[
ψ
(
t+ h, X̂t,x,κ

h

)]
+ hFκ,h (t, x,Dhψ,ψ(t + h, ·)) , (4.4)

Dhψ :=
(
D0

hψ,D1
hψ,D2

hψ
)
,
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Fκ,h(t, x, r, p, γ, ψ)= inf
α∈A

sup
β∈B

{
1

2
aα,β(t, x) · γ + bα,β(t, x) · p+ cα,β(t, x)r + kα,β(t, x)

+

∫

{|z|≥κ}

(
ν̂η

α,β ,1
h (ψ(t, ·))(x) − r − ηα,β(t, x, z) · p

)
ν(dz)

}
,

and

Dk
hψ(t, x) := E

[
ψ(t+ h, X̂t,x,κ

h )Hh
k (t, x)

]
, k = 0, 1, 2, (4.5)

where

Hh
0 = 1, Hh

1 =
(
σT
)−1 Wh

h
, Hh

2 =
(
σT
)−1 WhW

T
h − hId
h2

σ−1.

The details of approximation of derivatives with (4.5) can be found in Lemma 2.1 in [10]. In order

to have the convergence result, we also need to impose the following assumption over Fκ,h.

Assumption Inf–Sup: For any κ > 0, t ∈ [0, T ], x and x′ ∈ Rd and any Lipschitz functions ψ

and ϕ, there exists a (α∗, β∗) ∈ A× B such that

Φα∗,β∗

κ [ψ,ϕ](t, x, x′) = J α∗,β∗

κ [ψ](t, x) − J α∗,β∗

κ [ϕ](t, x′)

where

Φα,β
κ [ψ,ϕ](t, x) := inf

α
J α,β
κ [ψ](t, x) − sup

β
J α,β
κ [ϕ](t, x′), (4.6)

and

J α,β
κ [φ](t, x) :=

1

2
aα,β ·D2φ(t, x) + bα,β ·Dφ(t, x) + cα,βφ(t, x) + kα,β(t, x)

+

∫

{|z|≥κ}

(
ν̂η

α,β ,1
h (φ(t, ·))(x) − φ(t, x)− ηα,β(t, x, z) ·Dφ(t, x)

)
ν(dz).

The first result concerns the convergence of the convergence of vκ,h for κ appropriately chosen

with respect to h.

Theorem 4.1 (Convergence). Let η, µ and σ be bounded and Lipschitz continuous on x uniformly

on t and z, σ is invertible and Assumptions IHJB1 and Inf–Sup hold true, and assume that (2.1)

has comparison for bounded functions. Then, if κh is such that:

lim
h→0

κh = 0 and lim sup
h→0

θ2κh
h = 0 (4.7)

where

θκ := sup
α,β

|θα,βκ |∞, (4.8)

with

θα,βκ := cα,β +

∫

{|z|≥κ}
ν(dz) +

1

4

(
bα,β−

∫

{1>|z|≥κ}
ηα,β(z)ν(dz)

)T

×(aα,β)−
(
bα,β−

∫

{1>|z|≥κ}
ηα,β(z)ν(dz)

)
,
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then vκh,h converges to some function v locally uniform. In addition, v is the unique viscosity

solution of (2.1)-(2.2).

Specially, if Lévy measure is finite for the choice of κh = 0 the assertion of the Theorem hold true.

Remark 4.2. It is always possible to choose κh such that (4.7) is satisfied. To see this, notice that

θκ in (4.8) is non–increasing on κ

lim
κ→0

θκ = +∞ and lim sup
κ→∞

θκ <∞.

Then, we define κh := inf{κ|θκ ≤ h−
1
2} + h. By the definition of κh, θκh

≤ h−
1
2 . Because Observe

that κh is non–decreasing with respect to h and limh→0 κh = 0.

If there exists a q such that, q := limh→0 κh > 0, then, for κ < q, we would have θκ = ∞ which

obviously contradicts the fact that for κ > 0, θκ <∞. Therefore, κh satisfies (4.8).

Remark 4.3. The choice of κh in the above Theorem seems to be crucial for the convergence.

Otherwise, we only have the following convergence result.

Proposition 4.1. Under the same assumption as Theorem 4.1, when Lévy measure ν is infinite,

for every Lipschitz bounded function g, we have

lim
κ→0

lim
h→0

vκ,h = v

where v is the unique viscosity solution of (2.1)–(2.2) assuming that it exists.

Proof. . Let vκ be the solution of the following problem:

−LXvκ(t, x)−Fκ

(
t, x,vκ(t, x),Dvκ(t, x),D2vκ(t, x),vκ(t, ·)

)
= 0, on[0, T )×Rd, (4.9)

vκ(T, ·) = g(·), on ∈ Rd. (4.10)

where Fκ : R+ × Rd × R× Rd × Sd × Cd → R is given by:

Fκ(t, x, r, p, γ, ψ) := inf
α∈A

sup
β∈B

{
Lα,β(t, x, r, p, γ) + Iα,β

κ (t, x, r, p, γ, ψ)
}

where

Iα,β
κ (t, x, r, p, γ, ψ):=

∫

{|z|≥κ}

(
ψ
(
x+ ηα,β(t, x, z)

)
− r − 1{|z|≤1}η

α,β(t, x, z) · p
)
ν(dz) (4.11)

where aα,β, bα,β, cα,β , kα,β and ηα,β are as in Assumption IHJB1. Let vκ,h be the approximate

solution given by the scheme (4.3). Let κ > 0 be fixed. Because the truncated Lévy measure is

finite, by Theorem 4.1, vκ,h converges to vκ locally uniformly as h → 0. Let vκ be the solution of

(4.9)–(4.10). By Theorem 5.1 of [6] and Assumption F, we have:

|v − vκ|∞ ≤ C sup
α,β





(∫

0<|z|<κ
|ηα,β(·, z)|2∞ν(dz)

) 1
2



 (4.12)

≤ C

(∫

0<|z|<κ
|z|2∞ν(dz)

) 1
2

. (4.13)
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Therefore, one can choose κ > 0 so that |vκ − v|∞ be small enough. Then, when h goes to 0, vκ,h

converges to vκ. 2

The above limit proposes to implement the numerical scheme in two steps:

• First by choosing κ so that vκ is near enough to v, we obtain a uniform approximation of v.

• Second by sending h→ 0, we obtain locally uniform convergence of vκ,h to vκ.

Notice that the above convergence is not uniformly on (κ, h). However, the convergence in Theorem

4.1, is uniform on h when the choice of κ is made suitably dependent on h.

Remark 4.4. By Remark 3.7 in [10],the boundedness condition on g can be relaxed.

In order to obtain the rate of convergence result, we impose Assumptions IHJB2 and IHJB2+

which restrict us to concave non–linearities.

Assumption IHJB2 The non–linearity F satisfies Assumption IHJB1 with B be a singlton set

Remark 4.5. Therefore, when the non–linearity F satisfies IHJB, we can drop the super script

β and write F by

F (t, x, r, p, γ, ψ) := inf
α∈A

{Lα(t, x, r, p, γ) + Iα(t, x, r, p, γ, ψ)}

where

Lα(t, x, r, p, γ) :=
1

2
Tr
[
(aα)T

]
(t, x)γ + bα(t, x)p + cα(t, x)r + kα(t, x),

and

Iα(t, x, r, p, ψ) :=

∫

Rd
∗

(
ψ (x+ ηα(t, x, z)) − r − 1{|z|≤1}η

α(t, x, z) · p
)
ν(dz).

In this case, the non–linearity is a concave function of (r, p, γ, ψ).

Assumption IHJB+ The non–linearity F satisfies IHJB2 and for any δ > 0, there exists a

finite set {αi}Mδ

i=1 such that for any α ∈ A:

inf
1≤i≤Mδ

{
|σα − σαi |∞+|bα − bαi |∞+|cα − cαi |∞+|kα − kαi |∞+

∫

Rd
∗

|(ηα − ηαi)(·, z)|2∞dν(z)
}
≤δ.

Remark 4.6. The Assumption IHJB+ is satisfied if A is a compact separable topological space

and σα(·), bα(·), and cα(·) are continuous maps from A to C
1
2
,1

b ([0, T ] × Rd); the space of bounded

maps which are Lipschitz on x and 1
2–Hölder on t and ηα(·) is continuous maps from A to

{
ϕ :

[0, T ]× Rd ×Rd
∗ → R

∣∣∣
∫
Rd

∗
|ϕ(·, z)|2∞ν(dz) <∞

}
.

Theorem 4.2 (Rate of Convergence). Assume that the final condition g is bounded and Lipschitz-

continuous. Then, there is a constant C > 0 such that
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• under Assumption IHJB,

v − vκ,h ≤ C
(
h

1
4 + hθ2κ + hε−3 + h

3
4 θκ + h

√
θκ + h−

1
4

∫
{|z|≤κ}|z|2ν(dz)

)
.

• under Assumption IHJB+,

−C
(
h1/10 + h

7
10 θκ + h

√
θκ + h−

3
10

∫
{|z|≤κ}|z|2ν(dz)

)
≤ v − vκ,h.

In addition, if it is possible to find κh such that

lim
h→0

κh = 0, lim sup
h→0

h
3
4 θ2κh

<∞ and lim sup
h→0

h−
1
2

∫

0<|z|<κh

|z|2ν(dz) <∞, (4.14)

then, there is a constant C > 0 such that

• under Assumption IHJB, v − vκh,h ≤ Ch1/4.

• under Assumption IHJB+, −Ch1/10 ≤ v − vκh,h.

Next example shows the case where the conditions of the above Theorem on the choice of κ is

satisfied. If it is not the case in some situations, it does mean that the rate of convergence is less

than what is proposed by Theorem 4.2.

Example 4.1. For the Lévy measue

ν(dz) = 1Rd
∗
|z|−d−1dz,

one can always find κh such that the condition of Theorem 4.2 is satisfied. In the other words, it is

always enough to choose κh such that

lim sup
h→0

h−
1
2κh <∞.

4.1. Convergence. We suppose the all the assumptions of Theorem 4.1 holds true throughout this

subsection.

We first manipulate the scheme to provide strict monotonicity by the similar idea as in Remark

3.13 and Lemma 3.19 in [10]. Let uκ,h be the solution of

uκ,h(T, ·) = g and uκ,h(ti, x) = Tκ,h[u
κ,h](ti, x), (4.15)

where

Tκ,h[ψ](t, x):=E

[
ψ
(
t+ h, X̂t,x,κ

h

)]
+ hF κ,h (t, x,Dhψ,ψ(t + h, ·)) (4.16)

and

F κ,h(t, x, r, p, γ, ψ)=sup
α

inf
β

{
1

2
aα,β · γ + bα,β · p+ (cα,β + θκ)r + eθκ(T−t)kα,β(t, x)

+

∫

{|z|≥κ}

(
ν̂η

α,β ,1
κ,h (ψ)− r − 1{|z|≤1}η

α,β(z) · p
)
ν(dz)

}
.

Remark 4.7. Assumption Inf–Sup is also true if we replace J α,β
κ by

J̄ α,β
κ [ψ](t, x) =

1

2
aα,β ·D2φ(t, x) + bα,β ·Dφ(t, x) + (cα,β + θκ)φ(t, x) + eθκ(T−t)kα,β(t, x)

+

∫

{|z|≥κ}

(
ν̂η

α,β ,1
h (φ(t, ·))(x) − φ(t, x) − ηα,β(t, x, z) ·Dφ(t, x)

)
ν(dz).

The proof is straight forward.



A PROBABILISTIC SCHEME FOR FULLY NON-LINEAR NON-LOCAL PARABOLIC PDES 17

We have the following Lemma which shows that for proper choice of θκ the scheme (4.15) is

strictly monotone.

Lemma 4.1. Let θκ be as in (4.8) and ϕ and ψ : [0, T ] × Rd −→ R be two bounded functions.

Then:

ϕ ≤ ψ =⇒ Tκ,h[ϕ] ≤ Tκ,h[ψ].

Proof. Let f := ψ−ϕ ≥ 0 where ϕ and ψ are as in the statement of the lemma. For simplicity, we

drop the dependence on (t, x) when it is not necessary. By Assumption IHJB1 and Lemma (3.1),

we can write:

Tκ,h[ψ]−Tκ,h[ϕ] = E[f(t+ h, X̂h)]

+h

(
inf
α

sup
β

J̄ α,β
κ [ψ̂](t+ h, x) − inf

α
sup
β

J̄ α,β
κ [ϕ̂](t+ h, x)

)
,

where φ̂(t, x) := E[φ(t, X̂x
h )] for φ = ϕ or ψ. Therefore,

Tκ,h[ψ]−Tκ,h[ϕ] ≥ E[f(t+ h, X̂h)] + hΦ̄α,β
κ [ψ̂, ϕ̂](t+ h, x, x),

where Φ̄α,β
κ is defined by

Φ̄α,β
κ [ψ,ϕ](t, x) := inf

α
J̄ α,β
κ [ψ](t, x) − sup

β
J̄ α,β
κ [ϕ](t, x′).

By Asumption Inf–Sup, there exists (α∗, β∗) so that

Tκ,h[ψ]−Tκ,h[ϕ] ≥ E[f(t+ h, X̂h)] + h
(
J̄ ∗
κ [ψ̂](t+ h, x)− J̄ ∗

κ [ϕ̂](t+ h, x)
)
.

Observe that by the linearity of J̄ α,β
κ , one can write:

J̄ α,β
κ [φ̂](t+ h, x) = E

[
J̄ α,β
κ [φ](t + h, X̂h)

]
.

By the definition of J̄ α,β
κ and Lemma 2.1 in [10],

Tκ,h[ψ]−Tκ,h[ϕ] ≥ E

[
f(X̂h)

(
1 + h

(
cα

∗,β∗

κ + θκ + bα
∗,β∗

κ · (σT)−1Wh

h

+
1

2
aα

∗,β∗ · (σT)−1WhW
T
h − hId
h2

σ−1
))

+ hν̂η
α∗,β∗

,1
h (f)

]
,

where bα,βκ = bα,β −
∫
{1>|z|≥κ}η

α,β(z)ν(dz) and cα,βκ = cα,β −
∫
{|z|≥κ}ν(dz).

Therefore, by the same argument as in Lemma 3.12 in [10], one can write:

Tκ,h[ψ]−Tκ,h[ϕ] ≥ E

[
f(X̂h)

(
1− 1

2
aα

∗,β∗ · a−1 + h
(
|Aα∗,β∗

h |2 + c∗κ + θκ

− 1

4
(bα

∗,β∗

κ )T(aα
∗,β∗

)−bα
∗,β∗

κ

))
+ hν̂η

α∗,β∗
,1

h (f)

]
,

where

Aα∗,β∗

h :=
1

h
(σα

∗,β∗

)1/2(σT)−1Wh +
1

2
((σα

∗ ,β∗

)−)1/2bα
∗,β∗

κ . (4.17)
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Therefore, by positivity of f and Assumption IHJB1, one can deduce:

Tκ,h[ψ]−Tκ,h[ϕ] ≥ hE

[
f(X̂h)

(
c∗κ + θκ −

1

4
(bα

∗,β∗

κ )T(aα
∗,β∗

)−bα
∗,β∗

κ

)]

By the choice of θκ in (4.8), we have

Tκ,h[ψ]−Tκ,h[ϕ] ≥ 0.

Then, sending ε to zero provides the result. 2

The following Corollary shows the monotonicity of scheme 4.3.

Corollary 4.1. Let ϕ,ψ : [0, T ] ×Rd −→ R be two bounded functions. Then:

ϕ ≤ ψ =⇒ Tκ,h[ϕ] ≤ Tκ,h[ψ] −
θ2κh

2

2
e−θκhE[(ψ − ϕ)(t+ h, X̂t,x,κ

h )].

In particular, if κh satisfies (4.7), then

ϕ ≤ ψ =⇒ Tκh,h[ϕ] ≤ Tκh,h[ψ] + ChE[(ψ − ϕ)(t+ h, X̂t,x,κh

h )]

for some constant C.

Proof. Let θκ be as in Lemma 4.1 and define ϕκ(t, x) := eθκ(T−t)ϕ(t, x) and ψκ(t, x) := eθκ(T−t)ψ(t, x).

By Lemma 4.1,

Tκ,h[ϕκ] ≤ Tκ,h[ψκ].

By multiplying both sides by e−θκ(T−t), we have
(
e−θκh(1 + θκh)− 1

)
E[ϕ(t+ h, X̂t,x,κ

h )] +Tκ,h[ϕ]

≤
(
e−θκh(1 + θκh)− 1

)
E[ψ(t+ h, X̂t,x,κ

h )] +Tκ,h[ψ].

So,

Tκ,h[ϕ] ≤
(
e−θκh(1 + θκh)− 1

)
E[(ψ − ϕ)(t+ h, X̂t,x,κ

h )] +Tκ,h[ψ].

But, e−θκh(1 + θκh)− 1 ≤ − θ2κh
2

2 e−θκh. So,

Tκ,h[ϕ] ≤ −θ
2
κh

2

2
e−θκhE[(ψ − ϕ)(t+ h, X̂t,x,κ

h )] +Tκ,h[ψ].

which (4.7) provides the result. 2

In order to provide a uniform bound on vκ,h, we bound uκ,h with respect to θκ as in the following

Lemma.

Lemma 4.2. Let ϕ and ψ : [0, T ]× Rd −→ R be two L∞−bounded functions. Then

|Tκ,h[ϕ]−Tκ,h[ψ]|∞ ≤ |ϕ− ψ|∞(1 + (C + θκ)h)
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where C = supα,β |cα,β|∞. In particular, if g is L∞−bounded, for a fixed κ the family (uκ,h(t, ·))h
defined in (4.3) is L∞−bounded, uniformly in h by

(C + |g|∞)e(C+θκ)(T−ti).

Proof. Let f := ϕ− ψ. Then, by Assumption Inf–Sup and the same argument as in the proof of

Lemma 4.1,

Tκ,h[ϕ] −Tκ,h[ψ]≤E

[
f(X̂h)

(
1− a−1 · aα∗,β∗

+ h
(
|Aα∗,β∗

h |2 + cα
∗,β∗

+ θκ

−
∫

{|z|≥κ}
ν(dz)− 1

4

(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)T

(aα
∗,β∗

)−

×
(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)))

+ hν̂η
α∗,β∗

,1
h (f)

]
,

where Aα∗,β∗

h is given by (4.17). On the other hand,

∣∣∣ν̂η
α∗,β∗

,1
h (f)

∣∣∣ ≤ |f |∞
∫

{|z|≥κ}
ν(dz)

Therefore ,

Tκ,h[ϕ]−Tκ,h[ψ] ≤ |f |∞E

[∣∣∣1− a−1 · aα∗,β∗

+ h
(
|Aα∗,β∗

h |2 + cα
∗,β∗

+ θκ

− 1

4

(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)T

(aα
∗,β∗

)−
(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
))∣∣∣
]
.

By Assumption IHJB1 and (4.8), 1− a−1 · aα∗,β∗
and

cα
∗,β∗

+ θκ −
1

4

(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)T

(aα
∗,β∗

)−
(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)

are positive. Therefore, one can write

Tκ,h[ϕ]−Tκ,h[ψ] ≤ |f |∞
(
1− a−1 · aα∗,β∗

+ h
(
E[|Aα∗,β∗

h |2] + cα
∗,β∗

+ θκ (4.18)

− 1

4

(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)T

(aα
∗,β∗

)−
(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)))

.

But, Notice that

E[|Aα∗,β∗

h |2] = h−1a−1 · aα∗,β∗

+
1

4

(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)T
aα

∗,β∗−1
(
bα

∗,β∗ −
∫

{1>|z|≥κ}
ηα

∗,β∗

(z)ν(dz)
)
.

By replacing E[|Aα∗,β∗

h |2] into (4.18), one obtains

Tκ,h[ϕ]−Tκ,h[ψ] ≤ |f |∞(1 + h(cα
∗,β∗

+ θκ))

≤ |f |∞(1 + (C + θκ)h),
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with C = supα,β |cα,β|∞. By changing the role of ϕ and ψ and implementing the same argument,

one obtains

∣∣Tκ,h[ϕ]−Tκ,h[ψ]
∣∣
∞

≤ |f |∞(1 + (C + θκ)h).

To prove that the family (uκ,h)h is bounded, we proceed by backward induction as in Lemma

3.14 in [10]. By choosing in the first part of the proof ϕ ≡ ūκ,h(ti+1, .) and ψ ≡ 0, we see that

|uκ,h(ti, ·)|∞ ≤ hCeθκ(T−ti) + |uκ,h(ti+1, ·)|∞(1 + (C + θκ)h),

where C := supα,β |kα,β|∞. It follows from the discrete Gronwall inequality that

|uκ,h(ti, ·)|∞ ≤ (C(T − ti) + |g|∞)e(C+θκ)(T−ti).

2

Define

v̄κ,h := e−θκ(T−t)uκ,h. (4.19)

Next Corollary provides a bound for vκ,h uniformly on κ and h.

Corollary 4.2. v̄κ,h is bounded uniformly on h and κ, and

|vκ,h − v̄κ,h|∞ ≤ Kθ2κh for some constant K.

If also, κh satisfies (4.7), then

lim
h→0

|vκh,h − v̄κh,h|∞ = 0.

Proof. By Lemma 4.2 for fixed κ, we have:

|uκ,h(t, .)|∞ ≤ (C + |g|∞)e(C+θκ)(T−t).

Therefore,

|v̄κ,h(t, .)|∞ ≤ (C + |g|∞)eC(T−t).

For the next part, define ūκ,h(t, x) = eθκ(T−t)vκ,h(t, x). Direct calculations shows that

ūκ,h = eθκh(1− θκh)E
[
ūκ,h

(
t+ h, X̂t,x,κ

h

)]
+ hF κ,h

(
t, x,Dhū

κ,h, ūκ,h(t+ h, ·)
)
.

By an argument similar to Lemma 3.19 in [10], we have

|(uκ,h − ūκ,h)(t, ·)|∞ ≤ 1

2
θ2κh

2|ūκ,h(t+ h, ·)|∞ (4.20)

+(1 + (C + θκ)h)|(uκ,h − ūκ,h)(t+ h, ·)|∞,

where C is as in Lemma 4.2. By repeating the proof of Lemma 4.2 for ūκ,h, one can conclude,

|ūκ,h(t, ·)|∞ ≤ (C + |g|∞)e(C+θκ)(T−t)(1 +
θκh

2
).
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So, by multiplying 4.20 by eθκ(T−t), we have

|(v̄κ,h − vκ,h)(t, ·)|∞ ≤ 1

2
C̃θ2κh

2eC(T−t)(1 +
θκh

2
)e−θκh

+e−θκh(1 + (C + θκ)h)|(v̄κ,h − vκ,h)(t+ h, ·)|∞,

for some constant C̃. Because e−θκh(1 + (C + θκ)h) ≤ eCh, one can deduce from discrete Gronwall

inequality that

|(v̄κ,h − vκ,h)(t, ·)|∞ ≤ Kθ2κh,

for some constant K independent of κ which provides the second part of the theorem. 2

We continue with the following consistency Lemma.

Lemma 4.3. Let ϕ be a smooth function with the bounded derivatives. Then for all (t, x) ∈
[0, T ]× Rd:

lim
(t′,x′)→(t,x)

(h,c)→(0,0)

t′+h≤T

ϕ(t′, x′)−Tκ,h[c+ ϕ](t′, x′)

h
= −

(
LXϕ+ F (·, ϕ,Dϕ,D2ϕ,ϕ(t, ·))

)
(t, x).

Proof. The proof is straightforward by Lebesgue dominated convergence Theorem. 2

To complete the convergence argument, we need to proof the the approximate solution vκh,h

converge to the final condition as

Lemma 4.4. Let κh satisfy (4.7), then v̄κh,h is uniformly Lipschitz with respect to x.

Proof. We report the following calculation in the one-dimensional case d = 1 in order to simplify

the presentation.

For fixed t ∈ [0, T −h], we argue as in the proof of Lemma 4.2 to see that for x, x′ ∈ R with x > x′:

uκ,h(t, x)− uκ,h(t, x′) = E

[(
uκ,h(t+ h, X̂t,x)− uκ,h(t+ h, X̂t,x′

)
)
]

+h

(
inf
α

sup
β

J̄ α,β
κ [ûκ,h](t+ h, x)− inf

α
sup
β

J̄ α,β
κ [ûκ,h](t+ h, x′)

)

≤ E

[(
uκ,h(t+ h, X̂t,x)− uκ,h(t+ h, X̂t,x′

)
)
]

+h

(
sup
β

J̄ α,β
κ [ûκ,h](t+ h, x) − inf

α
J̄ α,β
κ [ûκ,h](t+ h, x′)

)
.

Observe that by (4.6), one can write

uκ,h(t, x)− uκ,h(t, x′) ≤ E

[(
uκ,h(t+ h, X̂t,x)− uκ,h(t+ h, X̂t,x′

)
)]

+h
(
Φ̄α,β[ûκ,h, ûκ,h](t+ h, x, x′)

)
,
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where Φ̄ is defined in the proof of Lemma 4.2. By Assumption Inf–Sup, there exists (α∗, β∗) such

that

Φ̄α∗,β∗

[ûκ,h, ûκ,h](t+ h, x, x′) = J̄ α∗,β∗

κ [ûκ,h](t+ h, x)− J̄ α∗,β∗

κ [ûκ,h](t+ h, x′).

Therefore,

uκ,h(t, x)− uκ,h(t, x′) ≤ E

[(
uκ,h(t+ h, X̂t,x)− uκ,h(t+ h, X̂t,x′

)
)
]

+h
(
J̄ ∗
κ [û

κ,h](t+ h, x) − J̄ ∗
κ [û

κ,h](t+ h, x′)
)
.

For the other in equality we do the same except that when we

uκ,h(t, x)− uκ,h(t, x′) ≤ A+ hB + hC,

where

A := E

[(
uκ,h(t+ h, X̂t,x)− uκ,h(t+ h, X̂t,x′

)
)
]

+h
(
J̄ α∗,β∗

κ [ûκ,h](t+ h, x) − J̄ α∗,β∗

κ [̂̃uκ,h](t+ h, x)
)
,

with ũκ,h(y) = uκ,h(y + x′ − x),

B := J̄ α∗,β∗

κ [̂̃uκ,h](t+ h, x)− J̄ α∗,β∗

κ [ûκ,h](t+ h, x′),

and

C := ν̂α
∗,β∗,1

h (uκ,h(t+ h, ·))(x) − ν̂α
∗,β∗,1

h (uκ,h(t+ h, ·))(x′).

We continue the proof in the following steps.

Step 1.

C = h−1E

[(
uκ,h(t+ h, X̂∗,x)− uκ,h(t+ h, X̂∗,x′

)
)
Nκ

h

]
,

where X̂∗,x := x+
∑Nκ

h

i=1 η
α∗,β∗

(x,Zi) with Zis are i.i.d. random variables distributed as ν(dz)
λκ

.

Step 2. By the definition of J̄ α,β
κ ,

B =
1

2
(aα

∗,β∗

(x)− aα
∗,β∗

(x′))D2
hu

κ,h(t+ h, x′) + (bα
∗,β∗

κ (x)− bα
∗,β∗

κ (x′))D1
hu

κ,h(t+ h, x′)

+(cα
∗,β∗

(x)− cα
∗,β∗

(x′))D0
hu

κ,h(t+ h, x′) + kα
∗,β∗

(x)− kα
∗,β∗

(x′),

where bα,βκ (x) := bα,β(x)−
∫
{1>|z|≥κ} η

α,β(x, z)ν(dz). On the other hand,

Dk
h = E

[
Duκ,h(t+ h, X̂x′

h )

(
Wh

h
σ−1(x′)

)k−1
]
, for k = 1, 2.
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So,

B ≤ E

[
1

2
(aα

∗,β∗

(x)− aα
∗,β∗

(x′))Duκ,h(t+ h, X̂x′

h )
Wh

h
σ−1(x′)

+(bα
∗,β∗

κ (x)− bα
∗,β∗

κ (x′))Duκ,h(t+ h, X̂x′

h ) + (cα
∗,β∗

(x)− cα
∗,β∗

(x′))uκ,h(t+ h, X̂x′

h )

]

+fα
∗,β∗

(x)− fα
∗,β∗

(x′).

Step 3. By the definition of J̄ α,β
κ , one can observe that

J̄ α∗,β∗

κ [uκ,h](t+ h, x)− J̄ α∗,β∗

κ [ũκ,h](t+ h, x)

=
1

2
aα

∗,β∗

(x)δ(2) + b∗κ(x)δ(1) + c∗κ(x)δ(0)

where c∗κ and b∗κ are defind in the proof of Lemma 4.1, and

δ(k) = E

[
Dkuκ,h(t+ h, X̂x

h )−Dkuκ,h(t+ h, X̂x′

h )
]
for k = 0, 1, 2.

By Lemma 2.1 in [10], for k = 1 and 2

δ(k) = E

[(
uκ,h(t+ h, X̂x

h )− uκ,h(t+ h, X̂x′

h )
)
Hk

h(t, x)

+uκ,h(t+ h, X̂x′

h )Hk
h(t, x)

(
1− σk(x)

σk(x′)

)]

= E

[(
uκ,h(t+ h, X̂x

h )− uκ,h(t+ h, X̂x′

h )
)
Hk

h(t, x)

+Duκ,h(t+ h, X̂x′

h )

(
Wh

h

)k−1

σ(x′)
(
σ−k(x)− σ−k(x′)

)]
.

Therefore, one can write

A ≤ E
[(
uκ,h(t+ h, X̂x

h )− uκ,h(t+ h, X̂x′

h )
)

×
(
1− ā∗ + ā∗N2 + hc∗κ + b∗κN

√
h
)
(x)

+hb∗κ(x
′)Duκ,h(t+ h, X̂x′

h )σ(x′)
(
σ−1(x)− σ−1(x′)

)

+a∗(x′)Duκ,h(t+ h, X̂x′

h )
√
hNσ(x′)

(
σ−2(x)− σ−2(x′)

)]
,

where a∗ := 1
2a

α∗,β∗
, ā∗ := 1

2a
−1aα

∗,β∗
, c∗ := cα

∗,β∗
, c∗κ := c∗ + θκ, and b

∗
κ := bα

∗,β∗

κ .

Step 4. By dividing both sides by x− x′ and taking the limit we have:

Duκ,h(t, x) ≤ E

[
Duκ,h(t+ h, X̂x

h )

((
1 + hµ̃′κ +

√
hσ′N + J̃κ,h

)

×
(
1− ā∗ + ā∗N2 + hc∗κ + b∗κN

√
h
)

+h
(
(b∗κ)

′ − b∗κ
σ′

σ

)
+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hN

)

+Duκ,h(t+ h, X̂∗,x
h )

(
1 + µ∗h+ J̃

′∗
κ,h

)
Nκ

h

]
+ Ceθκ(T−t)h,
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where J̃κ,h :=
∫
{|z|>κ} η(z)J̃ ([0, h], dz), J̃

′∗
κ,h :=

∫
{|z|>κ} η

′(z)J̃([0, h], dz), and Nκ
h is a Poisson process

with intensity λκ :=
∫
{|z|>κ} ν(dz).

Let Lt := |Duκ,h(t, ·)|∞. Then

E

[
Duκ,h(t+ h, X̂∗,x

h )
(
1 + µ∗h+ J̃

′∗
κ,h

)
Nκ

h

]
≤ Lt+hCh

(
λκ + λ′∗κ

)
,

where λ′∗κ :=
∫
{|z|>κ} η

′∗(z)ν(dz). Let G := N + b∗κσ
2

√
h. By the change of measure

dQ

dP
:= exp

(
−(b∗κσ)

2

4
h+

b∗κσ

2

√
hN

)
,

we have G ∼ N (0, 1) under Q and one can write

Duκ,h(t, x) ≤ EQ
[ dP
dQ

Duκ,h(t+ h, X̂x
h )
((

1 + h(µ̃′κ −
b∗κσ

2
) +

√
hσ′G+ J̃κ,h

)

×
(
1− ā∗ + ā∗G2 + h(c∗κ − (b∗κσ)

2

2
)
)

+h
(
(b∗κ)

′ − b∗κ
σ′

σ
− b∗κσ

2

)
+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hG
)]

+Lt+hCh
(
λκ + λ′∗κ

)
+Ceθκ(T−t)h,

Step 4. Notice that 1− ā∗ + a∗G2 + h(c∗κ − (b∗κσ)
2

2 ) is positive and therefore, one can take Z
EQ[Z]

as

a density for the new measure QZ . So,

Duκ,h(t, x) ≤ EQZ
[ dP
dQ

Duκ,h(t+ h, X̂x
h )
((

1 + h(µ̃′κ − b∗κσ

2
) +

√
hσ′G+ J̃κ,h

)

+Z−1
(
h
(
(b∗κ)

′ − b∗κ
σ′

σ
− b∗κσ

2

)
+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hG
))]

+Lt+hCh
(
λκ + λ′∗κ

)
+ Ceθκ(T−t)h.

So,

Duκ,h(t, x) ≤ EQZ
[( dP

dQ

)2

(Duκ,h(t+ h, X̂x
h ))

2
] 1

2
EQZ

[((
1 + h(µ̃′κ −

b∗κσ

2
) +

√
hσ′G+ J̃κ,h

)

+Z−1
(
h
(
(b∗κ)

′ − b∗κ
σ′

σ
− b∗κσ

2

)
+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hG
))2] 1

2

+Lt+hCh
(
λκ + λ′∗κ

)
+ Ceθκ(T−t)h.

Notice that

EQZ
[(dQ

dP

)2

(Duκ,h(t+ h, X̂x
h ))

2
]

≤ L2
t+h exp(

1

4
(b∗κσ)

2h).
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On the other hand,

EQZ
[dQ
dP

((
1 + h(µ̃′κ − b∗κσ

2
) +

√
hσ′G+ J̃κ,h

)
+ Z−1

(
h
(
(b∗κ)

′ − b∗κ
σ′

σ
− b∗κσ

2

)

+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hG
))2]

= E

[
Z
((

1 + h(µ̃′κ −
b∗κσ

2
) +

√
hσ′G+ J̃κ,h

)
+ Z−1

(
h
(
(b∗κ)

′ − b∗κ
σ′

σ
− b∗κσ

2

)

+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hG
))2]

.

By calculation of the right hand side of the above equality, one can observe that all the terms of

order
√
h vanish and we have:

EQZ
[dQ
dP

((
1 + h(µ̃′κ − b∗κσ

2
) +

√
hσ′G+ J̃κ,h

)
+ Z−1

(
h
(
(b∗κ)

′ − b∗κ
σ′

σ
− b∗κσ

2

)

+
(1
2
(aα

∗,β∗

)′σ−1 − aα
∗,β∗ σ′

σ2

)√
hG
))2] 1

2

≤
(
1 + h

(
c∗ + θκ −

(b∗κ)
2

4a∗
− b∗κσσ

′ + (b∗κ)
′ − b∗κσ

′

σ
− b∗κσ

2
+O(hθ2κ)

)) 1
2
.

Therefore, by the choice of κh, for h small enough we have

Lt ≤ Lt+h exp
(1
2
h(C + θκh − bκh

∗σσ′ + (b∗κh)
′ − bκh

∗σ′

σ
− b∗κh

σ

2
+ 2λκh

+ 2λ′∗κh)
)
+Ceθκh(T−t)h

≤ Lt+h exp
(
h(C + θκh)

)
+Ceθκh(T−t)h

.

By discrete Gronwall inequality,

Lt ≤ (|Dg|∞ +C(T − t))e(θκh+C)(T−t).

Therefore by definition of v̄κ,h, we have

|Dv̄κh,h|1 ≤ eC(T−t)(|Dg|∞ + C(T − t)).

2

Lemma 4.5. Let κh satisfies (4.7), then

lim
t→T

v̄κ,h(t, x) = g(x).

Proof. We follow the same notations as in the proof of the previous Lemma and write

uκ,h(t, x) = E

[
uκ,h(t+ h, X̂t,x)

]
+ h inf

α
sup
β

J̄ α,β
κ [ûκ,h](t+ h, x)

≤ E

[
uκ,h(t+ h, X̂t,x)

]
+ h sup

β
J̄ α,β
κ [ûκ,h](t+ h, x).

Observe that by (4.6), one can write

uκ,h(t, x) ≤ E

[
uκ,h(t+ h, X̂t,x)

]
+ h
(
Φ̄α,β[ûκ,h, 0](t + h, x, x′)

)
+ h sup

α,β
|fα,β|∞,
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By Assumption Inf–Sup, there exists (α∗, β∗) so that

uκ,h(t, x) ≤ E

[
uκ,h(t+ h, X̂t,x)

]
+ hJ̄ α∗,β∗

κ [ûκ,h](t+ h, x) + hC̄,

where C̄ := supα,β |fα,β|∞. Therefore, for any j = i, · · · , n − 1 one can write

uκ,h(tj, X̂
ti,x
tj

) ≤ E
Q
tj

[
uκ,h(tj+1, X̂

ti,x
tj+1

)
(
1− a∗j + a∗jG

2
j + hC∗

j

)]
+ hC̄.

where a∗j := ā∗(tj , X̂
ti,x
tj

), C∗
j := (c∗κ − (b∗κσ)

2

2 )(tj , X̂
ti,x
tj

) and Gjs are independent standard Gauss-

ian random variables under the new equivalent measure Q. By the consecutive use of the above

inequality and the fact that 1− a∗j + a∗jG
2 + hC∗

j is positive, one can write

uκ,h(ti, x) ≤ EQ
[
g(X̂ti,x

T )

n−1∏

j=i

(
1− a∗j + a∗jG

2 + hC∗
j

)]
+ C̄h

n−1∑

j=i

eθκtj .

Notice that in the above inequality we used the fact that

E
Q
tj

[
1− a∗j + a∗jG

2
j + hC∗

j

]
= 1 + hEQ

tj
[C∗

j ] ≤ 1 + θκh.

On the other hand, Z :=
∏n−1

j=i

(
1 − a∗j + a∗jG

2
j + hC∗

j

)
is positive there for fracZEQ[Z] could be

considered as a density of a new measure QZ with respect to P. Therefore,

uκ,h(ti, x) ≤ EQ[Z]EQZ
[
g(X̂ti,x

T )
]
+ C̄h

n−1∑

j=i

eθκtj .

By the definition of v̄κ,h, one can write

v̄κ,h(ti, x) ≤ e−θκ(T−ti)EQ[Z]EQZ
[
g(X̂ti,x

T )
]
+ e−θκ(T−ti)C̄h

n−1∑

j=i

eθκtj .

Therefore,

v̄κ,h(ti, x)− g(x) ≤ e−θκ(T−ti)EQ[Z]EQZ
[
|g(X̂ti,x

T )− g(x)|
]
+ C|g(x)|(T − ti) + e−θκ(T−ti)C̄(T − ti).

Notice that g(X̂ti ,x
T ) − g(x) converges to zero P–a.s. and therefore QZ a.s. as (ti, h) → (T, 0). So,

by Lebesgue dominated convergence Theorem,

lim sup
(ti,h)→(T,0)

v̄κ,h(ti, x)− g(x) ≤ 0.

By the similar argument one can prove that:

lim inf
(ti,h)→(T,0)

v̄κ,h(ti, x)− g(x) ≥ 0,

which compelets the proof. 2

Remark 4.8. By extending the above proof as in the Lemma 3.17 and Corollary 3.18 of [10], one

can proof that

|v̄κ,h(t, x)− g(x)| ≤ C(T − t)
1
2 .

Also, observe that by the similar argumnet as in [10], vκh,h is 1
2–Hölder on t uniformly on h and x.
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So, the approximate solution v̄κh,h both satisfies the requirement of the convergence established

in [1] and converges to a function v locally uniformly. Moreover, v is the unique viscosity solution

of (2.1)–(2.2). So, by Corollary 4.2, the same assertion is true for vκ,h.

4.2. Rate of Convergence. For local PDEs, the rate of convergence of probabilistic numerical

scheme relies on the approximation of the solution of PDE by regular sub and super–solutions, the

consistency for the scheme and the comparison principle derived from strict monotonicity. One can

approximate the solution of the local PDE by a regular sub–solution and a almost regular super–

solution from up and down, respectively. These approximations are provided by a switching system

and Krylov method of shaking coefficients. Next, we use the consistency Lemma 3.22 in [10] to

produce inequalities for the regular approximations plugged into the scheme. Then by comparison

principle; Proposition 3.20 in [10]; we obtain the bounds for the difference of approximate solution

derived from scheme and regular approximate solution obtained from Krylov method and switching

system.

We continue this Subsection with establishing the same line of argument as in [10] for non–local

case. The generalization of the method we used in [10] for the rate of convergence, is developed in

[5] where the scheme needs to be consistent and satisfies comparison principle. Before, providing

consistency and comparison principle result for the scheme (4.15), we show that truncation error

could be handled by the Theorem of continuous dependence for (2.1)–(2.2). More precisely, if v

and vκ are solutions of (2.1)–(2.2) and (4.9)–(4.10), respectively; then by Theorem 5.1 in [6]

|v − vκ|∞ ≤ C

(∫

0<|z|<κ
|z|2ν(dz)

) 1
2

.

Therefore, By choosing κh so that
∫
0<|z|<κh

|z|2ν(dz) ≤ Ch
1
2 , one can just concentrate on the rate

of convergence of vκ,h to vκ.

We shift to v̄κh,h which is is derived from the strictly monotone scheme (4.15) and find the rate

of convergence for v̄κh,h. The following Corollary shows that this shift do not effect the rate of

convergence.

Corollary 4.3. For F which satisfies IHJB, F (t, x, 0, 0, 0, 0) = 0. Then,

|v̄κh,h − vκh,h| ≤ Chθ2κh
.

In addition, if κh is such that

lim sup
h→0

h
3
4 θ2κh

<∞,

then

|v̄κh,h − vκh,h| ≤ Ch
1
4

Proof. The proof is straightforward by the proof of Lemma 4.2. 2
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Form now on, we concentrate on the approximate solution v̄κ,h which is obtained from strictly

monotone scheme 4.15 through (4.19). In order to provide the result, we need to use the consistency

of the scheme for the regular approximate solutions. Then, the comparison principle for the scheme

provides bounds over the difference between uκ,h and regular approximate solutions. Let

Rκ,h[ψ](t, x) :=
ψ(t, x) −Tκ,h[ψ](t, x)

h
+ LXψ(t, x)

+F κ(·, ψ,Dψ,D2ψ,ψ(t, ·))(t, x).

Lemma 4.6. For a family {ϕε}0<ε<1 of smooth functions satisfying

∣∣∣∂β0
t Dβϕε

∣∣∣ ≤ Cε1−2β0−|β|1 for any (β0, β) ∈ N× Nd \ {0}, (4.21)

where |β|1 :=
∑d

i=1 βi, and C > 0 is some constant, we have:

|Rκ,h[ϕε]|∞ ≤ R(h, ε) := C

(
hε−3 + hθκε

−1 + h
√
θκ + ε−1

∫

{|z|≤κ}
|z|2ν(dz)

)
,

for some constant C > 0 independent of κ. If in addition

lim sup
h→0

hθ2κh
<∞ and lim sup

h→0

√
h

∫

{|z|≤κ}
|z|2ν(dz) <∞,

we have:

|Rκh,h[ϕε]|∞ ≤ R(h, ε) := C (hε−3 +
√
hε−1).

Proof. Rκ,h[ϕε] is bounded by

sup
α

{∣∣∣E
[1
h

(
ϕε(t+ h,Xt,x,κ

h )− ϕε(t, x)
)
+

1

2
Tr
[
aα(D2ϕε(t+ h,Xt,x,κ

h )−D2ϕε(t, x))
]

+bα(Dϕε(t+ h,Xt,x,κ
h )−Dϕε(t, x)) + (θκ + cα)(ϕε(t+ h,Xt,x,κ

h )− ϕε(t, x))

+Iα[ϕε](t, x)− Iα
κ,h[ϕε](t+ h, x)

]∣∣∣
}

For the Lévy integral term by Lemma 3.3, we have:

|Iα[ϕε](t, x)− Iα
κ,h[ϕε](t+ h, x)| ≤ C

(
|Dϕε|∞

(√
h+ h

∫

{|z|>κ}
|z|ν(dz)

)

+h|∂tD2ϕε|∞ + |D2ϕε|∞
∫

{|z|≤κ}
|z|2ν(dz)

)

≤ C

(
hε−3 + h

√
θκ + ε−1

∫

{|z|≤κ}
|z|2ν(dz)

)
.

By the same argument as Lemma 3.22 in [10] all the other terms are bounded by hε−3 except

θh

(
ϕε(t+ h,Xt,x,κ

h )− ϕε(t, x)
)
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which is bounded by θhhε
−1. The second assertion of the Lemma is straightforward. 2

Next we need to have maximum principle for scheme 4.15. Note that Lemma 3.21 in [10] holds

true for scheme 4.15 with λ = θκ +C and β > θκ +C where C = supα |cα|. Therefore, Proposition
3.20 in [10] holds true for non–local case. More precisely, we have the following Proposition.

Proposition 4.2. Let Assumption F holds true, and consider two arbitrary bounded functions ϕ

and ψ satisfying:

h−1
(
ϕ−Th[ϕ]

)
≤ g1 and h−1

(
ψ −Th[ψ]

)
≥ g2

for some bounded functions g1 and g2. Then, for every i = 0, · · · , n:

(ϕ− ψ)(ti, x) ≤ e(θκ+C1)|(ϕ− ψ)+(T, ·)|∞ + (T − h)e(θκ+C1)(T−ti)|(g1 − g2)
+|∞

where C1 > supα |cα|.

The approximation of the solution of non–local PDE by the Krylov method of shaking coefficients

and switching system is developed in [5]. [5] provides the result of rate of convergence of general

monotone schemes for the non–local PDEs satisfying Assumption IHJB. However, they referred

the regularity of the approximate solutions to the result of [6] where the approximate solution

obtained from switching system could only be locally 1
2–Hölder continuous on t. But, in the case

of scheme (4.3), we need the solution of (2.1)–(2.2) be uniformly 1
2–Hölder continuous on t. It is

because we need the regular approximate solutions obtained from Krylov method and switching

solution to satisfy (4.21). Therefore, in the present work we need to rebuild Lemma 5.3 in [6] under

the Assumption IHJB to obtain global 1
2–Hölder continuous on t for the solution of the switching

system.

Therefore, we continue this subsection by introducing the switching system of non–local PDEs

with the regularity result needed for the solution of this system.

Let k be a non-negative constant. Suppose the following system of PDEs:

max
{
−LXvi(t, x)− Fi

(
t, x, vi(t, x),Dvi(t, x),D

2vi(t, x), vi(t, ·)
)
, vi −Miv

}
= 0

vi(T, ·) = gi(·), (4.22)

where i = 1, · · · ,M and

Fi(t, x, r, p, γ, ψ) := inf
α∈Ai

{Lα(t, x, r, p, γ, γ) + Iα(t, x, r, p, γ, ψ)}

Lα(t, x, r, p, γ, γ) :=
1

2
Tr [aα(t, x)γ] + bα(t, x) · p+ cα(t, x)r + kα(t, x)

Iα(t, x, r, p, γ, ψ) :=

∫

Rd
∗

(
ψ (t, x+ ηα(t, x, z)) − r − 1{|z|≤1}η

α(t, x, z) · p
)
dν(z)

Mir := min
j 6=i

rj + k.

We would like to emphasize that gis need to satisfy gi −Miḡ ≤ 0 where ḡ = (g1, · · · , gM ). If each

gi = g then we obviously have gi −Miḡ ≤ 0.
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Existence and comparison principle result for the above switching system is provided in Propo-

sition 6.1 [5]. Also, it is known from Theorem 6.3 in [5], that if (v1, · · · , vM ) and v be respectively

the solutions of (4.22) and (2.1)-(2.2) with A = ∪M
i=1Ai and Ais are disjoint sets, then

0 ≤ vi − v ≤ Ck
1
3 for i = 1, · · · ,M. (4.23)

The regularity result for (4.22) is provided in [6]. There, it is proved that (vi) is Lipschitz with

respect to x and locally 1/2-Hölder continuous with respect to t. For the proof of Theorem 4.2,

(vi) should be uniformly 1/2-Hölder continuous with respect to t. The following Lemma provide

the uniform 1/2-Hölder continuity for (vi).

Lemma 4.7. Assume HJB holds for each i and let (vi) be the viscosity solution of (4.22). Then

there exist a constant C such that for any i = 1, · · · ,M :

∣∣vi
∣∣
1

≤ C.

Proof. Lipschitz continuity with respect to x is done in Lemma 5.2 in [6]. To obtain uniform

1/2−Hölder continuity with respect to t, the proof of Lemma 5.3 in [6] should be modified by using

assumption HJB.

Fix y ∈ Rd, t and t′ where t ≤ t′. For each i = 1, · · · ,M , define:

ψi(t, x) := λ
L

2

[
eA(t′−t)|x− y|2 +B(t′ − t)

]
+K(t′ − t) + λ−1L

2
+ vi(t′, y)

Where L = 1
2 |v|1 and λ, a and γ will be defined later. Then:

∂tψi(t, x) = −λL
2

(
AeA(t′−t)|x− y|2 +B

)
−K

Dψi(t, x) = λLeA(t′−t)(x− y)

D2ψ(t, x) = λLeA(t′−t)Id×d.

So,

−∂tψi + Lα(t, x, ψi,Dψi,D
2ψi) + Iα(t, x, ψi,Dψi)

= −λL
(
AeA(t′−t)|x− y|2 +B

)
−K

+λLeA(t′−t)Tr [aα(t, x)] + 2λLeA(t′−t)bα(t, x) · (x− y) + cα(t, x)ψi + kα(t, x)

+λ
L

2
eA(t′−t)

∫

Rd
∗

(
|x+ ηα(t, x, z) − y|2 − |x− y|2 − 211{|z|≤1}η

α(t, x, z) · (x− y)
)
dν(z).

By HJB, we choose K and λ so that,

|aα|∞ ≤ K, |bα|∞ ≤ K, |cα|∞ ≤ K, |kα|∞ ≤ K,K−1 ≤ λ ≤ K

|v|∞ ≤ K, |ηα(t, x, z)| ≤ K(1 ∧ |z|).

Without loss of generality and with the similar argument as in Remark 3.7, we can suppose that

for any α, cα ≤ 0. So by choosing positive large D, there exists positive constants C1, C2 and C3
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such that:

−∂tψi + Lα(t, x, ψi,Dψi,D
2ψi) + Iα(t, x, ψi,Dψi)

≤ −λLeA(t′−t)K

((
A

K
− 1

2

)
|x− y|2 − 3

2
|x− y|+ C1B − C2

)
+ C3.

Therefore, choice of large B and D makes the right hand side negative.

−∂tψi + Lα(t, x, ψi,Dψi,D
2ψi) + Iα(t, x, ψi,Dψi) ≤ 0.

On the other hand,

ψ(t′, x) =
L

2

(
λ|x− y|2 + λ−1

)
+ vi(t′, y).

Minimizing with respect to λ,

ψ(t′, x) ≥ L|x− y|+ vi(t′, y) ≥ vi(t′, x).

We can conclude that ψi is a super solution of (4.22). So, by comparison Theorem in [5],

ψi(t, y) ≥ vi(t, y).

So,

L

2

(
λB(t′ − t) + λ−1

)
+ vi(t′, y) ≥ vi(t, y).

Therefore,

vi(t, y)− vi(t′, y) ≤ C
√
t′ − t.

The other inequality can be done similarly by choosing:

ψi(t, x) := −λL
2

[
eA(t′−t)|x− y|2 −B(t′ − t)

]
−K(t′ − t)− λ−1L

2
+ vi(t′, y).

2

Remark 4.9. Notice that all the result of switching system is correct for (2.1)-(2.2) satisfying F

by simply setting M = 1 and k = 0.

Therefore, by [5] there are regular functions wκ
ε and wκ

ε which are respectively the regular sub–

and super–solution of

−LXuκ(t, x)− F κ

(
t, x, uκ(t, x),Duκ(t, x),D2uκ(t, x), uκ(t, ·)

)
= 0, on [0, T ) × Rd,

uκ(T, ·) = g, on ∈ Rd.

where

F κ(t, x, r, p, γ, ψ) := inf
α∈A

{
Lα,β(t, x, r, p, γ) + Iα,β

κ (t, x, r, p, γ, ψ)
}

(one can replace sup inf by inf sup) where

Lα,β(t, x, r, p, γ) :=
1

2
Tr
[
σα,βσα,βT(t, x)γ

]
+ bα,β(t, x)p + (cα,β(t, x) + θκ)r,
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and

Iα,β
κ (t, x, r, p, γ, ψ) :=

∫

{|z|>κ}

(
ψ
(
x+ ηα,β(t, x, z)

)
− r − 1{|z|≤1}η

α,β(t, x, z) · p
)
ν(dz).

Therefore, by Proposition 6.2 and Theorem 6.3 of [5], Lemma 4.6 and Proposition 4.2,

(uκ − uκ,h)(t, x) ≤ (uκ − wκ
ε + wκ

ε − uκ,h)(t, x)

≤ Ce(θκ+C1)(T−t)

(
ε+ hε−3 + hθκε

−1 + h
√
θκ + ε−1

∫

{|z|≤κ}
|z|2ν(dz)

)

and

(uκ,h − uκ)(t, x) ≤ (uκ,h − wκ
ε + wκ

ε − uκ)(t, x)

≤ Ce(θκ+C1)(T−t)

(
ε

1
3 + hε−3 + hθκε

−1 + h
√
θκ + ε−1

∫

{|z|≤κ}
|z|2ν(dz)

)
.

Notice that vκ(t, x) = e−θκ(T−t)uκ(t, x). So,

vκ − v̄κ,h ≤ C

(
ε+ hε−3 + hθκε

−1 + h
√
θκ + ε−1

∫

{|z|≤κ}
|z|2ν(dz)

)

and

v̄κ,h − vκ ≤ C

(
ε

1
3 + hε−3 + hθκε

−1 + h
√
θκ + ε−1

∫

{|z|≤κ}
|z|2ν(dz)

)
.

On the other hand, because of (4.14) and by Lemma (4.2), the second part of Theorem 4.2 is

provided after choice of optimal ε.

5. Conclusion

The algorithm is the first probabilistic numerical method for fully non–linear nonlocal parabolic

problems. As in local case ([10]), it converges to the viscosity solution of the problem. A rate of

convergence is known for the convex (concave) non–linearities. Also with the same argument as

in Section 4 in [10], Monte Carlo approximations of expectations inside the scheme do not affect

the asymptotic results if enough number of samples would be used. The error analysis for MCQ

shows that the appropriate approximation of jump–diffusion process with compound Poisson process

could be applied in discretization procedure. The theoretical result is followed by some numerical

examples which confirms the convergence of the scheme.

On the other hand there are some features where the scheme is not implementable in non–local

case, e.g. when the non–linearity is of HJB type. This could be the challenge of future works. The

other open issue is to relax some assumptions. For example, relaxing the assumption of uniform

ellipticity may be a future work.
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