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Abstract. Parameter estimation based on set-membership 

approach is a non-probabilistic method for characterizing 

the uncertainty with which each model parameter is 

known. Only a class of uncertain static models containing 

several input-output relations is considered in this paper. 

Every equation error is bounded while parameters 

fluctuate inside a time-invariant domain represented by a 

zonotope. The proposed method helps to find the 

characteristics of this domain by taking the couplings 

related to bounded variables common to model output 

equations into account. 

Keywords. Uncertain model, interval, estimation theory. 

1 Introduction 

This paper focuses on a set-membership parameter 

estimation computing the bounds of the uncertain 

variables occurring in a model, such that this one explains 

a given data set. This model is affected by uncertainties on 

both the additive equation error and multiplicative model 

parameters. The equation error is assumed to belong to an 

orthotope while parameters fluctuate inside a time-

invariant bounded domain. The objective of this paper is 

to characterize this domain and to extend the method 

detailed in [1] to models containing several input-output 

equations. In this way, the study of all couplings between 

model equations due to bounded variables (called 

common variables) appearing in several relations at once 

is justified in the next [2], [3]. 

This paper is organized as follows. The section 2 reminds 

the context of this work and the principle of a 

characterization procedure. The problem formulation 

concerning a model composed of several input-output 

relations is detailed in section 3. A solution based on the 

generation of strip constraints due to the elimination of 

some common variables is presented. At last, an example 

illustrates the proposed method in section 4. 

2 Principle 

The set-membership parameter estimation started in the 

eighties and was originally designed to deal with a 

discrete-time model characterized by an unknown but 

bounded equation error. To summarize, this problem 

amounts to the determination of the set of parameter 

values called Feasible Parameter Set (F.P.S.). In others 

words, each point of this domain explains all the available 

observations which are consistent with data, bounds of the 

equation error and the model structure. Models linear in 

uncertain parameters lead to a theoretic F.P.S. in the form 

of a convex polytope. At first, the objective consists in 

circumscribing this domain by a simpler form as an 

ellipsoid [4] or an axis-aligned orthotope [5]. Later, the 

objective consists in exactly determining the F.P.S. by 

working on polytopes [6], [7], [8]. The next step takes 

bounded noises on model outputs [9] and on both sensor 

observations and equation error [10] into account. In case 

the model is dynamic, the F.P.S. is no more a convex 

polytope and only an approximation can be determined 

[11]. Moreover, the set-membership parameter estimation 

can be viewed as a set-membership inversion problem 

[12]. A paving method is used in order to compute an 

overestimation of the F.P.S. Some of these works are put 

together in [13]. 

As explained later, the problem considered in this paper is 

different. Time-variant uncertain parameters are defined 

by random variables with bounded realizations and the 

objective is to characterize the time-invariant domain in 

which they fluctuate. In fact, the proposed method is a 

non-probabilistic technique for determining the inaccuracy 

with which each model parameter is known. At first, if θ 

is a bounded vector, then S(θ) designs the value set of θ 

corresponding to the set of all admissible values of θ. 

Only structured models linear in uncertain parameters and 

measurements (topped with the tilde symbol) are 

considered. The term “structured” indicates that uncertain 

parameters are localized in mathematical model equations. 

Moreover, at the time k, these ones are represented by the 

bounded vector θk. By using analogous notations to those 

detailed in [1], the output vector yk obtained at the time k, ∀ ∈k h1, ,…k p , is given as: 
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The scalar εk,i defines the ith independent equation error 

and corresponds to a bounded variable comprised between −δε,i and δε,i, where δε,i∈r+ is assumed to be chosen by 

users for instance. Thus, the value set S(ε) of the vector εk 

is an axis-aligned orthotope. The term ~
,xk i  represents the 

regression vector (composed of measurements) associated 

with the ith model output yk,i. Then, let us consider a data 

set ky� , k∈{1,…,h}. The aim is to determine the 



 

characteristics of a domain S(θ) (center, range) such that 

k k k k= +y X�� θ ε  with θk∈S(θ), εk∈S(ε). In others words, the 

problem is to characterize S(θ) such that at each time k: 

( ) ( ) ( )with  k k k k k k,θ ε θ θ ε ε∈ + ∈ ∈y XS S S��  (figure 1). 

In order to simplify explanations, only the ith equation of 

the model (1) is considered in the rest of this section. 

 
Fig 1. Principle of a characterization procedure 

It leads to both following inequalities: 
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This system generates at each time k a pair of half-spaces 

kD  and kD  whose frontiers define two parallel 

hyperplanes in the parameter space: 
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where D0 is the domain of investigation (taken as a simple 

orthotope). Since  kk ∩ ≠ ∅D D  at each instant k by 

construction, then it must always exist at least one element θk of S(θ) satisfying the pair of inequalities (2). The 

intersection of several half-spaces being convex, both 

following domains are convex too: 
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If S(θ) exists, the domain ( ) hθ ∩S D  ( ( ) hθ ∩S D ) defines 

the value set of ′θ  ( ′′θ ) leading to a major k ,iy (minor 

y
k i,

) of the measurement ~
,yk i  at each instant k: 
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In this way, all constraints (2) are satisfied if: 

( ) ( ) and hhθ θ∩ ≠ ∅ ∩ ≠ ∅S D S D . (3) 

Now, let us assume that a nominal (invariant) value θc of θk is known. Otherwise, θc can be obtained by using an 

estimator minimizing some α-norm of the equation error: 

1c

h
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  = −  ∑ x α�� . 

Then, let us consider the error ε inf,i  in the sense of the 

infinite norm: 
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If δ εε , inf,i i c> θb g, then at least one value of the 

parameter vector (for example θc) satisfies all the 2h 

inequalities (2). This case corresponds to the 

determination of the Feasible Parameter Set noted Dfps. In 

this way,  hh ∩ ≠ ∅D D  and this intersection gives all 

invariant parameter vectors θ, each of them explaining all 

available observations ~ ,yk i , k∈{1,…,h} (figure 2). 

If δ εε , inf,i i c< θb g, no constant solution exists since hD  

and hD  have no common point (the 2h constraints (2) 

cannot be simultaneously verified). In this case, the 

method proposed in [1] consists in finding a time-

invariant convex zonotope S(θ) satisfying (3), in which θk 

fluctuates such that all the 2h constraints (2) hold. The 

idea is to add to the nominal value θc, in fact the center of 

S(θ), some time-variant uncertainties explaining the 

observation ~
,yk i  (figure 2). The zonotope S(θ) is defined 

by: 

θ θ υ υk c k k
q p q= + ∈ ∈ ∈× +λ λT T0 0, , ,r r r , υ k ∞ ≤1. (4) 

The normalized bounded vector υk, which represents 

mutually independent bounded variables, is assumed to be 

independent from the equation error ε k i, . The chosen 

matrix T0 and the computed scalar λ impose respectively 

the shape and the size of S(θ). In order to increase model 

accuracy, S(θ) must be the smaller domain centered on θc 

and containing at least one point of hD  and another one of 

hD  according to its shape imposed by (4) [2]. 
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Fig 2. Influence of the bound δ ε ,i  

To conclude, if δ εε , inf,i i c> θb g, the error between ~
,yk i  

and ~
,xk i

T
cθ  is contained in the equation error, what leads to 

λ=0 and to compute the F.P.S. Each of its points satisfies 

all inequality constraints (2), which is restrictive for a 

model. If parameters can fluctuate inside the F.P.S., they 

can also be taken as time-invariant (i.e. certain) 

parameters. Otherwise, if δ εε , inf,i i c< θb g, the value of λ is 

different from 0 and the parameter vector θk necessary 

becomes uncertain and time-variant since no constant 

point of S(θ) can verify all considered constraints at the 

same time. This explains the difference between set-

membership parameter estimation and the work proposed 

in this paper about characterization of bounded 

uncertainties. 

3 Characterization procedure 

3.1 Basic solution 

By using the relation (4), the output vector yk of the model 
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(1) is expressed as: 

0
T T

k k c k k kθ υ ε= + +y X X Tλ� � . (5) 

In the paper [1], authors proposed a solution in order to 

compute the coefficient λ (when θc and ,iεδ  are fixed) 

such that the obtained single output model most precisely 

explains all the observations on the time horizon h. The 

same method is here applied by considering individually 

the m equations (i.e. the m single outputs yk,i) occurring in 

(5): 

0
T T

k ,i k ,i c k ,i k k ,iy θ υ= + +x x Tλ ε� � , i m∈ 1, ,"k p . (6) 

The principle consists in expressing S(yk,i), in others 

words ( )0
T T
k ,i c k ,i k k ,iθ υ+ +x x Tλ εS � � , by using interval 

analysis [14], [15], what leads to m two-sides inequalities 

at each time k∈{1,…,h}: 
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In order to be consistent with (6), every observation k ,iy�  

must belong to S(yk,i) by verifying (7). Thus, λ must 

satisfy the following inequality for k∈{1,…,h}, 

i∈{1,…,m}: 
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Only the most accurate of models (1) interests us. Since 

the scalar λ imposes the size of S(θ) and adjusts model 

uncertainty, the most precise model, which corresponds to 

the smallest domain S(θ), is obtained by minimizing λ: 

λ δ ε= − −F
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3.2 Dependence problem 

The dependence phenomenon met in interval analysis 

follows from couplings between model equations due to 

common bounded variables. Assume that a vector field θ 

depends on a bounded vector υ: θ=f(υ). If no component υj of υ intervenes in several functions θi of θ at once, that 

is to say if every component of θ is independent according 

to υ, then S(θ) is an axis-aligned orthotope (or box). 

If at least one variable υj is common to several functions θi, the shape of S(θ) is modified because of couplings 

between these θi [3]. Since only models linear in 

uncertainties are considered, S(θ) corresponds necessarily 

to a convex zonotope [16]. It is included in its axis-aligned 

circumscribed orthotope, noted S(θ), which corresponds 

to the smallest box containing S(θ). In fact, the domain 

S(θ) is built by assuming no variable is common, that is 

to say by treating independently each function θi. 

For the treated problem, it is important to notice that the m 

single model outputs yk,i defined in (6) are linked through 

some components of the bounded vector υ k  at the time k. 

Unfortunately, the basic method does not take couplings 

between these outputs into account. Therefore, S(θ) is 

computed such that the measurement vector ~
yk  belongs to 

the axis-aligned orthotope Sλ(yk), instead of the 

zonotope Sλ(yk) defining the true set of feasible output 

vectors according to S(θ). More exactly, since Sλ(yk) is 

included in Sλ(yk), ky�  does not necessarily belong to 

Sλ(yk); therefore, our objective is not reached. 
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Fig 3. Domains Sλ(yk) and Sλ(yk) 

In practice, since Sλ(yk) is an overestimation of Sλ(yk), 

using the former domain increases the inaccuracy of the 

model, and thus reduces the quality of the procedure based 

on this one. For example, in fault diagnosis [2], [16], [17], 

[18] where S() makes it possible to define the set of all 

feasible behaviors of the monitored system, working on 

S() instead of S() increases the number of no-

detections. But, in order to be able to use S(), the 

characterization procedure must take couplings between 

common variables into account. Taking them into 

consideration only in the following step (as a fault 

detection procedure) is not sufficient. That is the reason 

why the following section proposes a multi-

characterization procedure well suited to models 

composed of several output relations. 

3.3 Improved solution 

The objective consists in taking the couplings between 

model output equations into account. In fact, the shape of 

Sλ(yk) is influenced by all common variables and since yk 

is linear in the bounded vector υk (5), this domain is 

necessarily a convex zonotope. In other words, it is a 

convex polytope obtained by the intersection of half-

spaces delimited by two by two parallel hyperplanes 

defining a strip constraint Si (figure 3). The method 

proposed in [17] to construct such a domain consists in 

determining some combinations of the model output 

equations (6) making it possible to eliminate at least one 

common variable υk,j, j∈{1,…,q}. This procedure 

generates the strip constraints Si, which describe the 

relationships between all output relations and define the 

Cartesian equation of the frontiers of the zonotope. 

For example, let us consider the following model: 
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using interval analysis, the following two-sides 

inequalities describing the box Sλ(yk) are obtained: 
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Moreover, two linear combinations of both components 
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common variable υk,1 and υk,2: 
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The intersection of both strip constraints S1 and S2 

described by previous two-sides inequalities with Sλ(yk) 

gives the zonotope Sλ(yk) on figure 3. 

The method proposed in the following for automatically 

computing all inequalities associated with strip constraints 

is based on the results detailed in [17]. By using the model 

(1) and the expression of θk (4), the matrix Mk(λ) 

associated with the bounded vector υk is defined: 

( )k k c k k kθ ε υ− = +y X M λ� , with M X Tk kλ λb g = ~
0 . (8) 

The matrix Mk(λ) is assumed to be full row rank; 

otherwise, redundant equations of (5) are eliminated since 

they do not give more additional information. At the time 

k, the elimination procedure consists in determining all the 

combinations ci, i∈{1,…, 1m
q

−C } of m−1 indexes among 

q. A matrix defined by: 

M m mk i k j k j im
c, , , .,λ λ λb g b g b g a f= ∈−1 1

"  j , 

composed of m−1 columns of Mk(λ), whose indices 

correspond to the combination ci, is created. If Mk,i(λ) is 

full column rank, a row vector hk i
T
,  is computed such that: 

h Mk i
T

k i, , λb g = 0 . 

In fact, due to the particular structure of Mk(λ), the 

parameter λ does not modify the rank of Mk,i(λ) when it is 

different from 0 (i.e when some parameter uncertainties 

exist). Since λ is unknown during this step, the projection 

vector hk,i is found by imposing arbitrary λ=1 and working 

on Mk,i(1) instead of Mk,i(λ). 

In fact, the vector hk,i describes one linear combination 

of outputs yk,i, i∈{1,…,m} making it possible to eliminate 

all the common variables, whose indices belong to ci. 

After multiplying (8) by hk i
T
, , interval arithmetic is used to 

express the following two-sides inequality: 
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with ( )k ,ε δ δ= −  ε εS , with δ ε εδ= " ",i

T
. 

At the time k, the expression (9) defines one of the strip 

constraints Si describing Sλ(yk) (excepted those common 

with Sλ(yk) previously given by (7)). In order to test if 

the sensor vector belongs to the value set of the unknown 

output vector, yk is replaced by ky�  in (9). Let nk be the 

number of the obtained strip constraints, then λ verifies: 
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At the time k, the parameter λ has to verify an inequality 

system composed of the m constraints (7) and the nk other 

ones (9). By assuming that the coefficients θc and δε are 

fixed, the optimal value of the parameter λ corresponds to: 
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Fig 4. Width of a strip constraint Si 

In this way, every observation ~
yk  belongs to all strip 

constraints defining Sλ(yk). Moreover, if the center θc and 

the bounds δε are a priori fixed, the most precise model 

with respect to the data set is obtained since parameter 

uncertainties are minimal. 

To conclude, it is possible to optimize the (p+1+m)-tuple 

of coefficients (θc,λ,δε) if a criterion J is chosen. Thus, the 

chosen solution is the sum of the widths wk,(.) of all the 

strip constraints of Sλ(yk) (figure 4) given by (7) and (9): 

( ) 0
1

2 2 T
k , j j k , jw ,δ = + x Tε ε,λ δ λ � , { }1j , ,m∀ ∈ " , 

( ) 0
1

2 2T T
k ,i k ,i k ,i kw ,δ δ= +h h X Tε ελ λ� , { }1 ki , ,n∀ ∈ " . 

On the horizon h, the criterion J becomes: 
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kn mh
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k i

J w ,δ+

= =
= ∑ ∑ ε λ . (11) 

Even if θc does not appear in (11), J depends implicitly on 

it by means of constraints (9) to be satisfied since the 

value of θc directly influences the parameter λ as shown 

on the figure 2. In fact, this is a well-known linear 

optimization problem under linear inequality constraints. 
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Fig 5. Linear optimization problem 

4 Example 

For example, consider the following “physical” system, 

whose “sensor” outputs are simulated on the time horizon 

h=100 and are represented by symbols “+” in figure 6: 
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The model used for the characterization procedure is 

slightly different and is given as: 

N
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which corresponds to the following constraints: 

( )( )1 1 2 1
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In a general manner, the time-variant regression matrix 
~
Xk  depends on measurements, and thus the size and the 

shape of Sλ(yk) change at each time k on the time horizon 

h. In this example, 
~
Xk  is reduced to the identity matrix in 

order to simplify the representation of Sλ(yk). In this way, 

this domain is time-invariant and only one value set is 

drawn for the whole time horizon h; thus it is easier to 

verify if all the observations ~
yk  belong to Sλ(yk). 

4.1 Basic method 

At first, the basic method is applied to previous relations 

(13) and gives the following result: λ =0 98. , what leads to 

both domains Sλ=0.98(yk) and Sλ=0.98(yk) drawn in figure 

5. 
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Fig 6. Results of the characterization procedure 

Measurements belong to the axis-aligned orthotope 

Sλ=0.98(yk) but, as expected, some of them are not inside 

the characterized zonotope Sλ=0.98(yk). Due to the structure 

of the matrix T0, both bounded variables υk,i, i∈{1,2}, are 

common, that is the reason why some dependencies exist 

between both equations (13). 

The value set associated with the simulated model (12) is 

also represented. Because of the limited size of the data 

set, if all measurements are logically found inside this 

domain, none of them is located on one of its frontiers 

since the number of points is low. 

4.2 Improved method 

Let us consider the model (13) used for the 

characterization procedure. Two linear combinations of 

both components yk,1 and yk,2 make it possible to eliminate 

respectively each common variable υk,1 and υk,2: 

1 2 1 1 2

1 2 2 1 2

2
2

k , k , k , k , k ,

k , k , k , k , k ,

y y
y y

+ = + +− = + −λυ ε ελυ ε ε , (15) 

what leads to the following two-sides inequalities: 

1 2 1 1 2

1 2 2 1 2

0 2 2 0 2
0 2 2 0 2

k , k , k , k , k ,

k , k , k , k , k ,

y y . y y .
y y . y y .

+ − ≤ ≤ + + − − ≤ ≤ − +
λυλυ . (16) 

Let us notice: 

M X Tk kλ λ λb g= = −LNM OQP
~

0
1 1
1 1

. 

The numeric algorithm reminded in section  3.3 makes it 

possible to generate systematically expressions (16). At 

first, the combinations ci, i∈{1,…, 1m
q

−C } of 1 1m − =  

index among q=2  indices are determined. In our case, 

one index among the set {1,2} gives two combinations 

c1={1} and c2={2}. For each combination ci, if the matrix 

composed of the columns of Mk 1a f , whose indexes 

correspond to the elements of ci, is full column rank, then 

a vector hi orthogonal to this matrix is computed. 

Numerically, the following results are obtained: 

[ ]1 1 1T = −h ,    1 2 2 1 22k , k , k , k , k ,y y− = + −λυ ε ε , 

[ ]2 1 1T =h ,      1 2 1 1 22k , k , k , k , k ,y y+ = + +λυ ε ε , 

which corresponds to previous expressions (15). At the 

end, by replacing yk by ky�  in (14) and (16), the following 

two-sides inequalities must be satisfied at each time k: 

( )( )1 1 2 1

2 1 2 2

1 2 1 1 2

1 2 2 1 2

0 1 0 1

0 1 0 1

0 2 2 0 2
0 2 2 0 2

k , k , k , k ,

k , k , k , k ,

k , k , k , k , k ,

k , k , k , k , k ,

y . y .

y . y .

y y . y y .
y y . y y .

 − ≤ + ≤ + − ≤ − ≤ + + − ≤ ≤ + + − − ≤ ≤ − +

λ υ υ
λ υ υλυλυ

� �
� �
� � � �
� � � �

. 

According to (10), the constraints to be respected are: 
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The value of the parameter λ is 1.08. Moreover, zonotopes 

Sλ=1.08(yk) and Sλ=0.98(yk) are represented in figure 7. 
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Fig 7. Results of the multi-characterization 

As expected, Sλ=1.08(yk) contains all measurements. For 

the imposed values of θc and δε,i, i∈{1,2} (13), the 

characterized model is the most precise one since a 

smaller value of λ leads to some measurements, which 

cannot belong to Sλ(yk). The difference between Sλ=1.08(yk) 

and the value set associated with the simulated model is 

due to the small number of data samples and the different 

values of the matrices T0 used in (12) and (13). 

Now, let us consider another simulation. The matrix T0 of 

the characterized model (13) is the same as the one of the 

simulated model in order to easily compare the obtained 

results: 

0 8 1 2
1 1k c k k
. .θ υ ε = + +−  y λ . (17) 

The (2+1+2)-tuple of coefficients (θc,λ,δε) has to 

minimize the precision criterion (11). The data set is 

composed of 5.103 measurement vectors ~
yk . By assuming 

that both bounds δε,i are equal, the results are given as: 

θ c = −L
N
MM

O
Q
PP

−
−

110

810

3

3

.

.
, λ = 0 98.  and δ ε , .i = 0 19 . (18) 

The difference between (18) and the theoretic values: 

θ c = L
NM
O
QP

0

0
, λ = 1 and δ ε , .i = 0 2 , 

is due to the finite size of data samples. Despite of this 

difference, the model (17) with estimated parameters (18) 

fully explains all measurements. 

5 Conclusion 

An algorithm for characterizing uncertainties in static 

linear models containing several output relations is 

proposed. The main contribution of this work concerns the 

taking into account of the couplings between bounded 

variables, which impose the shape of the studied value set. 

A precision criterion is defined in order to compute the 

most precise model. The proposed technique may be 

extended to dynamical systems provided that they are not 

represented by a recursive form. Moreover, it is possible 

to apply different weights λi to each column of the matrix 

T0 and thus to adjust the shape of the value set S θa f. 
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