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Modélisation Mathématique et Analyse Numérique

IMPLICIT-EXPLICIT RUNGE–KUTTA SCHEMES AND FINITE ELEMENTS

WITH SYMMETRIC STABILIZATION FOR ADVECTION–DIFFUSION

EQUATIONS

Erik Burman1 and Alexandre Ern2

Abstract. We analyze a two-stage explicit-implicit Runge–Kutta scheme for time discretization of

advection–diffusion equations. Space discretization uses continuous, piecewise affine finite elements

with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well.

The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated

implicitly. Our analysis hinges on L
2-energy estimates on discrete functions in physical space. Our

main results are stability and quasi-optimal error estimates for smooth solutions under a standard

hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-

dominated regimes. The theory is illustrated by numerical examples.
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1. Introduction

We consider the transient advection–diffusion equationconv_diff

∂tu + Bu + Au = f in Ω × (0, tF), (1a)

u = 0 on ∂Ω × (0, tF), (1b)

u(·, t = 0) = u0 in Ω, (1c)

where Ω is a polyhedron in R
d with boundary ∂Ω, Bu := β·∇u, Au := −µ∆u, tF a finite positive time, β

a divergence-free velocity field, µ > 0 the diffusion coefficient, f the source term, and u0 the initial datum.
Extensions of the present analysis to advection fields with nonzero divergence and inclusion of non-stiff zero-
order terms is straightforward; accounting for smoothly variable diffusion coefficient is also feasible.

In the stationary case, it is well-known that the standard Galerkin finite element method has poor stability
properties in the advection-dominated regime, resulting in suboptimal convergence for smooth solutions and
spurious oscillations when approximating solutions with sharp layers. Different approaches have been proposed
to improve this behavior, such as the streamline upwind Petrov–Galerkin method (SUPG) [4,24] and standard
Galerkin methods with symmetric stabilization in various flavors, e.g., discontinuous Galerkin (DG) [17,19,25,
26], subgrid viscosity [20,21], orthogonal subscale stabilization [14,15], local projection stabilization [3,29], and
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continuous interior penalty on interelement normal gradient jumps (CIP) [5, 11]. All these methods lead to
similar L2-norm error estimates for smooth solutions, resulting in the loss of half a power of h in the advection-
dominated regime (compared to a full power in the unstabilized case). For solutions with sharp layers, it has
been proven for SUPG [24], DG [22], and CIP [10] that quasi-optimal convergence is retained away from layers,
hence prohibiting the global spreading of spurious oscillations.

In the transient case, DG-based time discretization has been the favored alternative for SUPG [24], whereas
Runge–Kutta (RK) methods have been popular for time discretization combined with DG in space [13]. For
symmetric stabilizations in general, standard A-stable finite difference methods in time have been shown to be
stable and optimally convergent [9, 15, 18, 21]. Similar results for SUPG and the transient advection–diffusion
equation are very recent [6, 12]. The implicit time stepping by A-stable methods leads to a nonsymmetric
matrix to be inverted at each time step. Moreover, treating nonlinear transport operators with such methods
or incorporating nonlinear slope limiters can be quite demanding computationally. Ideally, one would like to
treat the advective and stabilization operators explicitly and the diffusive operator implicitly. A suitable class
of methods is that of implicit-explicit (IMEX) RK methods. The application of IMEX methods to partial
differential equations (PDEs) was introduced in [16], and IMEX RK methods were first proposed in [1,2]. From
a computational viewpoint, IMEX RK methods only require symmetric systems to be solved at each time step,
and the stencil of the corresponding matrix is that of the diffusion operator. Moreover, nonlinear transport
operators and nonlinear slope limiters can be treated explicitly.

Although a substantial amount of literature exists on IMEX RK methods, deriving stability and error es-
timates for stabilized finite elements combined with IMEX RK time discretization remains, to the authors’
knowledge, an open issue. In particular, we aim at an analysis that is valid in all flow regimes, that is, either
advection-dominated or diffusion-dominated. Following the seminal work of Levy and Tadmor [27], the present
analysis relies on L2-energy estimates, that is, we work directly with discrete functions in the physical space. In
other words, we account for the full geometric structure of eigenvectors, instead of the more classical approach
using only scalar eigenvalue arguments which may be misleading in the context of nonnormal operators.

Concerning IMEX RK schemes, a first important issue is that the analysis of the truncation error in time
by means of Butcher tables is not sufficient in the context of PDEs. In particular, this error involves the
partial differential operators A and B acting on suitable functions associated with the intermediate stages of
the scheme. In the IMEX scheme, bounding (high-order) derivatives of these functions is not straightforward
and, in particular, requires a careful study of the role played by boundary conditions. A second important issue
is that the explicit part of the RK scheme is anti-dissipative, that is, it produces energy, so that this energy
production must be controlled by the stability induced by space discretization. In the context of finite element
methods with symmetric stabilization, explicit (second- and third-order) RK methods were analyzed in [8], in
particular for the pure advection equation, leading to stability and error estimates for smooth solutions. The
presence of the diffusion operator poses additional difficulties to be tackled herein.

The two-stage IMEX RK scheme we consider for time discretization is the so-called SSP2(2,2,2) L-stable
scheme proposed in [28] for hyperbolic systems with stiff relaxation terms and no sources. This scheme combines
an explicit two-stage RK scheme for the transport operator together with a diagonally implicit, two-stage RK
scheme for the stiff relaxation terms. Moreover, this scheme is formulated in terms of a parameter γ, and the
value γ = γ∗ := 1 − 1√

2
≃ 0.293 is considered in [28]. Herein, we apply and analyze, for the first time, this

scheme in the context of advection–diffusion equations. Space discretization is performed using continuous,
piecewise affine finite elements with CIP as a specific example of symmetric stabilization; DG methods can be
used as well, as discussed at the end of the manuscript. We treat the advection and stabilization operators
explicitly and the diffusion operator implicitly.

Our main results are stability and error estimates for smooth solutions in all flow regimes. These results are
formulated in terms of the Courant and Péclet numbers defined as

Co :=
στ

h
, Pe :=

σh

µ
,
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where σ := ‖β‖L∞(Ω) is the reference velocity, h the mesh size, and τ the time step. For simplicity, the time
step is taken to be constant, and we use a single Péclet number for the whole domain. In all flow regimes,
we assume a hyperbolic type CFL restriction on the time step of the form Co ≤ ̺ with ̺ independent of the
mesh size h, the time step τ , and the problem data. Furthermore, the analysis of the truncation error in time
requires the technical assumptions that the normal component of β and the source term f vanish on ∂Ω and that
elliptic regularity holds for the Laplace operator. In the advection-dominated regime (Pe ≥ 1), stability and
convergence are achieved for γ ∈ (0, 1

2 ); to fix the ideas, we take γ ∈ [ 15 , 2
5 ] (the actual value of γ influences only

the numerical bound on the Courant number). Our main convergence result (Theorem 4.2 and Proposition 4.1)
takes the form

‖u(tF) − uN
h ‖L +

(

τ
N
∑

n=1

µ‖∇(u(tn) − un
h)‖2

Ld

)1/2

. τ3/2 + σ1/2h3/2.

The estimate for the space error is quasi-optimal (1/2-suboptimal), similarly to the steady case. The estimate
for the time error is also quasi-optimal (1/2-suboptimal considering that a two-stage IMEX RK scheme is used).
Owing to the CFL restriction on the time step, this estimate is actually sufficient to equilibrate space and time
errors. In the diffusion-dominated regime (Pe ≤ 1), stability and convergence are achieved for γ in a sufficiently
small neighborhood of γ∗. In addition to the bound on the Courant number (which becomes trivial in the pure-
diffusion limit), the time step is restricted by the bound τ ≤ (t∗/µ)1/2h where t∗ is a reference time defined
in §2.1. Our main convergence result (Theorem 4.3) takes the form

(

τ

N
∑

n=1

µ‖∇(u(tn) − un
h)‖2

Ld

)1/2

. τ + µ1/2h.

The estimate on the space error is optimal, while the estimate on the time error is 1-suboptimal, but, again,
owing to the CFL restriction, it is actually sufficient to equilibrate space and time errors. Finally, still in the
diffusion-dominated regime, we prove that (Proposition 4.2)

‖u(tF) − uN
h ‖L . τ3/2 + σ1/2h3/2 + µ−1/2h2.

This estimate is 1/2-suboptimal in time and in space, but, as the other estimates, equilibrates both errors owing
to the CFL restriction. Moreover, as σ → 0, that is, in the pure diffusion limit, second-order convergence is
recovered in h. Finally, we observe that under an additional assumption on the boundary, the convergence order
in time of all the above estimates can be improved by a factor τ1/2; see Remark 3.1.

The material is organized as follows. §2 states the basic assumptions, presents the setting for the space and
time discretization, and introduces the truncation error in time together with the error equations. §3 is devoted
to the analysis of the truncation error and the approximation error in space. §4 contains the stability and error
analysis, while §5 presents numerical results. §6 discusses extensions to other space discretization schemes. In
what follows, we often abbreviate a . b the inequality a ≤ Cb for positive C independent of the mesh size h, the
time step τ , and the problem data. We only keep track of constants if they are to be used later in thresholds
for the Courant number.

2. The setting
semi

In this section, we specify the basic assumptions for the time evolution problem (1) and the discretization
parameters. We also present the stabilized finite element method for space discretization together with the two-
stage IMEX RK scheme for time discretization. Then, we identify the truncation error in time upon introducing
suitable intermediate functions associated with the intermediate stages of the IMEX RK scheme, and we derive
the error equation. Finally, we collect important stability and boundedness properties of the discrete operators
used for space discretization.



4 TITLE WILL BE SET BY THE PUBLISHER

2.1. Basic assumptions
sec:basic

Let L := L2(Ω) and let V := H2(Ω) ∩ H1
0 (Ω). We assume that the exact solution u and the source term f

are such that

u ∈ C0([0, tF];H4(Ω) ∩ H1
0 (Ω)) ∩ C1([0, tF];H3(Ω)) ∩ C3([0, tF];L), (2a) eq:hyp.u

f ∈ C0([0, tF];H2(Ω) ∩ H1
0 (Ω)) ∩ C2([0, tF];L), (2b) eq:hyp.f

and we observe that (2b) means, in particular, that f |∂Ω = 0. We assume that the domain Ω is convex so that
elliptic regularity holds true for the Laplace operator with homogeneous Dirichlet boundary conditions. Finally,
we assume that β is in the Sobolev space [W 1,∞(Ω)]d, so that β is bounded and has bounded derivatives, and
that the normal component of β vanishes at the boundary, that is, ν·β|∂Ω = 0 where ν denotes the unit outward
normal to Ω. For later use, we set σ1 := ‖∇β‖[L∞(Ω)]d,d and observe that σ−1

1 can be interpreted as a time

scale. We also consider the reference time t∗ := min(σ−1
1 , tF).

An important consequence of the fact that the normal component of β and the source term f vanish at the
boundary is the following.

prop:ABu.dO Proposition 2.1 (Boundary value of Bu(t) and Au(t)). For all t ∈ [0, tF],

Bu(t)|∂Ω = Au(t)|∂Ω = 0. (3)

Proof. The fact that Bu(t)|∂Ω = 0 results from β having zero normal component on ∂Ω and u vanishing on ∂Ω.
The fact that Au(t)|∂Ω = 0 then results from the evolution equation since f(t)|∂Ω = ∂tu(t)|∂Ω = 0. �

Concerning the discretization parameters, we always assume to fix the ideas that Co ≤ 1; bounds on the
Courant number with different constants will be introduced later. We also assume the following mild reverse-
parabolic CFL inequality

h2 . µ̄τ, (4) eq:reverse.CFL

where µ̄ := max(µ, σ2t∗). Finally, we make the mild assumption that the mesh size and the time step resolve
the spatial variations of the advection velocity, that is,

σ1h ≤ σ, σ1τ ≤ 1, (5)

and observe that the second bound implies τ ≤ t∗ since τ ≤ tF as well.

2.2. Space discretization

Let {Th}h>0 be a family of affine, simplicial meshes of Ω. We assume that the meshes are kept fixed in time
and that the family {Th}h>0 is quasi-uniform. It is also possible to work with shape-regular mesh families. In
this case, as usual, the space scale in the CFL condition is no longer h, but the smallest element diameter in
the mesh. Mesh faces are collected in the set Fh which is split into the set of interior faces, F int

h , and boundary
faces, Fext

h . For a smooth enough function v that is possibly double-valued at F ∈ F int
h with F = ∂T− ∩ ∂T+,

we define its jump at F as [[v]] := v|T− − v|T+ , and we fix the unit normal vector to F , denoted by νF , as
pointing from T− to T+. The arbitrariness in the sign of [[v]] is irrelevant in what follows.

Let Vh be the finite element space spanned by continuous and piecewise affine functions. Set V (h) :=
H2(Ω)+Vh. The space semi-discretized formulation can be written as follows: For all t ∈ [0, tF], find uh(t) ∈ Vh

such that

∂tuh(t) + Bhuh(t) + Ahuh(t) = fh(t), (6) space_semi_disc

with initial condition uh(0) = πhu0 and source term fh := πhf , where πh denotes the L-orthogonal projection
onto Vh. The discrete linear operators Bh : V (h) → Vh and Ah : V (h) → Vh are such that for all (z, wh) ∈
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V (h) × Vh,

(Bhz, wh)L := (β·∇z, wh)L +
∑

F∈F int
h

Sciph2
F (|νF ·β|νF ·[[∇z]], νF ·[[∇wh]])L,F , (7a)

(Ahz, wh)L := (µ∇z,∇wh)Ld − (µ(ν·∇z), wh)L,∂Ω − (µz, ν·∇wh)L,∂Ω + Sbch
−1(µz,wh)L,∂Ω. (7b)

Here, (·, ·)L denotes the L2(Ω)-inner product (with associated norm ‖·‖L) and (·, ·)Ld the [L2(Ω)]d-inner product
(with associated norm ‖·‖Ld), while for a subset ω ⊂ Ω (a mesh face or a collection thereof), (·, ·)L,ω denotes the
corresponding L2(ω)-inner product. We observe that the homogeneous Dirichlet boundary condition is weakly
enforced in Ah (and that the additional boundary term

∑

F∈Fext
h

∩∂Ω−(|ν·β|z, vh)L,F , where ∂Ω− denotes the

inflow boundary, has been discarded from Bh since we assume ν·β|∂Ω = 0). Moreover, the user-dependent
parameter Scip is positive, while the user-dependent parameter Sbc is sufficiently large (see §2.6).

The discrete linear operators Ah and Bh satisfy important stability and boundedness properties collected
in §2.6. For the time being, we record the following consistency property: For all v ∈ V ,

Bhv = πh(Bv), Ahv = πh(Av). (8)

2.3. Time discretization

For 0 ≤ n ≤ N with N := ⌊tF/τ⌋, a superscript n indicates the value of a function at the discrete time nτ ,
and for 0 ≤ n ≤ N − 1, we set In := (nτ, (n + 1)τ ]. For a real parameter γ ∈ (0, 1

2 ), we consider the following
time discretization scheme:eq:RK2

vn
h = un

h − γτAhvn
h + γτfn

h , (9a) eq:RK2.a

wn
h = un

h − τBhvn
h − (1 − 2γ)τAhvn

h − γτAhwn
h + (1 − γ)τfn

h , (9b) eq:RK2.b

un+1
h = un

h − 1
2τBh(vn

h + wn
h) − 1

2τAh(vn
h + wn

h) + τf
n+ 1

2

h . (9c) eq:RK2.c

Here, f
n+ 1

2

h := πhf((n + 1
2 )τ) can be replaced by any second-order approximation in time, e.g., 1

2 (fn
h + fn+1

h ).
We observe that the operator Bh is treated using an explicit two-stage RK scheme and the operator Ah using
a diagonally implicit two-stage RK scheme. By using equation (9a) in (9b) and equations (9a)–(9b) in (9c), we
obtain the following alternative form of the system (9):eq:RK2.bis

vn
h = un

h − γτAhvn
h + γτfn

h , (10a) eq:RK2.aa

wn
h = vn

h − τBhvn
h − (1 − 3γ)τAhvn

h − γτAhwn
h + (1 − 2γ)τfn

h , (10b) eq:RK2.bb

un+1
h = 1

2 (vn
h + wn

h) − 1
2τBhwn

h − 1
2γτAhvn

h − 1
2 (1 − γ)τAhwn

h + τ(f
n+ 1

2

h − 1
2fn

h ). (10c) eq:RK2.cc

2.4. Truncation error in time

The goal of this section is to identify the truncation error in time. Recalling the operators B : V ∋ v 7→
β·∇v ∈ L and A : V ∋ v 7→ −µ∆v ∈ L, we introduce, for all 0 ≤ n ≤ N − 1, the auxiliary functions
vn, wn ∈ H1

0 (Ω) such that (compare with (9a)–(9b))eq:rec

vn + γτAvn = un + γτfn, (11a) eq:rec.v

wn + γτAwn = un − τBvn − (1 − 2γ)τAvn + (1 − γ)τfn, (11b) eq:rec.w

or, equivalently, subtracting (11a) from (11b) (compare with (10b))

wn + γτAwn = vn − τBvn − (1 − 3γ)τAvn + (1 − 2γ)τfn. (12) eq:rec.w.a
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Moreover, owing to elliptic regularity, vn, wn ∈ V .

def:Psi Definition 2.1 (Truncation error). The truncation error Ψn ∈ L at the discrete time nτ is defined as

Ψn := τ−1(un+1 − un) + 1
2 (A + B)(vn + wn) − fn+1/2. (13) eq:def.Psi

It is straightforward to verify that (compare with (9c) and (10c))

un+1 = un − 1
2τB(vn + wn) − 1

2τA(vn + wn) + τfn+1/2 + τΨn

= 1
2 (vn + wn) − 1

2τBwn − 1
2γτAvn − 1

2 (1 − γ)τAwn + τ(fn+1/2 − 1
2fn) + τΨn. (14) eq:u.n+1

2.5. Error equation

To formulate the error equation, we define

ξn
h = un

h − πhun, θn
h = vn

h − πhvn, ζn
h = wn

h − πhwn, (15a)

ξn
π = un − πhun, θn

π = vn − πhvn, ζn
π = wn − πhwn. (15b) eq:def.pi.n

Hence, the approximation error can be written as un − un
h = −ξn

h + ξn
π and similarly for vn − vn

h and wn − wn
h .

The functions ξn
π , θn

π , and ζn
π are classically used to measure the space approximation errors.

Lemma 2.1 (Error equation). There holdseq:pert

θn
h = ξn

h − γτAhθn
h + ταn

h, (16a) eq:pert.a

ζn
h = θn

h − τBhθn
h − (1 − 3γ)τAhθn

h − γτAhζn
h + τβn

h , (16b) eq:pert.b

ξn+1
h = 1

2 (θn
h + ζn

h ) − 1
2τBhζn

h − 1
2γτAhθn

h − 1
2 (1 − γ)τAhζn

h + τδn
h − τΨn

h, (16c) eq:pert.c

where Ψn
h := πhΨn and

αn
h = γAhθn

π , βn
h = Bhθn

π + (1 − 3γ)Ahθn
π + γAhζn

π , δn
h = 1

2Bhζn
π + 1

2γAhθn
π + 1

2 (1 − γ)Ahζn
π .

Proof. Apply the projector πh to (11a), (12), and (14), use consistency, and subtract the resulting equations
from (10). �

2.6. Stability and boundedness of the discrete operators Ah and Bh
sec:stab.bnd.AB

We define the following seminorm and norm on V (h),

|z|2S :=
∑

F∈F int
h

Sciph2
F ‖|νF ·β|1/2νF ·[[∇z]]‖2

L,F , (17a) eq:def.S

‖z‖2
A := µ‖∇z‖2

Ld + µh−1‖z‖2
L,∂Ω. (17b) eq:def.norme.A

It is well-known that provided Sbc is sufficiently large, there is ca > 0 such that for all vh ∈ Vh,

(Ahvh, vh)L ≥ ca‖vh‖2
A. (18) eq:Ah.dissip

To allow for a more compact notation, we also consider the norm ‖vh‖a := (Ahvh, vh)
1/2
L for all vh ∈ Vh.

Furthermore, integration by parts readily yields

(Bhvh, vh)L = |vh|2S . (19) eq:Bh.dissip
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We now examine briefly some important boundedness properties of the discrete operators Ah and Bh. In
addition to the |·|S-seminorm and the ‖·‖A-norm defined above, we consider the following norms on V (h),eq:norm.AB*

‖z‖B∗ := |z|S + σ1/2h−1/2‖z‖L, (20a)

‖z‖A∗ := ‖z‖A + µ1/2h1/2‖ν·∇z‖L,∂Ω. (20b)

These norms will be used to measure the space approximation errors. The following properties of Bh are
established in [5, 7, 8].

lem:bnd.B Lemma 2.2 (Boundedness of Bh). For all z ∈ V (h),

‖Bhz‖L ≤ σ‖∇z‖Ld + CSσ1/2h−1/2|z|S , (21) eq:bnd.B

for all (z, vh) ∈ V (h) × Vh,

|(Bh(z − πhz), vh)L| . ‖z − πhz‖B∗(|vh|S + σ
1/2
1 ‖vh‖L), (22) eq:OSS.B

and for all (vh, wh) ∈ Vh × Vh,

|(Bhvh, wh − π0
hwh)L| ≤ CBσ1/2h−1/2(|vh|S + σ

1/2
1 ‖vh‖L)‖wh − π0

hwh‖L, (23) eq:OSS.B’

where π0
h denotes the L-orthogonal projection onto piecewise constant functions.

Using discrete trace and inverse inequalities, together with (21) yields for all vh ∈ Vh,

|vh|S . σ1/2h−1/2‖vh‖L, ‖Bhvh‖L . σh−1‖vh‖L, (24) eq:bnd.B.bis

while using (22) and the previous bound on |vh|S yields for all z ∈ V (h),

τ‖Bh(z − πhz)‖L . τ1/2Co1/2‖z − πhz‖B∗. (25) eq:bnd.B.star

The following properties of Ah are established using fairly standard arguments, in particular discrete trace and
inverse inequalities and the uniform equivalence of the ‖·‖A- and ‖·‖A∗-norms on Vh.

lem:bnd.A Lemma 2.3 (Boundedness of Ah). For all (z, wh) ∈ V (h) × Vh,

|(Ahz, wh)L| . ‖z‖A∗‖wh‖A so that ‖Ahz‖L . µ1/2h−1‖z‖A∗. (26) eq:cont.Ah

Additionally, for all (zh, wh) ∈ Vh × Vh,

|(Ahzh, wh)L| . ‖zh‖A‖wh‖A so that ‖Ahzh‖L . µ1/2h−1‖zh‖A. (27) eq:cont.Ahh

3. Truncation and space approximation errors
sec:trunc

The goal of this section is to establish bounds on the truncation error Ψn defined by (13) and on the space
approximation errors associated with the functions θn

π and ζn
π defined by (15b). To this end, we first derive

bounds on the auxiliary functions at intermediate stages, namely the functions vn and wn defined by (11).
Recall that owing to elliptic regularity, these functions are in V = H2(Ω) ∩ H1

0 (Ω).
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3.1. Bounds on the auxiliary functions at intermediate stages

Bounding Sobolev norms of the functions vn and wn hinges on the stability properties of the operator
(I + γτA) (where I is the identity in V ).

lem:basic Lemma 3.1 (Stability of (I + γτA)). Let v ∈ L and let u ∈ V be such that

(I + γτA)u = v. (28) eq:basic.eq

Then,

‖u‖L . ‖v‖L, (µτ)1/2‖∇u‖Ld . ‖v‖L. (29) eq:basic1

If, additionally v ∈ H1
0 (Ω),

‖∇u‖Ld . ‖∇v‖Ld , (µτ)1/2‖∆u‖L . ‖∇v‖Ld . (30) eq:basic2

If, additionally v ∈ V ,

‖∆u‖L . ‖∆v‖L, (µτ)1/2‖∇∆u‖Ld . ‖∆v‖L. (31) eq:basic3

Proof. Take the L-scalar product of (28) with u and integrate by parts to infer (29), apply the same procedure
to (28) with ∆u observing that ∆u|∂Ω = 0 owing to (28) to infer (30), and take the Laplacian of (28) and apply
the same procedure with ∆u to infer (31). �

As a first application, we derive bounds on (vn − un) and on vn.

lem:bnd.v-u Lemma 3.2 (Bounds on (vn − un) and vn). For s ∈ {1, 2}, set Kn
s := |fn|Hs + µ|un|Hs+2 . Then,

‖∇(vn − un)‖Ld . τKn
1 , ‖∆(vn − un)‖L . τKn

2 , (µτ)1/2‖∇∆(vn − un)‖L . τKn
2 , (32) eq:bnd.v-u

and letting K̃n
s = |un|Hs + τKn

s ,

‖∇vn‖Ld . K̃n
1 , |vn|H2 . K̃n

2 . (33) eq:bnd.v

Proof. Take u := vn −un so that v = γτ(fn −Aun) owing to (11a). Since v ∈ V (recall that fn and Aun vanish
on ∂Ω), the bound on ‖∇(vn − un)‖Ld results from (30) and the two other bounds on (vn − un) from (31).
Finally, the bounds (33) on vn result from (32), the triangle inequality, and elliptic regularity. �

As a second application, we derive bounds on (wn − un) and on wn.

lem:bnd.w-u Lemma 3.3 (Bounds on (wn − un) and wn). Let Kn
w−u := Kn

1 + σK̃n
2 + σ1K̃

n
1 . Then,

‖∇(wn − un)‖Ld . τKn
w−u, (µτ)1/2‖∆(wn − un)‖L . τKn

w−u, (34) eq:bnd.w-u

and

(µτ)1/2|wn|H2 . (µτ)1/2|un|H2 + τKn
w−u. (35) eq:bnd.w

Proof. We first deduce from (11) that

(I + γτA)(wn − un) = γτ(fn − Aun) + γ−1(1 − 2γ)(vn − un) − τBvn. (36) eq:fkv.w-u

As a result, we can apply Lemma 3.1 with u := wn−un and v equal to the right-hand side of (36). We observe that

v ∈ H1
0 (Ω) and that ‖∇v‖Ld . τKn

w−u since, in particular, ‖∇(Bvn)‖Ld ≤ σ|vn|H2 +σ1‖∇vn‖Ld . σK̃n
2 +σ1K̃

n
1

where we have used (33) to bound vn. Hence, the bounds (34) on (wn − un) result from (30). Finally, the
bound (35) on wn results from (34), the triangle inequality, and elliptic regularity. �
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3.2. Bound on the truncation error

In this section, we derive two bounds on the truncation error. To this end, it is useful to consider the following
equivalent expression for Ψn (the proof, which amounts to a direct verification, is skipped for brevity).

lem:Psi Lemma 3.4 (Equivalent expression for Ψn). Let xn ∈ V be defined such that

xn := 1
2 (vn + wn) − un − 1

2τ∂tu
n. (37) eq:def.x

Then, letting Ψ̃n := τ−1(un+1 − un − τ∂tu
n − 1

2τ2∂ttu
n) + (fn + 1

2τ∂tf
n − fn+1/2), there holds

Ψn = Ψ̃n + Bxn + Axn. (38) eq:Psi.ABx

We observe that it is necessary to bound spatial derivatives of xn in order to control the terms Bxn and
Axn. Here, the bounds on (vn − un) derived in Lemma 3.2 are instrumental.

lem:bnd.x Lemma 3.5 (Bounds on xn). Let Cn
x := µ1/2Kn

2 + τ1/2(σKn
2 + σ1K

n
1 + µ|∂tu

n|H3). Then,eq:bnd.ABx

‖Bxn‖L . σCn
x τ3/2, (39a) eq:bnd.Bx

‖Axn‖L . µ1/2Cn
x τ, (39b) eq:bnd.Ax

‖xn‖A∗ . µ̄1/2Cn
x τ3/2. (39c) eq:bnd.xA

Proof. A direct calculation shows that

yn := (I + γτA)xn = − 1
2τB(vn − un) − 1

2 (1 − 2γ)τA(vn − un) − 1
2γτ2A∂tu

n. (40) eq:x.y

Applying Lemma 3.1 with u = xn and v = yn and observing that yn ∈ H1
0 (Ω) (for the first term, ν·β as well as

(vn−un) vanish on ∂Ω; for the second term, Avn vanishes on ∂Ω owing to (11a) and Aun by Proposition 2.1; for
the third term, Au(t) vanishes on ∂Ω at all times by Proposition 2.1 and, hence, so does its time-derivative), we
infer using (30) that ‖∇xn‖Ld . ‖∇yn‖Ld and (µτ)1/2‖∆xn‖L . ‖∇yn‖Ld . Using the bounds (32) on (vn−un)
yields ‖∇yn‖Ld . Cn

x τ3/2, whence (39a) and (39b). Finally, a continuous scaled trace inequality together with
elliptic regularity yield

‖xn‖A∗ . µ1/2(‖∇xn‖Ld + h|xn|H2) . µ1/2(‖∇xn‖Ld + h‖∆xn‖L).

Using the reverse-parabolic CFL inequality (4) and the above bounds on ‖∇xn‖Ld and ‖∆xn‖L, we infer

‖xn‖A∗ . µ̄1/2(‖∇xn‖Ld + (µτ)1/2‖∆xn‖L) . µ̄1/2‖∇yn‖Ld ,

whence (39c) results from the bound on ‖∇yn‖Ld . �

We can now state the main result of this section, providing two ways to bound the truncation error. The
first bound (42a) is simpler, but is only first-order in time; the second bound (42b) is of higher-order, namely
3/2, but estimates the diffusive contribution of xn differently. Both bounds will be used in what follows.

lem:bnd.Psi Lemma 3.6. Let

Cn
Ψ := (t∗τ)1/2Cn

u,f + t
1/2
∗ σCn

x + µ̄1/2Cn
x , (41a) eq:Cpsi

C̃n
Ψ := τCn

u,f + τ1/2σCn
x + µ̄1/2Cn

x , (41b) eq:tCpsi
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where Cn
x is defined in Lemma 3.5 and Cn

u,f := ‖u‖C3(In;L) + ‖f‖C2(In;L). Then,

‖Ψn‖L ≤ ‖Ψ̃n‖L + ‖Bxn‖L + ‖Axn‖L . C̃n
Ψτ, (42a) eq:bnd.Psi

‖Ψ̃n‖L + ‖Bxn‖L + t
−1/2
∗ ‖xn‖A∗ . t

−1/2
∗ Cn

Ψτ3/2. (42b) eq:bnd.Psi.sharp

Proof. Using the definition (38) and the triangle inequality leads to

‖Ψn‖L ≤ ‖Ψ̃n‖L + ‖Bxn‖L + ‖Axn‖L,

whence (42a) results from (39a), (39b), and the obvious bound ‖Ψ̃n‖L ≤ Cn
u,fτ2. Furthermore, the second

bound (42b) results from (39a), (39c), and the same bound on ‖Ψ̃n‖L. �

rem:order.time Remark 3.1 (Convergence order in time). Although the two-stage IMEX RK scheme is formally of second-order,

as reflected by the bound on ‖Ψ̃n‖L based on Taylor polynomial expansions on u and f , the bounds on the
truncation error derived in Lemma 3.6 are not of second-order. In fact, although ‖xn‖L is second-order in time
(this results from (40) so that ‖xn‖L ≤ ‖yn‖L and the fact that ‖yn‖L . τ2(σK1 +µK2 +µ|∂tu

n|H2)), the first-
and second-order derivatives of xn are not second-order in time, as reflected by the bounds derived in Lemma 3.5
on ‖Bxn‖L and ‖Axn‖L. The difficulty in deriving higher-order bounds on ‖Bxn‖L and ‖Axn‖L stems from
boundary conditions. To establish the present bounds, we have, in particular, made use of Aun|∂Ω = 0 and
Bun|∂Ω = 0 owing to Proposition 2.1. Under the more restrictive assumption ABun|∂Ω = 0 (which holds true,
e.g., if the normal derivative of β and the Laplacian of the normal component of β vanish on ∂Ω), it is possible to
gain a factor τ1/2 in the bounds on ‖Bxn‖L and ‖Axn‖L. This results from the fact that the function yn defined
by (40) is such that (I+γτA)yn = τ2(zn

1 +zn
2 ) with zn

1 = − 1
2γB(fn−Aun)− 1

2 (1−2γ)γA(fn−Aun)− 1
2γA∂tu

n ∈
H1

0 (Ω) (since ABun|∂Ω = 0) and zn
2 = − 1

2γ(AB − BA)(vn − un) − 1
2γ2τA2∂tu

n ∈ L so that ‖∇yn‖Ld . τ2

(details are skipped for brevity). An alternative assumption leading to the same conclusion is to use periodic
boundary conditions. Finally, we stress that the present bounds are, however, sufficient to equilibrate the space
and time errors in our error estimates in the context of the CFL restriction on the time step.

3.3. Bounds on the space approximation errors

The goal of this section is to bound the ‖·‖A∗- and ‖·‖B∗-norms of θn
π and ζn

π . We first observe that standard
approximation properties in finite element spaces yield for all z ∈ H2(Ω),

‖z − πhz‖B∗ . σ1/2h3/2|z|H2 , ‖z − πhz‖A∗ . µ1/2h|z|H2 . (43) eq:app.star

lem:th.zet Lemma 3.7 (Bound on θn
π and ζn

π ). There holds

‖θn
π‖B∗ + ‖θn

π‖A∗ . (σ1/2h3/2 + µ1/2h)K̃n
2 , (44a) eq:bnd.theta.pi

‖ζn
π ‖B∗ + ‖ζn

π ‖A∗ . (σ1/2h3/2 + µ1/2h)K̃n
2 + τ1/2hKn

w−u. (44b) eq:bnd.zeta.pi

Proof. The bound (44a) readily results from (43) and the bound (33) on |vn|H2 . To bound ‖ζn
π ‖A∗, we use

again (43) together with (35) yielding ‖ζn
π ‖A∗ . µ1/2h|un|H2 + τ1/2hKn

w−u. To bound ‖ζn
π ‖B∗, we first observe

that for a function z ∈ V ,
‖z − πhz‖B∗ . σ1/2h1/2‖∇z‖Ld .

This assertion is clear for the ‖·‖L-norm contribution, while using a discrete trace inequality and the H1-stability
of πh yields

|z − πhz|S = |πhz|S . σ1/2h1/2‖∇πhz‖Ld . σ1/2h1/2‖∇z‖Ld . (45) eq:bnd.z-Piz.S

As a result, starting from the triangle inequality

‖ζn
π ‖B∗ ≤ ‖un − πhun‖B∗ + ‖(wn − un) − πh(wn − un)‖B∗,
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and using the approximation property (43) for the first term together with (45), we infer

‖ζn
π ‖B∗ . σ1/2h3/2|un|H2 + σ1/2h1/2τKn

w−u ≤ σ1/2h3/2|un|H2 + τ1/2hKn
w−u,

where we have used (34) to bound ‖∇(wn −un)‖Ld and the fact that Co ≤ 1. The conclusion is straightforward

since |un|H2 ≤ K̃n
2 . �

4. Stability and convergence analysis
sec:CV.RK2

This section is devoted to the stability and convergence analysis of the IMEX RK scheme (10). Firstly, we
derive a basic energy estimate valid in all flow regimes (Theorem 4.1). On the right-hand side of this estimate
appears an anti-dissipative term together with the time and space discretization errors. Then, we bound the
anti-dissipative term depending on the flow regime, yielding our main convergence results (Theorems 4.2 and 4.3
together with Propositions 4.1 and 4.2).

4.1. Basic energy identity

We begin the analysis with a basic energy identity valid in all flow regimes.

lem:energy.id Lemma 4.1 (Basic energy identity). Assume γ ∈ (0, 1
2 ). There holds

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 1

2τ |θn
h |2S + 1

2τ |ζn
h |2S +

(

1
2 − γ

)

τ‖θn
h‖2

a +
(

1
2 − γ

)

τ‖ζn
h ‖2

a (46) energy.id

+ 1
2γτ‖ζn

h + θn
h‖2

a = 1
2‖ξ

n+1
h − ζn

h ‖2
L + τ(αn

h + 1
2βn

h , θn
h)L + τ(δn

h , ζn
h )L − τ(Ψn

h, ζn
h )L.

Remark 4.1 (Pure advection, role of diffusion). Setting the diffusion coefficient to zero, the energy identity (46)
reduces to the one derived in [8] for explicit RK2 schemes in the purely advective case. Moreover, in the presence
of diffusion, all the additional terms involving the ‖·‖a-norm are dissipative for γ ∈ (0, 1

2 ).

Proof. We multiply equation (16a) by θn
h to obtain using the discrete stability (18) of Ah,

1
2‖θ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L = 1

2‖ξ
n
h‖2

L + (θn
h − ξn

h , θn
h)L = 1

2‖ξ
n
h‖2

L − γτ‖θn
h‖2

a + τ(αn
h, θn

h)L. (47) stab1

Then, we multiply equation (16b) by 1
2θn

h and equation (16c) by ζn
h to obtain

1
2 (ζn

h , θn
h)L = 1

2‖θ
n
h‖2

L − 1
2τ(Bhθn

h , θn
h)L − 1

2 (1 − 3γ)τ‖θn
h‖2

a − 1
2γτ(Ahζn

h , θn
h)L + 1

2τ(βn
h , θn

h)L (48) stab2

and

(ξn+1
h , ζn

h )L = 1
2 (θn

h + ζn
h , ζn

h )L − 1
2τ(Bhζn

h , ζn
h )L − 1

2γτ(Ahθn
h , ζn

h )L − 1
2 (1 − γ)τ‖ζn

h ‖2
a + τ(δn

h − Ψn
h, ζn

h )L. (49) stab3

Summing (47) and (48) we deduce

1
2 (ζn

h , θn
h)L = − 1

2‖θ
n
h − ξn

h‖2
L + 1

2‖ξ
n
h‖2

L − 1
2τ(Bhθn

h , θn
h)L − 1

2 (1 − γ)τ‖θn
h‖2

a − 1
2γτ(Ahζn

h , θn
h)L (50) stab4

+ τ(αn
h + 1

2βn
h , θn

h)L.

Using now the identity (ξn+1
h , ζn

h )L = 1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n+1
h − ζn

h ‖2
L + 1

2‖ζn
h ‖2

L together with (49) and (50), we
infer

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n+1
h − ζn

h ‖2
L + 1

2‖ζ
n
h ‖2

L = 1
2‖ζ

n
h ‖2

L − 1
2‖θ

n
h − ξn

h‖2
L + 1

2‖ξ
n
h‖2

L − 1
2τ(Bhθn

h , θn
h)L − 1

2τ(Bhζn
h , ζn

h )L

− 1
2 (1 − γ)τ‖θn

h‖2
a − γτ(Ahζn

h , θn
h)L − 1

2 (1 − γ)τ‖ζn
h ‖2

a + τ(αn
h + 1

2βn
h , θn

h)L + τ(δn
h , ζn

h )L − τ(Ψn
h, ζn

h )L.

Rearranging the relation, completing the square in the three terms involving the ‖·‖a-norm, and using the
discrete stability (19) of Bh yields the assertion. �
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4.2. Bound on source terms and basic energy estimate

The goal of our second step is to bound the contributions of the source terms αn
h, βn

h , δn
h , and Ψn

h on the
right-hand side of the basic energy identity (46). To this purpose, we exploit the presence of the |·|2S-terms and
the ‖·‖2

a-terms on the left-hand side (Lemma 4.2) so as to arrive at a basic energy estimate valid in all flow
regimes and where the only term left to be bounded is the anti-dissipative term 1

2‖ξ
n+1
h − ζn

h‖2
L (Theorem 4.1).

To fix the ideas, we assume γ ∈ [ 15 , 2
5 ]. A larger interval included in (0, 1

2 ) can be considered; this will only

modify the numerical factors in front of the ‖·‖2
a-terms. We introduce the quantity

En
h := t

−1/2
∗ ‖ξn

h‖L + ‖θn
π‖B∗ + ‖θn

π‖A∗ + ‖ζn
π ‖B∗ + ‖ζn

π ‖A∗ + Cn
Ψτ3/2, (51) eq:def.Ehn

which collects, in addition to t
−1/2
∗ ‖ξn

h‖L, the space and time approximation errors. The contribution of the
truncation error is already bounded in terms of the time step and the constant Cn

Ψ defined by (41a); instead,
we do not yet bound the space approximation errors to keep track of these quantities in the proofs below.

lem:source Lemma 4.2 (Bound on the source terms). Assume γ ∈ [ 15 , 2
5 ] and Co ≤ 1. Then,

τ |(αn
h + 1

2βn
h , θn

h)L + (δn
h , ζn

h )L − (Ψn
h, ζn

h )L| ≤ 1
8τ |θn

h |2S + 1
8τ |ζn

h |2S + 1
40τ‖θn

h‖2
a + 1

80τ‖ζn
h ‖2

a + Cτ(En
h )2. (52) eq:bnd.source

Proof. We first bound ‖θn
h‖L and ‖ζn

h ‖L. Taking the L-scalar product of (16a) with θn
h yields

‖θn
h‖2

L + γτ‖θn
h‖2

a = (ξn
h , θn

h)L + γτ(Ahθn
π , θn

h)L.

Using (26) and the Cauchy–Schwarz inequality yields ‖θn
h‖2

L + τ‖θn
h‖2

a . ‖ξn
h‖L‖θn

h‖L + τ‖θn
π‖A∗‖θn

h‖A. Hence,
using Young’s inequality together with (18), we obtain

‖θn
h‖2

L + τ‖θn
h‖2

a . ‖ξn
h‖2

L + τ‖θn
π‖2

A∗. (53) eq:bnd.theta

Taking now the L-scalar product of (16b) with ζn
h yields

‖ζn
h ‖2

L + γτ‖ζn
h ‖2

a = (θn
h , ζn

h )L − τ(Bhθn
h , ζn

h )L − (1 − 3γ)τ(Ahθn
h , ζn

h )L + τ(βn
h , ζn

h )L.

Using (24), the Cauchy–Schwarz inequality, and Co ≤ 1, we infer τ |(Bhθn
h , ζn

h )L| . ‖θn
h‖L‖ζn

h ‖L. In addition,
τ |(Ahθn

h , ζn
h )L| . τ‖θn

h‖a‖ζn
h ‖a owing to (27) and (18), while using the boundedness (22) and (26) of Bh and

Ah, we infer

τ |(βn
h , ζn

h )L| . τ‖θn
π‖B∗(|ζn

h |S + σ
1/2
1 ‖ζn

h ‖L) + τ(‖θn
π‖A∗ + ‖ζn

π ‖A∗)‖ζn
h ‖A

. τ1/2‖θn
π‖B∗‖ζn

h ‖L + τ(‖θn
π‖A∗ + ‖ζn

π ‖A∗)‖ζn
h ‖A,

where we have used τσ1 ≤ 1, Co ≤ 1, and (24). Hence,

‖ζn
h ‖2

L + τ‖ζn
h ‖2

a . ‖θn
h‖2

L + τ‖θn
h‖2

a + τ(‖θn
π‖2

B∗ + ‖θn
π‖2

A∗ + ‖ζn
π ‖2

A∗),

and accounting for (53) finally yields

‖ζn
h ‖2

L + τ‖ζn
h ‖2

a . ‖ξn
h‖2

L + τ(‖θn
π‖2

B∗ + ‖θn
π‖2

A∗ + ‖ζn
π ‖2

A∗). (54) eq:bnd.zeta

We are now ready to bound the source terms. Since αn
h = γAhθn

π and |(Ahθn
π , θn

h)L| . ‖θn
π‖A∗‖θn

h‖A .

‖θn
π‖A∗‖θn

h‖a owing to (26) and (18), we first obtain using Young’s inequality

τ |(αn
h, θn

h)L| ≤ 1
80τ‖θn

h‖2
a + Cτ‖θn

π‖2
A∗ ≤ 1

80τ‖θn
h‖2

a + Cτ(En
h )2. (55) eq:bnd.aa
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Similarly, recalling βn
h = Bhθn

π + (1 − 3γ)Ahθn
π + γAhζn

π and using (22),

1
2τ |(βn

h , θn
h)L| ≤ 1

8τ(|θn
h |2S + σ1‖θn

h‖2
L) + 1

80τ‖θn
h‖2

a + Cτ(‖θn
π‖2

B∗ + ‖θn
π‖2

A∗ + ‖ζn
π ‖2

A∗).

Hence, using (53) to bound ‖θn
h‖L and since τ ≤ t∗ ≤ σ−1

1 , we infer

1
2τ |(βn

h , θn
h)L| ≤ 1

8τ |θn
h |2S + 1

80τ‖θn
h‖2

a + Cτ(En
h )2. (56) eq:bnd.bb

Turning to δn
h and recalling that δn

h = 1
2Bhζn

π + 1
2γAhθn

π + 1
2 (1 − γ)Ahζn

π and proceeding as above, we infer

τ |(δn
h , ζn

h )L| ≤ 1
8τ |ζn

h |2S + 1
160τ‖ζn

h ‖2
a + Cτ(En

h )2. (57) eq:bnd.dd

Finally, concerning Ψn
h, we infer using (38), the Cauchy–Schwarz inequality, and Young’s inequality (note in

particular that (Axn, ζn
h )L = (µ∇xn,∇ζn

h )Ld − (µζn
h , n·∇xn)L,∂Ω . ‖xn‖A∗‖ζn

h ‖A),

τ(Ψn
h, ζn

h )L ≤ τ‖Ψ̃n
h‖L‖ζn

h ‖L + τ‖Bxn‖L‖ζn
h ‖L + τ‖xn‖A∗‖ζn

h ‖A

≤ τt∗(‖Ψ̃n
h‖2

L + ‖Bxn‖2
L) + τt−1

∗ ‖ζn
h ‖2

L + 1
160τ‖ζn

h ‖2
a + Cτ‖xn‖2

A∗.

Using the bound (42b) on ‖Ψ̃n‖L + ‖Bxn‖L + t
−1/2
∗ ‖xn‖A∗, we obtain

τ(Ψn
h, ζn

h )L ≤ 1
160τ‖ζn

h ‖2
a + τt−1

∗ ‖ζn
h ‖2

L + Cτ(Cn
Ψ)2τ3,

so that owing to the bound (54) on ζn
h , τ ≤ t∗, and the definition of En

h ,

τ(Ψn
h, ζn

h )L ≤ 1
160τ‖ζn

h ‖2
a + Cτ(En

h )2. (58) eq:bnd.pp

Collecting the bounds (55), (56), (57), and (58) yields the assertion. �

Combining Lemmata 4.1 and 4.2 yields our basic energy estimate.

th:basic.engy Theorem 4.1 (Basic energy estimate). Assume γ ∈ [15 , 2
5 ] and Co ≤ 1. Then,

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 3

8τ |θn
h |2S + 3

8τ |ζn
h |2S + (1

2 − γ)τ‖θn
h‖2

a + 1
20τ‖ζn

h ‖2
a + 1

40τ‖ζn
h + θn

h‖2
a (59) eq:energy.stab

≤ 1
2‖ξ

n+1
h − ζn

h ‖2
L + Cτ(En

h )2.

Proof. Using the energy identity (46) together with the fact that 1
2 − γ ≥ 1

10 and γ ≥ 1
5 , and accounting for the

bound (52) on the source terms yields

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 3

8τ |θn
h |2S + 3

8τ |ζn
h |2S + (1

2 − γ)τ‖θn
h‖2

a + 1
10τ‖ζn

h ‖2
a + 1

10τ‖ζn
h + θn

h‖2
a

≤ 1
2‖ξ

n+1
h − ζn

h ‖2
L + 1

40τ‖θn
h‖2

a + 1
80τ‖ζn

h ‖2
a + Cτ(En

h )2.

Since the term involving ‖θn
h‖2

a on the left-hand side will be used later in a different context, we leave it as it
stands and use instead the terms ‖ζn

h ‖2
a and ‖ζn

h + θn
h‖2

a on the left-hand side to absorb the two terms with the
‖·‖a-norm on the right-hand side. We observe that

‖θn
h‖2

a = ‖θn
h + ζn

h − ζn
h‖2

a ≤ 3
2‖ζ

n
h ‖2

a + 3‖ζn
h + θn

h‖2
a

to infer the assertion. �

The way to tackle the anti-dissipative term 1
2‖ξ

n+1
h − ζn

h ‖2
L on the right-hand side of the basic energy esti-

mate (59) depends on the flow regime and will be examined in the two subsequent sections.
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4.3. Stability and convergence: advection-dominated regime
sec:stab.adv

In this regime, we assume that Pe ≥ 1 and, as before to fix the ideas, that γ ∈ [15 , 2
5 ]. Taking a larger interval

for γ in (0, 1
2 ) is again possible, and this will only modify the numerical factors in the bound on the Courant

number. In the advection-dominated regime, an important ingredient to bound the diffusion operator is that
there is CA such that for all vh ∈ Vh,

τ‖Ahvh‖L ≤ CA(Co/Pe)1/2τ1/2‖vh‖A, (60) eq:C.A

since owing to (27), τ‖Ahvh‖L . τµ1/2h−1‖vh‖A and τ1/2µ1/2h−1 = (Co/Pe)1/2.
Our first step is to control the anti-dissipative term 1

2‖ξ
n+1
h − ζn

h‖2
L on the right-hand side of the basic energy

estimate (59). We recall the following inverse inequality valid for piecewise affine functions: There is Ci such
that for all vh ∈ Vh,

‖∇vh‖Ld ≤ Cih
−1‖vh − π0

hvh‖L. (61) eq:Cinv

lem:stab.adv.dom Lemma 4.3 (Stability). Assume Pe ≥ 1, γ ∈ [15 , 2
5 ], and Co ≤ 1. Assume further that

Co ≤ min
{

1
2 (CiCB)−2/3, 1

8C−2
S , 5

4ca(2Ci + 3)−2C−2
A Pe

}

, (62) eq:Co.adv

recalling that CB and CS are defined in Lemma 2.2. Then,

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 1

8τ |θn
h |2S + 1

8τ |ζn
h |2S + 1

20caτ‖θn
h‖2

A + 1
40caτ‖ζn

h + θn
h‖2

A . τ(En
h )2. (63) eq:energy.stab.adv

Proof. We start from the basic energy estimate (59) and observe that 1
2 − γ ≥ 1

10 to write

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 3

8τ |θn
h |2S + 3

8τ |ζn
h |2S + 1

10caτ‖θn
h‖2

A + 1
20caτ‖ζn

h ‖2
A + 1

40caτ‖ζn
h + θn

h‖2
A

≤ 1
2‖ξ

n+1
h − ζn

h‖2
L + Cτ(En

h )2,

where we have used (18) to replace the ‖·‖a-norm by the ‖·‖A-norm. Set ηn
h := θn

h − ζn
h , so that by (16b)

and (16c),
ξn+1
h − ζn

h = 1
2τBhηn

h +
(

1
2 − 2γ

)

τAhθn
h −

(

1
2 − γ

)

τAhζn
h − 1

2τβn
h + τδn

h − τΨn
h. (64) eq:xi-zeta

Using the triangle inequality and the bound (21) on Bh yields

‖ξn+1
h − ζn

h ‖L ≤ 1
2στ‖∇ηn

h‖Ld + 1
2CSCo1/2τ1/2|ηn

h |S +
∣

∣

1
2 − 2γ

∣

∣ τ‖Ahθn
h‖L +

(

1
2 − γ

)

τ‖Ahζn
h‖L

+ τ( 1
2‖β

n
h‖L + ‖δn

h‖L + ‖Ψn‖L).

The terms involving the discrete operator Ah are bounded using (60),
∣

∣

1
2 − 2γ

∣

∣ ≤ 3
10 , and

(

1
2 − γ

)

≤ 3
10 yielding

∣

∣

1
2 − 2γ

∣

∣ τ‖Ahθn
h‖L +

(

1
2 − γ

)

τ‖Ahζn
h ‖L ≤ 3

10τ1/2CA(Co/Pe)1/2(‖θn
h‖A + ‖ζn

h ‖A).

The contributions of Ah to βn
h and δn

h are bounded using (26) and τ1/2µ1/2h−1 = (Co/Pe)1/2 ≤ 1 so that

τ‖Ahθn
π‖L + τ‖Ahζn

π ‖L . τµ1/2h−1(‖θn
π‖A∗ + ‖ζn

π ‖A∗) ≤ τ1/2En
h .

The contributions of Bh to βn
h and δn

h are bounded using (25) and Co ≤ 1 so that

τ‖Bhθn
π‖L + τ‖Bhζn

π ‖L . τ1/2(‖θn
π‖B∗ + ‖ζn

π ‖B∗) ≤ τ1/2En
h .

Hence,
τ‖βn

h‖L + τ‖δn
h‖L . τ1/2En

h . (65) eq:bnd.beta.delta
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Finally,

τ‖Ψn
h‖L ≤ τ‖Ψn‖L . τC̃n

Ψτ ≤ τ1/2Cn
Ψτ3/2 ≤ τ1/2En

h , (66) eq:bnd.Psi.bis

owing to the bound (42a) on ‖Ψn‖L and the fact that C̃n
Ψ ≤ Cn

Ψ. As a result,

‖ξn+1
h − ζn

h‖L ≤ 1
2στ‖∇ηn

h‖Ld + 1
2CSCo1/2τ1/2|ηn

h |S + 3
10CA(Co/Pe)1/2τ1/2(‖θn

h‖A + ‖ζn
h ‖A) + Cτ1/2En

h . (67) eq:step1

The next step is to control ‖∇ηn
h‖Ld . Let ςn

h = ηn
h − π0

hηn
h and observe that

‖ςn
h ‖2

L = (ηn
h , ςn

h )L = τ(Bhθn
h , ςn

h )L + (1 − 3γ)τ(Ahθn
h , ςn

h )L + γτ(Ahζn
h , ςn

h )L − τ(βn
h , ςn

h )L,

since ηn
h = τBhθn

h + (1− 3γ)τAhθn
h + γτAhζn

h − τβn
h owing to (16b). To bound the first term on the right-hand

side, we use the bound (23) on Bh to infer

τ |(Bhθn
h , ςn

h )L| ≤ CBCo1/2τ1/2(|θn
h |S + σ

1/2
1 ‖θn

h‖L)‖ςn
h ‖L.

Furthermore, bounding the three other terms by the Cauchy–Schwarz inequality, using the fact that γ ∈ [ 15 , 2
5 ]

and the bound (60) for the terms involving the discrete operator Ah, and simplifying by ‖ςn
h ‖L,

‖ςn
h ‖L ≤ CBCo1/2τ1/2(|θn

h |S + σ
1/2
1 ‖θn

h‖L) + 2
5CA(Co/Pe)1/2τ1/2(‖θn

h‖A + ‖ζn
h ‖A) + τ‖βn

h‖L,

so that using the bound (53) on ‖θn
h‖L, τσ1 ≤ 1, and (65) to bound τ‖βn

h‖L,

‖ςn
h ‖L ≤ CBCo1/2τ1/2|θn

h |S + 2
5CA(Co/Pe)1/2τ1/2(‖θn

h‖A + ‖ζn
h ‖A) + Cτ1/2En

h .

Thus, using the inverse inequality (61),

στ‖∇ηn
h‖Ld ≤ Ciστh−1‖ςn

h ‖L = CiCo‖ςn
h ‖L

≤ CiCBCo3/2τ1/2|θn
h |S + 2

5CiCACo(Co/Pe)1/2τ1/2(‖θn
h‖A + ‖ζn

h ‖A) + Cτ1/2En
h .

Substituting back into (67), re-arranging terms, and since Co ≤ 1, we infer

‖ξn+1
h − ζn

h‖L ≤ 1
2CiCBCo3/2τ1/2|θn

h |S + 1
2CSCo1/2τ1/2|θn

h − ζn
h |S

+ (1
5Ci + 3

10 )CA(Co/Pe)1/2τ1/2(‖θn
h‖A + ‖ζn

h ‖A) + Cτ1/2En
h .

Let χ1 := 32−1/2 and χ2 := 80−1/2. Then, owing to the assumption (62) on the Courant number, the above
inequality becomes

‖ξn+1
h − ζn

h ‖L ≤ χ1τ
1/2(|θn

h |S + |θn
h − ζn

h |S) + χ2c
1/2
a τ1/2(‖θn

h‖A + ‖ζn
h ‖A) + Cτ1/2En

h .

Since |θn
h |S +|θn

h−ζn
h |S ≤ 2(|θn

h |S +|ζn
h |S), squaring the above bound, and using that 1

2 (a+b+c)2 ≤ a2+2b2+2c2

where a, b, and c denote the three addends on the right-hand side of the above equation yields

1
2‖ξ

n+1
h − ζn

h ‖2
L ≤ 8χ2

1τ(|θn
h |2S + |ζn

h |2S) + 4χ2
2caτ(‖θn

h‖2
A + ‖ζn

h ‖2
A) + CτEn

h .

Finally, observing that 8χ2
1 = 1

4 and 4χ2
2 = 1

20 yields the assertion. �

Remark 4.2 (Purely advective case). In the purely advective case (µ = 0), the third argument in the bound (62)
on the Courant number can be dropped, leading to the bound derived in [8].
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Remark 4.3 (Parabolic CFL restriction). In the advection-dominated regime, there holds τµh−2 = CoPe−1 ≤ 1,
that is, a parabolic CFL restriction on the time step. In particular, this property has been used in the proof of
Lemma 4.3 to control the terms with the discrete operator Ah using (60). We stress that this property is not
used in the diffusion-dominated regime, where it will be too restrictive.

We can now derive our main convergence result in the advection-dominated regime.

th:conv.adv.dom Theorem 4.2 (Convergence in L-norm). With the basic assumptions stated in Section 2.1, assume Pe ≥ 1,
take γ ∈ [15 , 2

5 ], and assume the bound (62) on the Courant number. Then,

‖uN − uN
h ‖L . Ctimτ3/2 + Cspcσ

1/2h3/2, (68) eq:err.est.adv

where C2
tim =

∑N−1
n=0 τ(Cn

Ψ)2 with Cn
Ψ defined by (41a) and C2

spc =
∑N−1

n=0 τ((K̃n
2 )2 + (σ−1Kn

w−u)2) with K̃n
2 and

Kn
w−u defined in Lemmata 3.2 and 3.3 respectively.

Proof. Using the stability result of Lemma 4.3, we sum over n, discard the dissipative terms on the left-hand
side, and use a discrete Gronwall lemma to eliminate the contribution of ‖ξn

h‖2
L in En

h . This yields

‖ξN
h ‖2

L .

N−1
∑

n=0

τ(‖θn
π‖2

B∗ + ‖ζn
π ‖2

B∗ + ‖θn
π‖2

A∗ + ‖ζn
π ‖2

A∗ + (Cn
Ψ)2τ3).

To bound the terms with θn
π and ζn

π , we use the result of Lemma 3.7, and the fact that µ1/2 ≤ σ1/2h1/2 since
Pe ≥ 1 and τ1/2hKn

w−u ≤ σ1/2h3/2(σ−1Kn
w−u) since Co ≤ 1. This yields ‖ξN

h ‖L . Ctimτ3/2 + Cspcσ
1/2h3/2 and

we conclude using the triangle inequality. �

The convergence result of Theorem 4.2 can be completed by showing additionally convergence in the ‖·‖A-
norm. The proof is postponed to §7.1.

prop:conv.adv.dom Proposition 4.1 (Convergence in ‖·‖A-norm). Under the assumptions of Theorem 4.2, there holds

(

τ
N
∑

n=1

‖un − un
h‖2

A

)1/2

. Ctimτ3/2 + Cspcσ
1/2h3/2.

4.4. Stability and convergence: diffusion-dominated regime
sec:stab.dif

In this regime, we assume Pe ≤ 1. We derive three intermediate stability results. First (Lemma 4.4), we
tighten the basic energy estimate (59) by achieving additional control on the increment ‖θn

h − ζn
h ‖2

L. Then

(Lemma 4.6), we bound the anti-dissipative term 1
2‖ξ

n+1
h − ζn

h ‖2
L. Finally (Lemma 4.7), we achieve additional

control on τ‖ξn+1
h ‖2

A. For our first step, it is sufficient that γ ∈ ( 1
4 , 2

5 ]; the minimal threshold on γ serves to
obtain only positive factors on the left-hand side of the new energy estimate (70). For our second and third
steps, we need the parameter γ to be sufficiently close to γ∗ = 1− 1√

2
≃ 0.293. For simplicity, we assume γ = γ∗

and postpone to Remark 4.5 the discussion when γ slightly deviates from γ∗, as motivated for instance by finite
arithmetic precision.

In the diffusion-dominated regime, an important ingredient to bound the operator Bh is that there is CBA

such that for all vh ∈ Vh,

τ‖Bhvh‖L ≤ CBAτσµ−1/2‖vh‖A = CBA(CoPe)1/2τ1/2‖vh‖A, (69) eq:C.BA

since owing to the definition of the ‖·‖A-norm, ‖∇vh‖Ld ≤ µ−1/2‖vh‖A, while a discrete trace inequality yields
|vh|S . (σh

µ )1/2‖vh‖A, so that (69) results from (21) and τ1/2σµ−1/2 = (CoPe)1/2.
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lem:energy.+ Lemma 4.4. Assume γ ∈ ( 1
4 , 2

5 ]. Assume Co ≤ min(1, 1
30caC−2

BAPe−1). Then,

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 3

8‖θ
n
h − ζn

h‖2
L + 1

8τ |θn
h |2S + 1

8τ |ζn
h |2S + 1

8 ( 1
2 − γ)caτ‖θn

h‖2
A (70) energy.+

+ 1
8caτ‖ζn

h ‖2
A + 3

4 (γ − 1
4 )caτ‖θn

h − ζn
h‖2

A + 1
40caτ‖ζn

h + θn
h‖2

A ≤ 1
2‖ξ

n+1
h − ζn

h‖2
L + Cτ(En

h )2.

Proof. We first observe that (16b) implies

θn
h − ζn

h = τBhθn
h + (1 − 3γ)τAhθn

h + γτAhζn
h − τβn

h ,

and re-arranging terms leads to

θn
h − ζn

h = τBhθn
h − (γ − 1

2 )τAh(θn
h + ζn

h ) − (2γ − 1
2 )τAh(θn

h − ζn
h ) − τβn

h .

Taking the L-scalar product with θn
h − ζn

h and using the symmetry of ah yields

‖θn
h − ζn

h ‖2
L = τ(Bhθn

h , θn
h − ζn

h )L − (γ − 1
2 )τ(‖θn

h‖2
a − ‖ζn

h ‖2
a) − (2γ − 1

2 )τ‖θn
h − ζn

h‖2
a − τ(βn

h , θn
h − ζn

h )L.

Since τ(Bhθn
h , θn

h − ζn
h )L ≤ 1

2τ2‖Bhθn
h‖2

L + 1
2‖θn

h − ζn
h‖2

L, this yields, re-arranging terms,

1
2‖θ

n
h − ζn

h ‖2
L + (γ − 1

2 )τ(‖θn
h‖2

a − ‖ζn
h ‖2

a) + (2γ − 1
2 )τ‖θn

h − ζn
h ‖2

a ≤ 1
2τ2‖Bhθn

h‖2
L − τ(βn

h , θn
h − ζn

h )L. (71) add.energy

The idea is now to combine (71) with (59) so as to absorb the positive term 1
2τ2‖Bhθn

h‖2
L by dissipative terms

on the left-hand side. To this purpose, we multiply (71) by a real number α ∈ (0, 1) and sum the resulting
estimate to (59). To fix the ideas, we take α = 3

4 yielding

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
2‖θ

n
h − ξn

h‖2
L + 3

8‖θ
n
h − ζn

h ‖2
L + 3

8τ |θn
h |2S + 3

8τ |ζn
h |2S

+ 1
4 ( 1

2 − γ)caτ‖θn
h‖2

A + 1
8caτ‖ζn

h ‖2
A + 3

4 (2γ − 1
2 )caτ‖θn

h − ζn
h‖2

A + 1
40caτ‖ζn

h + θn
h‖2

A

≤ 1
2‖ξ

n+1
h − ζn

h ‖2
L + 3

8τ2‖Bhθn
h‖2

L − 3
4τ(βn

h , θn
h − ζn

h )L + Cτ(En
h )2,

where we have used the discrete stability (18) of Ah to substitute the ‖·‖a-norms by ‖·‖A-norms on the left-hand
side and the fact that 1

2 − γ ≥ 1
10 to simplify the term with ‖ζn

h ‖2
A. Using (69) and the assumption on the

Courant number yields

3
8τ2‖Bhθn

h‖2
L ≤ 1

80caτ‖θn
h‖2

A = 1
8

{

min
γ∈( 1

4
, 2
5
]
( 1
2 − γ)

}

caτ‖θn
h‖2

A,

so that this term can be absorbed using half of the ‖θn
h‖2

A-term on the left-hand side of the above energy
estimate. Finally, we bound 3

4τ(βn
h , θn

h − ζn
h )L. We obtain using the boundedness (22) and (26) of Bh and Ah,

3
4τ |(βn

h , θn
h − ζn

h )L| . τ‖θn
π‖B∗(|θn

h − ζn
h |S + σ

1/2
1 ‖θn

h − ζn
h‖L) + τ(‖θn

π‖A∗ + ‖ζn
π ‖A∗)‖θn

h − ζn
h ‖A.

The first term is bounded as

τ‖θn
π‖B∗(|θn

h − ζn
h |S + σ

1/2
1 ‖θn

h − ζn
h ‖L) ≤ 1

4τ(|θn
h |2S + |ζn

h |2S) + Cτ(‖θn
π‖2

B∗ + σ1‖θn
h‖2

L + σ1‖ζn
h ‖2

L)

≤ 1
4τ(|θn

h |2S + |ζn
h |2S) + Cτ(En

h )2,

where we have used τσ1 ≤ 1 and the bounds (53) and (54) on ‖θn
h‖L and ‖ζn

h ‖L. For the second term,

τ(‖θn
π‖A∗ + ‖ζn

π ‖A∗)‖θn
h − ζn

h‖A ≤ 3
4 (γ − 1

4 )τ‖θn
h − ζn

h‖2
A + Cτ(‖θn

π‖2
A∗ + ‖ζn

π ‖2
A∗).

Collecting the above estimates yields the assertion. �
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Our second step aims at controlling the anti-dissipative term 1
2‖ξ

n+1
h − ζn

h‖2
L on the right-hand side of the

energy estimate (70). To this purpose, it is useful to reformulate the last step (16c) of the error equation without
using the discrete operator Ah. We simply state the result, since the proof amounts to a direct verification.

lem:reform Lemma 4.5 (Reformulation of last step without Ah). Let ω1 := γ−1( 1
2 − γ) and ω2 := 1

2γ2 (−1 + 4γ − 2γ2).

Then,

ξn+1
h − ζn

h = ω1(ζ
n
h − θn

h) + ω2(θ
n
h − ξn

h ) − 1
2τBh(ζn

h − θn
h) + ω1τBhθn

h − τΞn
h − τΨn

h, (72) inc_diff

where

Ξn
h := − 1

2Bh(ζn
π − θn

π) + ω1Bhθn
π . (73) eq:def.Xi

In what follows, we assume γ = γ∗. An important fact used hereafter is that ω2(γ∗) = 0, thereby zeroing
out the contribution of ξn

h on the right-hand side of (72). We are now ready to bound the anti-dissipative term.
Note that we tighten the assumption on the Courant number with respect to Lemma 4.4.

lem:energy.++ Lemma 4.6. Assume γ = γ∗ and

Co ≤ min(1, 1
180caC−2

BAPe−1). (74) eq:Co.dif

Then,

1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
8τ |θn

h |2S + 1
8τ |ζn

h |2S + 1
80caτ‖θn

h‖2
A + 1

8caτ‖ζn
h ‖2

A + 1
40caτ‖ζn

h + θn
h‖2

A . τ(En
h )2. (75) energy.++

Proof. We start from the result of Lemma 4.5. Observing that ω1 = 1√
2

and ω2 = 0 for γ = γ∗ and setting

Xn
h = − 1

2Bh(ζn
h − θn

h) + 1√
2
Bhθn

h − Ξn
h − Ψn

h,

where Ξn
h is defined by (73), we infer

ξn+1
h − ζn

h =
1√
2
(ζn

h − θn
h) + τXn

h .

This yields for positive real number ǫ, 1
2‖ξ

n+1
h − ζn

h‖2
L ≤ 1

2 (1 + ǫ−1)τ2‖Xn
h ‖2

L + 1
4 (1 + ǫ)‖ζn

h − θn
h‖2

L. Choosing

ǫ = 1
2 , we infer

1
2‖ξ

n+1
h − ζn

h ‖2
L ≤ 3

2τ2‖Xn
h ‖2

L + 3
8‖ζ

n
h − θn

h‖2
L.

We now bound the term ‖Xn
h ‖2

L. Since 1
3 (a + b + c)2 ≤ a2 + b2 + c2 for real numbers a, b, and c, we obtain

using (69),

1
3τ2‖Xn

h ‖2
L ≤ 1

4τ2‖Bh(ζn
h − θn

h)‖2
L + 1

2τ2‖Bhθn
h‖2

L + τ2‖Ξn
h + Ψn

h‖2
L

≤ C2
BA(CoPe)τ( 1

4‖ζ
n
h − θn

h‖2
A + 1

2‖θ
n
h‖2

A) + τ2‖Ξn
h + Ψn

h‖2
L.

Owing to (25) and Co ≤ 1, τ‖Ξn
h‖L . τ1/2En

h and recalling τ‖Ψn
h‖L . τ1/2En

h from (66), we obtain

1
3τ2‖Xn

h ‖2
L ≤ C2

BA(CoPe)τ( 1
4‖ζ

n
h − θn

h‖2
A + 1

2‖θ
n
h‖2

A) + Cτ(En
h )2.

Owing to the assumption on the Courant number,

3 3
2

1
4C2

BAc−1
a (CoPe) ≤ 1

160 ≤ 3
4 (γ∗ − 1

4 ), 3 3
2

1
2C2

BAc−1
a (CoPe) ≤ 1

80 ≤ 1
16 ( 1

2 − γ∗).

As a result,

1
2‖ξ

n+1
h − ζn

h‖2
L ≤ 3

4 (γ∗ − 1
4 )caτ‖ζn

h − θn
h‖2

A + 1
16 ( 1

2 − γ∗)caτ‖θn
h‖2

A + 3
8‖ζ

n
h − θn

h‖2
L + Cτ(En

h )2.

Using this estimate in (70) yields the assertion since 1
16 ( 1

2 − γ∗) ≥ 1
80 . �
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We can now proceed to our third and final step in the stability analysis. Our goal is to infer a control on
τ‖ξn+1

h ‖2
A from the control on τ‖θn

h‖2
A and τ‖ζn

h ‖2
A achieved in (75). This will require replacing the quantity

En
h by

Ẽn
h := t

−1/2
∗ ‖ξn

h‖L + ‖θn
π‖B∗ + ‖θn

π‖A∗ + ‖ζn
π ‖B∗ + ‖ζn

π ‖A∗ + Pe−1/2(|θn
π |S + |ζn

π |S) + t
1/2
∗ C̃n

Ψτ. (76) eq:tilde.E

The definition of Ẽn
h entails two modifications with respect to En

h . Firstly, the term Pe−1/2(|θn
π |S + |ζn

π |S) has
been added; this change will not modify the convergence rate in space with respect to the ‖·‖A∗- and ‖·‖B∗-
norms of θn

π and ζn
π . Secondly, and more importantly, the time error is now of lower-order since the term Cn

Ψτ3/2

has been replaced by t
1/2
∗ C̃n

Ψτ .

lem:energy.+++ Lemma 4.7. Assume γ = γ∗ and the bound (74) on the Courant number. Assume the additional hyperbolic-type

restriction on the time step,

τ ≤ t
1/2
∗ µ−1/2h. (77) eq:CFL.mu

Then,
1
2‖ξ

n+1
h ‖2

L − 1
2‖ξ

n
h‖2

L + 1
8τ |θn

h |2S + 1
8τ |ζn

h |2S + 1
80caτ‖ξn+1

h ‖2
A . τ(Ẽn

h )2. (78) energy.+++

Proof. We take the L-scalar product of (72) with τAhξn+1
h to infer

τ(ξn+1
h , Ahξn+1

h )L = τ(T1 + T2, Ahξn+1
h )L + τ2(T3 − Ξn

h − Ψn
h, Ahξn+1

h )L, (79) eq:xi.A.xi

where

T1 = (1 + ω1)ζ
n
h + (ω2 − ω1)θ

n
h , T2 = −ω2ξ

n
h , T3 = − 1

2Bh(ζn
h − θn

h) + ω1Bhθn
h .

Since γ = γ∗, ω2 = 0 so that T2 = 0. We now bound the other terms on the right-hand side of (79). To bound
the term with T1, we use the boundedness (27) of Ah to infer

τ(T1, Ahξn+1
h )L . τ(‖θn

h‖A + ‖ζn
h ‖A)‖ξn+1

h ‖A.

To bound the term with T3, we use the Cauchy–Schwarz inequality, (69), (27), and Co ≤ 1, yielding

τ2(Bhθn
h , Ahξn+1

h )L ≤ τ2‖Bhθn
h‖L‖Ahξn+1

h ‖L . τ2σµ−1/2‖θn
h‖Aµ1/2h−1‖ξn+1

h ‖A ≤ τ‖θn
h‖A‖ξn+1

h ‖A.

Proceeding similarly for the contribution of ζn
h , we infer

τ2(T3, Ahξn+1
h )L . τ(‖θn

h‖A + ‖ζn
h ‖A)‖ξn+1

h ‖A.

To bound the term with Ξn
h, recalling (73), we first observe using (27) that

τ2(Bhθn
π , Ahξn+1

h )L . τ2‖Bhθn
π‖A‖ξn+1

h ‖A . τ(‖θn
π‖A∗ + ( µ

σh )1/2|θn
π |S)‖ξn+1

h ‖A,

since owing to (27), (21), and Co ≤ 1,

τ‖Bhθn
π‖A . τµ1/2h−1‖Bhθn

π‖L . τµ1/2h−1
(

σ‖∇θn
π‖Ld + σ1/2h−1/2|θn

π |S
)

≤ µ1/2‖∇θn
π‖Ld + ( µ

σh )1/2|θn
π |S .

Proceeding similarly for the contribution of ζn
π , we infer

τ2(Ξn
h, Ahξn+1

h )L . τ(‖θn
π‖A∗ + ‖ζn

π ‖A∗ + ( µ
σh )1/2(|θn

π |S + |ζn
π |S))‖ξn+1

h ‖A.
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Finally, to bound the term with Ψn
h, we use the Cauchy–Schwarz inequality and (27) to infer

τ2(Ψn
h, Ahξn+1

h )L ≤ τ2‖Ψn
h‖Lµ1/2h−1‖ξn+1

h ‖A ≤ τt
1/2
∗ ‖Ψn

h‖L‖ξn+1
h ‖A ≤ τẼn

h‖ξn+1
h ‖A,

owing to the assumption (77) on the time step and the fact that t
1/2
∗ ‖Ψn

h‖L ≤ Ẽn
h owing to (42a). Combining

the above bounds and using the discrete stability (18) we obtain

τca‖ξn+1
h ‖2

A . τ
(

‖θn
h‖A + ‖ζn

h ‖A + Ẽn
h

)

‖ξn+1
h ‖A,

whence the conclusion is straightforward using the stability estimate (75). �

Remark 4.4 (Restrictions on the time step). When the Péclet number is sufficiently large, the condition (74)
simply reduces to Co ≤ 1. In the pure-diffusion limit, this condition, in turn, becomes trivial, and the only
restriction on the time step is (77), which is needed to handle the truncation error in Lemma 4.7. Note also

that the conditions Co ≤ 1 and (77) can be regrouped into the condition τ ≤ t
1/2
∗ µ̄−1/2h with µ̄ defined in §2.1.

rem:gamma Remark 4.5 (Choice of γ). The parameter γ can slightly deviate from the value γ∗, but this leads to a more
stringent bound on the Courant number than (74). Using (72), for positive real numbers ǫ and ǫ̂, we obtain

1
2‖ξ

n+1
h − ζn

h ‖2
L ≤ 1

2 (1 + ǫ−1)τ2‖Xn
h ‖2

L + 1
2 (1 + ǫ)‖ω1(ζ

n
h − θn

h) + ω2(θ
n
h − ξn

h )‖2
L

≤ 1
2 (1 + ǫ−1)τ2‖Xn

h ‖2
L + 1

2 (1 + ǫ)(1 + ǫ̂)ω2
1‖ζn

h − θn
h‖2

L + 1
2 (1 + ǫ)(1 + ǫ̂−1)ω2

2‖θn
h − ξn

h‖2
L.

For γ ∈ [14 , 1
2 ], ω1 is a decreasing function of γ taking values in [0, 1], while ω2 is an increasing function of γ

taking values in [−1, 1] with ω2(γ∗) = 0. The proof of Lemma 4.6 can be extended as long as there is ǫ̂ > 0 such
that 1

2 (1+ ǫ̂)ω2
1 ≤ 3

8 and 1
2 (1+ ǫ̂−1)ω2

2 ≤ 1
2 exploiting the presence of the term 1

2‖θn
h −ζn

h‖2
L on the left-hand side

of (70). A direct verification shows that this is possible as long as γ ∈ (γ∗∗,
1
2 ) with γ∗∗ = (2+

√

8/3)−1 ≃ 0.275

(corresponding to ω1 =
√

2/3 and ω2 = −1/3). We observe that the above numerical values depend on the
choice α = 3

4 made in the proof of Lemma 4.4. Taking a larger value for α < 1 yields a more stringent bound
on the Courant number in Lemma 4.4 but more flexibility in the choice of γ. Finally, the result of Lemma 4.7 is
slightly modified since bounding the term ω2τ(ξn

h , Ahξn+1
h )L by Young’s inequality leads to an additional term

on the right-hand of (78) of the form 1
80λcaτ‖ξn

h‖2
A where λ can be chosen < 1 provided γ is sufficiently close

to γ∗ so that ω2 is sufficiently small. Details are skipped for brevity.

We can now derive our main convergence result in the diffusion-dominated regime.

th:conv.dif.dom Theorem 4.3 (Convergence in ‖·‖A-norm). With the basic assumptions stated in Section 2.1, assume Pe ≤ 1,
take γ = γ∗, and assume the bound (74) on the Courant number together with the bound (77) on the time step.

Then,
(

τ

N
∑

n=1

‖un − un
h‖2

A

)1/2

. C̃timt
1/2
∗ τ + C̃spcµ

1/2h, (80) eq:err.est.dif

where C̃2
tim =

∑N−1
n=0 τ(C̃n

Ψ)2 and C̃2
spc =

∑N−1
n=0 τ((K̃n

2 )2 + (τ/µ)(Kn
w−u)2).

Proof. Using the stability result of Lemma 4.7, we sum over n, discard the |·|S-terms on the left-hand side, and

use a discrete Gronwall lemma to eliminate the contribution of ‖ξn
h‖2

L in Ẽn
h . This yields

τ

N
∑

n=1

‖ξn
h‖2

A .

N−1
∑

n=0

τ(‖θn
π‖2

B∗ + ‖ζn
π ‖2

B∗ + ‖θn
π‖2

A∗ + ‖ζn
π ‖2

A∗ + Pe−1(|θn
π |2S + |ζn

π |2S) + t∗(C̃
n
Ψ)2τ2).
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To bound the terms with θn
π and ζn

π , we use the result of Lemma 3.7 for the ‖·‖A∗- and ‖·‖B∗-norm, while for

the |·|S-seminorm, we use the bounds (33) and (35) on |vn|H2 and |wn|H2 and |un|H2 ≤ K̃n
2 to infer

Pe−1/2(|θn
π |S + |ζn

π |S) . µ1/2h(|vn|H2 + |wn|H2) . µ1/2hK̃n
2 + τ1/2hKn

w−u.

The conclusion is straightforward using σ1/2h1/2 ≤ µ1/2 since Pe ≤ 1. �

It is possible to derive an L-norm error estimate with higher convergence rates than (80). The proof is
postponed to §7.2.

prop:conv.dif.dom Proposition 4.2 (Convergence in L-norm). Assume that β has bounded second-order derivatives with associ-

ated bound denoted by σ2. Then, under the assumptions of Theorem 4.3, there holds

‖uN − uN
h ‖L . Ctimτ3/2 + Ĉspcσ

1/2h3/2 + Ĉ ′
spcµ

−1/2h2, (81)

where Ctim is defined in Theorem 4.2, (Ĉspc)
2 =

∑N−1
n=0 τ(K̂n

w−u)2, (Ĉ ′
spc)

2 =
∑N−1

n=0 τC2
P (Kn

2 +‖∂tu‖C(In;H2))
2,

with K̂n
w−u = CP (|un|H3 +(τ/µ)1/2Kn

2 +σ−1(σ1K̃
n
2 +σ2K̃

n
1 ))+ K̃n

2 +(τ/µ)1/2Kn
w−u and CP is the length scale

associated with the Poincaré inequality stating that for all vh ∈ Vh, ‖vh‖L ≤ µ−1/2CP ‖vh‖A.

5. Numerical examples
sec:num

We consider two numerical experiments using FreeFem++ [23] to illustrate the above analysis, namely
convergence to a known smooth solution and control of spurious oscillations for a solution with sharp layers.
For all flow regimes, we used the values Scip = 0.005 and Sbc = 10 for the penalty parameters and γ = 1 − 1√

2
.

5.1. Convergence to smooth solutions

Let Ω = {r2 := x2 + y2 < 2} and consider the rotating velocity field β = (y,−x)T so that σ = 2. Letting
x = (x, y)T , the exact solution is chosen to be the advected heat kernel in the form

u(x, t) =
ℓ20

tµ + ℓ20
exp

( |r(t) − x|2
4(µt + ℓ20)

)

, r(t) = (−0.3 sin(t), 0.3 cos(t))T ,

where the length scale ℓ0 = 0.1 determines the spread of the initial Gaussian. We consider two settings, first
µ = 0.1 and tF = π/4 and then µ = 10−4 and tF = 2π. In both cases, the decay of the exact solution away from
r(t) is sufficiently fast to enforce homogeneous Dirichlet conditions on ∂Ω. We discretize the boundary ∂Ω with
M elements from which a quasi-uniform triangulation of Ω is constructed, yielding a mesh size h = 4π/M . We
take M = 26+m with m ∈ {0, 1, 2, 3, 4}. For µ = 0.1, the Péclet number decays from 4 to 0.25 corresponding
to a diffusion-dominated regime, while for µ = 10−4, the Péclet number is 103 times larger, corresponding to
an advection-dominated regime. In both regimes, the time step is selected by setting the Courant number to
Co = 1

2 . Results are reported in Table 5.1. For µ = 0.1, the result on the finest mesh is omitted since the mesh
is sufficiently fine, and the diffusion coefficient sufficiently large, to detect the influence of using homogeneous
Dirichlet boundary conditions; for µ = 10−4, the result on the coarsest mesh is omitted since the mesh is too
coarse to resolve the initial datum. In all cases, the convergence rates match, or are slightly better than, those
predicted by the theory.

5.2. Solutions with sharp layers

The purpose of this test case is to illustrate numerically that in the advection-dominated regime, spurious
oscillations resulting from insufficient mesh resolution of sharp layers do not spread over the whole domain, but
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smooth
m µ = 0.1 µ = 10−4

L∞
t (L2) L2

t (H
1) L∞

t (L2)
0 2.8e-3 5.7e-2 —
1 9.5e-4 2.7e-2 4.6e-2
2 2.2e-4 1.0e-2 1.0e-2
3 5.3e-5 5.5e-3 1.4e-3
4 — — 2.1e-4

Table 1. Convergence for smooth solution

Figure 1. Initial data (left) and solution at final time without (middle) and with (right) stabilization rough_adv

remain contained at all times close to the layer. Let µ = 10−6 and consider the initial datum

u0(x) = 0.5(tanh((exp(−20|r(π
4 ) − x|2) − 0.5)/0.0001) + 1).

The graph of u0 corresponds to a cylinder centered at x = (0.3, 0.3)T . The width of the inner layer is 10−4. The
mesh is built using M = 512 so that it does not resolve this inner layer. The final time is tF = 2π corresponding
to one full rotation of the initial datum. Figure 1 displays the initial datum, the approximate solution without
stabilization (Scip = 0), and the solution with stabilization (Scip = 0.005). The unstabilized solution exhibits
global spurious oscillations, while the improved quality of the stabilized solution is clearly visible.

6. Extensions
sec:ext

For simplicity, the above analysis was presented in the case where space discretization was performed using
continuous, piecewise affine finite elements with CIP. Other finite element methods with symmetric stabilization
can be used. This requires establishing discrete stability and boundedness for the discrete operators Bh and Ah.
For consistent methods, the stability and convergence analysis of §4 can then be readily applied, while minor
adaptations are needed in the case of nonconsistent methods to formulate the truncation errors.

To illustrate, we briefly consider a DG method for space discretization using upwinding for the advective
part and symmetric interior penalty for the diffusive part. Let V d

h denote the space spanned by (discontinuous)
piecewise affine functions on the mesh Th. For a smooth enough function v that is possibly double-valued at
F ∈ F int

h with F = ∂T− ∩ ∂T+, we define, in addition to its jump, its mean value as {{v}} := 1
2 (v|T− + v|T+).

On boundary faces, the jump and mean value refer to the actual value of v on F . The discrete operators Bh
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and Ah are now such that

(Bhz, wh)L := (β·∇hz, wh)L −
∑

F∈F int
h

((νF ·β)[[z]], {{wh}})L,F +
∑

F∈F int
h

Supw(|νF ·β|[[z]], [[wh]])L,F ,

(Ahz, wh)L = µ(∇hz,∇hwh)Ld −
∑

F∈Fh

µ(νF ·{{∇hz}}, [[wh]])L,F −
∑

F∈Fh

µ([[z]], νF ·{{∇hwh}})L,F

+
∑

F∈Fh

Sipµh−1
F ([[z]], [[wh]])L,F ,

where ∇h denotes the broken (elementwise) gradient operator, while Supw = 1
2 for classical upwinding, and Sip

is taken large enough. Then, letting

|z|2S :=
∑

F∈F int
h

1
2‖|νF ·β|1/2[[z]]‖2

L,F , ‖z‖2
A := µ‖∇z‖2

Ld +
∑

F∈Fh

µh−1
F ‖[[z]]‖2

L,F ,

it is readily verified that the discrete stability properties stated in §2.6 hold true. Moreover, letting

‖z‖B∗ := |z|S + σ1/2h−1/2‖z‖L +

(

∑

T∈Th

∑

F⊂∂T

σ‖z‖2
L,F

)1/2

,

‖z‖A∗ := ‖z‖A +

(

∑

T∈Th

∑

F⊂∂T

µhF ‖νF ·∇z‖2
L,F

)1/2

,

it is readily verified that the boundedness properties stated in §2.6 hold true.
Finally, it is also possible to consider higher-order continuous or discontinuous finite elements with symmetric

stabilization. To achieve stability, the sole modification in the above analysis concerns the advection-dominated
regime, since the discrete inverse inequality (61) can no longer be used. It is then necessary to modify the proof
of Lemma 4.3 when bounding 1

2‖ξ
n+1
h − ζn

h ‖2
L. In particular, following [8] (details are skipped for brevity), the

term 1
2τBhηn

h on the right-hand side of (64) is controlled by the so-called 4/3-CFL condition τ . t
−1/3
∗ (h/σ)4/3.

Deriving convergence rates is a more delicate question not covered herein; it entails, in particular, obtaining
bounds for higher-order Sobolev norms of the auxiliary functions vn and wn.

7. Proofs of Propositions 4.1 and 4.2
sec:proofs

This sections collects the proofs of Propositions 4.1 and 4.2.

7.1. Proof of Proposition 4.1
sec:proofs.adv

The proof, which proceeds along that of Lemma 4.7, is only sketched. There are essentially two differences.
Firstly, the term T2 in this proof needs to be bounded since we do not assume here that γ = γ∗. To this purpose,
we use (16a) and the definition of αn

h to obtain

τ(ξn
h , Ahξn+1

h )L = τ(θn
h , Ahξn+1

h )L + γτ2(Ahθn
h , Ahξn+1

h )L − γτ2(Ahθn
π , Ahξn+1

h )L.

The first term on the right-hand side is treated as the term T1 in the proof of Lemma 4.7. For the second term,
the Cauchy–Schwarz inequality and (60) yield

τ2(Ahθn
h , Ahξn+1

h )L ≤ τ2‖Ahθn
h‖L‖Ahξn+1

h ‖L . (Co/Pe)τ‖θn
h‖A‖ξn+1

h ‖A ≤ τ‖θn
h‖A‖ξn+1

h ‖A,
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since Co ≤ 1 and Pe ≥ 1. Finally, for the third term, the Cauchy–Schwarz inequality, (60), and (26) lead to

τ2(Ahθn
π , Ahξn+1

h )L ≤ τ2‖Ahθn
π‖L‖Ahξn+1

h ‖L . τ‖θn
π‖A∗‖ξn+1

h ‖A,

since τ1/2µ1/2h−1 = (Co/Pe)1/2 ≤ 1. Collecting these estimates, we infer

τ(T2, Ahξn+1
h )L . τ(‖θn

h‖A + ‖θn
π‖A∗)‖ξn+1

h ‖A.

Secondly, when dealing with the truncation error in time, we exploit the fact that Pe ≥ 1 to derive a sharper
bound than in the proof of Lemma 4.7, namely

τ2(Ψn
h, Ahξn+1

h )L ≤ τ2‖Ψn
h‖Lµ1/2h−1‖ξn+1

h ‖A ≤ (Co/Pe)1/2τ3/2‖Ψn‖L‖ξn+1
h ‖A . τEn

h‖ξn+1
h ‖A,

where we have used (66). As a result, an estimate similar to (78) is inferred, but with a quantity Ên
h on the

right-hand side which is defined as (76) except that t
1/2
∗ C̃n

Ψτ is replaced by the sharper estimate Cn
Ψτ3/2. The

conclusion is straightforward using, in particular, that

Pe−1/2(|θn
π |S + |ζn

π |S) . µ1/2h(|vn|H2 + |wn|H2) . µ1/2hK̃n
2 + τ1/2hKn

w−u ≤ σ1/2h3/2(K̃n
2 + σ−1Kn

w−u),

since Pe ≥ 1 and Co ≤ 1.

7.2. Proof of Proposition 4.2
sec:proofs.dif

For brevity, we only sketch the proof. We introduce the discrete Riesz projection of un and of the auxiliary
functions vn and wn. Specifically, rhun ∈ Vh is defined such that Ahrhun := Ahun and similarly for rhvn and
rhwn. Then, redefining the quantities ξn

h := un
h − rhun, ξn

π := un − rhun and similarly for θn
h , θn

π , ζn
h , and ζn

π ,
the error equation takes again the form (16) with the new source terms

αn
h = τ−1πh(I − rh)(vn − un), βn

h = τ−1πh(I − rh)(wn − vn) − Bh(I − rh)vn,

δn
h = τ−1πh(I − rh)(un+1 − 1

2 (vn + wn)) − 1
2Bh(I − rh)wn.

Then, the basic energy identity of Lemma 4.1 is not modified. Instead, the basic energy estimate of Theorem 4.1
requires bounding the new source terms. Using the Cauchy–Schwarz inequality, the Poincaré inequality, the
approximation properties of the Riesz projector rh, the bound (32) on ‖∆(vn − un)‖L, and elliptic regularity,
we obtain

τ(αn
h, θn

h)L ≤ µ−1/2CP ‖(I − rh)(vn − un)‖L‖θn
h‖A . µ−1/2CP h2|vn − un|H2‖θn

h‖A . µ−1/2CP h2τKn
2 ‖θn

h‖A.

Hence, by Young’s inequality,

τ(αn
h, θn

h)L ≤ Cτ(µ−1/2CP h2Kn
2 )2 + λτ‖θn

h‖2
A,

where λ can be chosen as small as needed. To bound τ(βn
h , θn

h)L, we write wn − vn = (wn − un) − (vn − un),
and estimate the contribution of (vn − un) as for αn

h. To bound the contribution of (wn − un), we observe that

‖(I − rh)(wn − un)‖L . h2|wn − un|H2 . h2‖∆(wn − un)‖L.

We use a different bound on ‖∆(wn − un)‖L than (34), whereby we exploit that the advection field β has
bounded second-order derivatives. Letting v denote the right-hand side of (36) and observing that v ∈ V , (31)
yields ‖∆(wn − un)‖L . ‖∆v‖L. Using the bounds (33) on vn and the bound (32) on ‖∇∆(vn − un)‖Ld , we
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infer ‖∆(Bvn)‖L . σK̃n
w−u with K̃n

w−u = |un|H3 +(τ/µ)1/2Kn
2 +σ−1(σ1K̃

n
2 +σ2K̃

n
1 ). Hence, ‖∆(wn−un)‖L .

τ(Kn
2 + σK̃n

w−u), so that

‖(I − rh)(wn − un)‖L . τh2(Kn
2 + σK̃n

w−u).

Finally, for the last term in βn
h , we obtain by integrating by parts the advective derivative that

(Bh(I − rh)vn, θn
h)L . h2|vn|H2σµ−1/2‖θn

h‖A . σµ−1/2h2K̃n
2 ‖θn

h‖A,

since |vn|H2 . K̃n
2 . Collecting these bounds and introducing the Péclet number yields

τ(βn
h , θn

h)L ≤ Cτ(µ−1/2h2CP Kn
2 + Pe1/2σ1/2h3/2(CP K̃n

w−u + K̃n
2 ))2 + λτ‖θn

h‖2
A,

where λ can be chosen as small as needed. The bound on τ(δn
h , ζn

h )L is obtained using similar arguments, in
particular that un+1− 1

2 (vn+wn) = (un+1−un)−( 1
2 (vn+wn)−un), ‖(I−rh)(un+1−un)‖L . τh2‖∂tu‖C(In;H2),

and that |wn|H2 . K̃n
2 +(τ/µ)1/2Kn

w−u owing to (35). Therefore, we recover the stability estimates (59) and (70)
with

En
h = µ−1/2h2CP (Kn

2 + ‖∂tu‖C(In;H2)) + Pe1/2σ1/2h3/2K̂n
w−u, (82) eq:E.L.Pe

with K̂n
w−u = CP K̃n

w−u +K̃n
2 +(τ/µ)1/2Kn

w−u. The next step is the result of Lemma 4.5 where the identity (72)
holds true with

Ξn
h = ω2α

n
h + (ω1 + 1

2 )βn
h − δn

h .

Then, proceeding as in Lemma 4.6, we need to control τ‖Ξn
h‖L. We observe that

τ‖Bh(I − rh)vn‖L + τ‖Bh(I − rh)wn‖L . τσh(|vn|H2 + |wn|H2) . τ1/2σ1/2h3/2(K̃n
2 + (τ/µ)1/2Kn

w−u).

Defining Ên
h as En

h in (82) by dropping the Pe1/2 factor in the last term, that is,

Ên
h = µ−1/2h2CP (Kn

2 + ‖∂tu‖C(In;H2)) + σ1/2h3/2K̂n
w−u,

we eventually infer τ‖Ξn
h‖L . τ1/2Ên

h . Finally, accounting for the truncation error in time, we recover the
stability estimate (75) with the right-hand side

Ēn
h := µ−1/2h2CP (Kn

2 + ‖∂tu‖C(In;H2)) + σ1/2h3/2K̂n
w−u + Cn

Ψτ3/2,

whence the conclusion is straightforward.

Remark 7.1 (Optimality in h). We observe that the error term defined by (82) exhibits second-order convergence

as h → 0 owing to the presence of the Pe1/2 factor in the last term. This is no longer the case for the error term

Ēn
h , where the loss of the Pe1/2 factor is caused by the contribution of Bh when bounding the anti-dissipative

term. Optimality is recovered for vanishing advection.
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