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Parameter estimation based on set-membership approach is a non-probabilistic method for characterizing the uncertainty with which each model parameter is known. Only a class of uncertain static models containing several input-output relations is considered in this paper. Every equation error is bounded while parameters fluctuate inside a time-invariant domain represented by a zonotope. The proposed method helps to find the characteristics of this domain by taking the couplings related to bounded variables common to model output equations into account.

Introduction

This paper focuses on a set-membership parameter estimation computing the bounds of the uncertain variables occurring in a model, such that this one explains a given data set. This model is affected by uncertainties on both the additive equation error and multiplicative model parameters. The equation error is assumed to belong to an orthotope while parameters fluctuate inside a timeinvariant bounded domain. The objective of this paper is to characterize this domain and to extend the method detailed in [START_REF] Ploix | Parameter Uncertainty Computation in static Linear Models[END_REF] to models containing several input-output equations. In this way, the study of all couplings between model equations due to bounded variables (called common variables) appearing in several relations at once is justified in the next [START_REF] Adrot | Diagnostic à base de modèles incertains utilisant l'analyse par intervalles : l'approche bornante[END_REF], [START_REF] Adrot | Bounding approach to the fault detection of uncertain dynamic systems[END_REF]. This paper is organized as follows. The section 2 reminds the context of this work and the principle of a characterization procedure. The problem formulation concerning a model composed of several input-output relations is detailed in section 3. A solution based on the generation of strip constraints due to the elimination of some common variables is presented. At last, an example illustrates the proposed method in section 4.

Principle

The set-membership parameter estimation started in the eighties and was originally designed to deal with a discrete-time model characterized by an unknown but bounded equation error. To summarize, this problem amounts to the determination of the set of parameter values called Feasible Parameter Set (F.P.S.). In others words, each point of this domain explains all the available observations which are consistent with data, bounds of the equation error and the model structure. Models linear in uncertain parameters lead to a theoretic F.P.S. in the form of a convex polytope. At first, the objective consists in circumscribing this domain by a simpler form as an ellipsoid [START_REF] Fogel | On the value of information in system identification-bounded noise case[END_REF] or an axis-aligned orthotope [START_REF] Milanese | Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models[END_REF]. Later, the objective consists in exactly determining the F.P.S. by working on polytopes [START_REF] Piet-Lahanier | Exact recursive characterization of feasible parameter sets in the linear case[END_REF], [START_REF] Broman | A compact algorithm for the intersection and approximation of N-Dimensional polytopes[END_REF], [START_REF] Mo | Fast and robust algorithm to compute exact polytope parameter bounds[END_REF]. The next step takes bounded noises on model outputs [START_REF] Clément | Recursive membership set estimation for ARMAX models: an output-error approach[END_REF] and on both sensor observations and equation error [START_REF] Cerone | Parameter bounds for ARMAX models from records with bounded errors in variables[END_REF] into account. In case the model is dynamic, the F.P.S. is no more a convex polytope and only an approximation can be determined [START_REF] Veres | Parameter-bounding algorithms for linear errors-in-variables models[END_REF]. Moreover, the set-membership parameter estimation can be viewed as a set-membership inversion problem [START_REF] Jaulin | Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis[END_REF]. A paving method is used in order to compute an overestimation of the F.P.S. Some of these works are put together in [START_REF] Milanese | Bounding approaches to system identification[END_REF].

As explained later, the problem considered in this paper is different. Time-variant uncertain parameters are defined by random variables with bounded realizations and the objective is to characterize the time-invariant domain in which they fluctuate. In fact, the proposed method is a non-probabilistic technique for determining the inaccuracy with which each model parameter is known. At first, if θ is a bounded vector, then S(θ) designs the value set of θ corresponding to the set of all admissible values of θ.

Only structured models linear in uncertain parameters and measurements (topped with the tilde symbol) are considered. The term "structured" indicates that uncertain parameters are localized in mathematical model equations. Moreover, at the time k, these ones are represented by the bounded vector θ k . By using analogous notations to those detailed in [START_REF] Ploix | Parameter Uncertainty Computation in static Linear Models[END_REF], the output vector y k obtained at the time k, ∀ ∈ kh 1,, … kp , is given as:
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The scalar ε k,i defines the i th independent equation error and corresponds to a bounded variable comprised between -δ ε,i and δ ε,i , where δ ε,i ∈r + is assumed to be chosen by users for instance. Thus, the value set S(ε) of the vector ε k is an axis-aligned orthotope. The term (figure 1).

In order to simplify explanations, only the i th equation of the model ( 1) is considered in the rest of this section. Principle of a characterization procedure It leads to both following inequalities:

T k,i ,i k,i k T k,i k k,i ,i y y ε ε δ δ  -≤   ≤+   x x θ θ , ∀∈ kh 1,, … kp .
(2)

This system generates at each time k a pair of half-spaces 
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where D 0 is the domain of investigation (taken as a simple orthotope). Since ) of the measurement ~, y ki at each instant k:
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In this way, all constraints (2) are satisfied if:
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Now, let us assume that a nominal (invariant) value θ c of θ k is known. Otherwise, θ c can be obtained by using an estimator minimizing some α-norm of the equation error:

1 c h T ck , i k , i c k arg min y θ θ θ =   =-   ∑ x α .
Then, let us consider the error ε inf,i in the sense of the infinite norm:

ε inf, ,, ,, max ~ĩc kh ki ki T c y θ θ bg ej kp =- ∈ 1… x . If δ ε ε, inf, i i c > θ
bg , then at least one value of the parameter vector (for example θ c ) satisfies all the 2h inequalities (2). This case corresponds to the determination of the Feasible Parameter Set noted D fps . In this way,
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and this intersection gives all invariant parameter vectors θ, each of them explaining all available observations ~, y ki , k∈{1,…,h} (figure 2).

If δ ε ε, inf, i i c < θ
bg , no constant solution exists since h D and h D have no common point (the 2h constraints (2) cannot be simultaneously verified). In this case, the method proposed in [START_REF] Ploix | Parameter Uncertainty Computation in static Linear Models[END_REF] consists in finding a timeinvariant convex zonotope S(θ) satisfying (3), in which θ k fluctuates such that all the 2h constraints (2) hold. The idea is to add to the nominal value θ c , in fact the center of S(θ), some time-variant uncertainties explaining the observation ~, y ki (figure 2). The zonotope S(θ) is defined by:

θθ υ υ k c kk qp q =+ ∈ ∈ ∈ × + λ λ TT 00 ,, , rr r , υ k ∞ ≤1. (4) 
The normalized bounded vector υ k , which represents mutually independent bounded variables, is assumed to be independent from the equation error ε ki , . The chosen matrix T 0 and the computed scalar λ impose respectively the shape and the size of S(θ). In order to increase model accuracy, S(θ) must be the smaller domain centered on θ c and containing at least one point of h D and another one of h D according to its shape imposed by ( 4) [START_REF] Adrot | Diagnostic à base de modèles incertains utilisant l'analyse par intervalles : l'approche bornante[END_REF].
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θ k fluctuates to satisfy all the constraints (2)

k D k D 1 k + D 1 k + D D fps Fig 2. Influence of the bound δ ε,i To conclude, if δ ε ε,i n f , ii c > θ
bg , the error between ~, y ki and ~,

x ki T c
θ is contained in the equation error, what leads to λ=0 and to compute the F.P.S. Each of its points satisfies all inequality constraints (2), which is restrictive for a model. If parameters can fluctuate inside the F.P.S., they can also be taken as time-invariant (i.e. certain) parameters. Otherwise, if δ ε

ε,i n f , ii c < θ
bg , the value of λ is different from 0 and the parameter vector θ k necessary becomes uncertain and time-variant since no constant point of S(θ) can verify all considered constraints at the same time. This explains the difference between setmembership parameter estimation and the work proposed in this paper about characterization of bounded uncertainties.

3 Characterization procedure

Basic solution

By using the relation (4), the output vector y k of the model
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In the paper [START_REF] Ploix | Parameter Uncertainty Computation in static Linear Models[END_REF], authors proposed a solution in order to compute the coefficient λ (when θ c and ,i ε δ are fixed) such that the obtained single output model most precisely explains all the observations on the time horizon h. The same method is here applied by considering individually the m equations (i.e. the m single outputs y k,i ) occurring in (5):
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The principle consists in expressing S(y k,i ), in others words ( )
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, by using interval analysis [START_REF] Moore | Methods and applications of interval analysis[END_REF], [START_REF] Neumaier | Interval methods for systems of equations[END_REF], what leads to m two-sides inequalities at each time k∈{1,…,h}:
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In order to be consistent with ( 6), every observation k,i y must belong to S(y k,i ) by verifying [START_REF] Broman | A compact algorithm for the intersection and approximation of N-Dimensional polytopes[END_REF]. Thus, λ must satisfy the following inequality for k∈{1,…,h}, i∈{1,…,m}:
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Only the most accurate of models (1) interests us. Since the scalar λ imposes the size of S(θ) and adjusts model uncertainty, the most precise model, which corresponds to the smallest domain S(θ), is obtained by minimizing λ:

λ δ ε = -- F H G G I K J J R S | T | U V | W | ∈ ∈ sup max , ~, , ,, ,, , , kh im ki ki T ci ki T y 1 1 0 1 0 … … kp kp x xT θ .

Dependence problem

The dependence phenomenon met in interval analysis follows from couplings between model equations due to common bounded variables. Assume that a vector field θ depends on a bounded vector υ: θ=f(υ). If no component υ j of υ intervenes in several functions θ i of θ at once, that is to say if every component of θ is independent according to υ, then S(θ) is an axis-aligned orthotope (or box).

If at least one variable υ j is common to several functions θ i , the shape of S(θ) is modified because of couplings between these θ i [START_REF] Adrot | Bounding approach to the fault detection of uncertain dynamic systems[END_REF]. Since only models linear in uncertainties are considered, S(θ) corresponds necessarily to a convex zonotope [START_REF] Adrot | Diagnosis of an uncertain static system[END_REF]. It is included in its axis-aligned circumscribed orthotope, noted S(θ), which corresponds to the smallest box containing S(θ). In fact, the domain S(θ) is built by assuming no variable is common, that is to say by treating independently each function θ i .

For the treated problem, it is important to notice that the m single model outputs y k,i defined in ( 6) are linked through some components of the bounded vector υ k at the time k.

Unfortunately, the basic method does not take couplings between these outputs into account. Therefore, S(θ) is computed such that the measurement vector ỹk belongs to the axis-aligned orthotope S λ (y k ), instead of the zonotope S λ (y k ) defining the true set of feasible output vectors according to S(θ). More exactly, since S λ (y k ) is included in S λ (y k ), k y does not necessarily belong to S λ (y k ); therefore, our objective is not reached. In practice, since S λ (y k ) is an overestimation of S λ (y k ), using the former domain increases the inaccuracy of the model, and thus reduces the quality of the procedure based on this one. For example, in fault diagnosis [START_REF] Adrot | Diagnostic à base de modèles incertains utilisant l'analyse par intervalles : l'approche bornante[END_REF], [START_REF] Adrot | Diagnosis of an uncertain static system[END_REF], [START_REF] Ploix | Bounding approach to the diagnosis of uncertain static systems[END_REF], [START_REF] Armengol | A survey on interval model simulators and their properties related to fault detection[END_REF] where S() makes it possible to define the set of all feasible behaviors of the monitored system, working on S() instead of S() increases the number of nodetections. But, in order to be able to use S(), the characterization procedure must take couplings between common variables into account. Taking them into consideration only in the following step (as a fault detection procedure) is not sufficient. That is the reason why the following section proposes a multicharacterization procedure well suited to models composed of several output relations.

Improved solution

The objective consists in taking the couplings between model output equations into account. In fact, the shape of S λ (y k ) is influenced by all common variables and since y k is linear in the bounded vector υ k (5), this domain is necessarily a convex zonotope. In other words, it is a convex polytope obtained by the intersection of halfspaces delimited by two by two parallel hyperplanes defining a strip constraint S i (figure 3). The method proposed in [START_REF] Ploix | Bounding approach to the diagnosis of uncertain static systems[END_REF] to construct such a domain consists in determining some combinations of the model output equations ( 6) making it possible to eliminate at least one common variable υ k,j , j∈{1,…,q}. This procedure generates the strip constraints S i , which describe the relationships between all output relations and define the Cartesian equation of the frontiers of the zonotope.

For example, let us consider the following model:

11 22 01 1 01 1 k, k, k, k, y y       =+    -          υ υ .
By working individually on each single output y k,i and by using interval analysis, the following two-sides inequalities describing the box S λ (y k ) are obtained:

1 2 22 22 k, k, y y -≤ ≤   -≤ ≤  .
Moreover, two linear combinations of both components y k,1 and y k,2 make it possible to eliminate respectively each common variable υ k,1 and υ k,2 :
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The intersection of both strip constraints S 1 and S 2 described by previous two-sides inequalities with S λ (y k ) gives the zonotope S λ (y k ) on figure 3.

The method proposed in the following for automatically computing all inequalities associated with strip constraints is based on the results detailed in [START_REF] Ploix | Bounding approach to the diagnosis of uncertain static systems[END_REF]. By using the model ( 1) and the expression of θ k (4), the matrix M k (λ) associated with the bounded vector υ k is defined:

() kk c k k k θ ευ -= + yX M λ
, with MX T kk λλ bg= ~0 . ( 8)

The matrix M k (λ) is assumed to be full row rank; otherwise, redundant equations of ( 5) are eliminated since they do not give more additional information. At the time k, the elimination procedure consists in determining all the combinations c i , i∈{1,…,

1 m q - C } of m-1 indexes among q.
A matrix defined by: , is computed such that:

hM ki T ki ,, λ bg= 0 .
In fact, due to the particular structure of M k (λ), the parameter λ does not modify the rank of M k,i (λ) when it is different from 0 (i.e when some parameter uncertainties exist). Since λ is unknown during this step, the projection vector h k,i is found by imposing arbitrary λ=1 and working

on M k,i (1) instead of M k,i (λ).
In fact, the vector h k,i describes one linear combination of outputs y k,i , i∈{1,…,m} making it possible to eliminate all the common variables, whose indices belong to c i .

After multiplying (8) by h ki T , , interval arithmetic is used to express the following two-sides inequality:
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k , ε δδ =-  ε ε S , with δ εε δ = ,i T .
At the time k, the expression (9) defines one of the strip constraints S i describing S λ (y k ) (excepted those common with S λ (y k ) previously given by ( 7)). In order to test if the sensor vector belongs to the value set of the unknown output vector, y k is replaced by k y in [START_REF] Clément | Recursive membership set estimation for ARMAX models: an output-error approach[END_REF]. Let n k be the number of the obtained strip constraints, then λ verifies:
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At the time k, the parameter λ has to verify an inequality system composed of the m constraints ( 7) and the n k other ones [START_REF] Clément | Recursive membership set estimation for ARMAX models: an output-error approach[END_REF]. By assuming that the coefficients θ c and δ ε are fixed, the optimal value of the parameter λ corresponds to:
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Width of a strip constraint S i

In this way, every observation ỹk belongs to all strip constraints defining S λ (y k ). Moreover, if the center θ c and the bounds δ ε are a priori fixed, the most precise model with respect to the data set is obtained since parameter uncertainties are minimal.

To conclude, it is possible to optimize the (p+1+m)-tuple of coefficients (θ c ,λ,δ ε ) if a criterion J is chosen. Thus, the chosen solution is the sum of the widths w k,(.) of all the strip constraints of S λ (y k ) (figure 4) given by ( 7) and ( 9):

( )

0 1 22 T k,j j k,j w, δ =+ xT εε , λδ λ , { } 1 j, , m ∀∈ , ( ) 
0 1 22 TT k,i k,i k,i k w, δδ =+ hh X T ε ε λ λ , { } 1 k i, , n ∀∈ .
On the horizon h, the criterion J becomes:

( )

11 k nm h k,i ki J w, δ + == = ∑∑ ε λ . (11) 
Even if θ c does not appear in [START_REF] Veres | Parameter-bounding algorithms for linear errors-in-variables models[END_REF], J depends implicitly on it by means of constraints ( 9) to be satisfied since the value of θ c directly influences the parameter λ as shown on the figure 2. In fact, this is a well-known linear optimization problem under linear inequality constraints.

S i h k,i ( ) 1 TT T k ,i k ,i k k ,i k c δ θ -- + hh Mh X ε λ T k,i k c θ hX ( ) 1 TT T k,i k,i k k,i k c δ θ ++ hh Mh X ε λ 1 k, y 2 k, y Fig 5.
Linear optimization problem

Example

For example, consider the following "physical" system, whose "sensor" outputs are simulated on the time horizon h=100 and are represented by symbols "+" in figure 6:

~.. , , , , , , y y k k k k k k 1 2 1 2 1 2 0 0 08 12 11 L N M O Q P = L N M O Q P + - L N M O Q P L N M O Q P + L N M O Q P υ υ ε ε , δ ε, . i i = ∈ 02 12 ,
kp . (12) The model used for the characterization procedure is slightly different and is given as:
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kp , (13) which corresponds to the following constraints: 
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In a general manner, the time-variant regression matrix Xk depends on measurements, and thus the size and the shape of S λ (y k ) change at each time k on the time horizon h. In this example, Xk is reduced to the identity matrix in order to simplify the representation of S λ (y k ). In this way, this domain is time-invariant and only one value set is drawn for the whole time horizon h; thus it is easier to verify if all the observations ỹk belong to S λ (y k ).

Basic method

At first, the basic method is applied to previous relations [START_REF] Milanese | Bounding approaches to system identification[END_REF] and gives the following result: λ = 098 . , what leads to both domains S λ=0.98 (y k ) and S λ=0.98 (y k ) drawn in figure 5. Measurements belong to the axis-aligned orthotope S λ=0.98 (y k ) but, as expected, some of them are not inside the characterized zonotope S λ=0.98 (y k ). Due to the structure of the matrix T 0 , both bounded variables υ k,i , i∈{1,2}, are common, that is the reason why some dependencies exist between both equations [START_REF] Milanese | Bounding approaches to system identification[END_REF].

The value set associated with the simulated model ( 12) is also represented. Because of the limited size of the data set, if all measurements are logically found inside this domain, none of them is located on one of its frontiers since the number of points is low.

Improved method

Let us consider the model ( 13) used for the characterization procedure. 

+ =+ + -= +- λυεε λυεε , (15) 
what leads to the following two-sides inequalities: 

+- ≤ ≤++   -- ≤ ≤-+  λυ λυ . ( 16 
)
Let us notice:

MX T kk λλ λ bg== - L N M O Q P ~0 11 11 .
The numeric algorithm reminded in section 3.3 makes it possible to generate systematically expressions [START_REF] Adrot | Diagnosis of an uncertain static system[END_REF]. At first, the combinations c i , i∈{1,…,

1 m q - C } of 11 m -=
index among q = 2 indices are determined. In our case, one index among the set {1,2} gives two combinations c 1 ={1} and c 2 ={2}. For each combination c i , if the matrix composed of the columns of M k 1 a f, whose indexes correspond to the elements of c i , is full column rank, then a vector h i orthogonal to this matrix is computed.

Numerically, the following results are obtained:

[ ] 1 11 T = - h , 12 212 2 k, k, k, k, k, yy - =+ - λυεε , [ ] 2 11 T = h , 12 112 2 k, k, k, k, k, yy + =+ + λυεε ,
which corresponds to previous expressions [START_REF] Neumaier | Interval methods for systems of equations[END_REF]. At the end, by replacing y k by k y in ( 14) and ( 16), the following two-sides inequalities must be satisfied at each time k: 

( ) ( ) 11 


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According to [START_REF] Cerone | Parameter bounds for ARMAX models from records with bounded errors in variables[END_REF], the constraints to be respected are:

{ } 

The (2+1+2)-tuple of coefficients (θ c ,λ,δ ε ) has to minimize the precision criterion [START_REF] Veres | Parameter-bounding algorithms for linear errors-in-variables models[END_REF]. The data set is composed of 5.10 3 measurement vectors ỹk . By assuming that both bounds δ ε,i are equal, the results are given as: . i = 019. [START_REF] Armengol | A survey on interval model simulators and their properties related to fault detection[END_REF] The difference between [START_REF] Armengol | A survey on interval model simulators and their properties related to fault detection[END_REF] and the theoretic values:

θ c = L N M O Q P 0 0
, λ = 1 and δ ε, . i = 02, is due to the finite size of data samples. Despite of this difference, the model [START_REF] Ploix | Bounding approach to the diagnosis of uncertain static systems[END_REF] with estimated parameters [START_REF] Armengol | A survey on interval model simulators and their properties related to fault detection[END_REF] fully explains all measurements.

Conclusion

An algorithm for characterizing uncertainties in static linear models containing several output relations is proposed. The main contribution of this work concerns the taking into account of the couplings between bounded variables, which impose the shape of the studied value set. A precision criterion is defined in order to compute the most precise model. The proposed technique may be extended to dynamical systems provided that they are not represented by a recursive form. Moreover, it is possible to apply different weights λ i to each column of the matrix T 0 and thus to adjust the shape of the value set S θ a f.
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  098 . and δ ε,

  Two linear combinations of both components y k,1 and y k,2 make it possible to eliminate respectively each common variable υ k,1 and υ k,2 :

	12 k, k, yy	2	112 k, k, k,
	12 k, k, yy	2	212 k, k, k,

  The value of the parameter λ is 1.08. Moreover, zonotopes S λ=1.08 (y k ) and S λ=0.98 (y k ) are represented in figure7.
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