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We analyze a two-stage explicit-implicit Runge-Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L 2 -energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusiondominated regimes. The theory is illustrated by numerical examples.

Introduction

We consider the transient advection-diffusion equation

_diff ∂ t u + Bu + Au = f in Ω × (0, t F ), (1a) 
u = 0 on ∂Ω × (0, t F ), (1b) 
u(•, t = 0) = u 0 in Ω, ( 1c 
)
where Ω is a polyhedron in R d with boundary ∂Ω, Bu := β•∇u, Au := -µ∆u, t F a finite positive time, β a divergence-free velocity field, µ > 0 the diffusion coefficient, f the source term, and u 0 the initial datum.

Extensions of the present analysis to advection fields with nonzero divergence and inclusion of non-stiff zeroorder terms is straightforward; accounting for smoothly variable diffusion coefficient is also feasible. In the stationary case, it is well-known that the standard Galerkin finite element method has poor stability properties in the advection-dominated regime, resulting in suboptimal convergence for smooth solutions and spurious oscillations when approximating solutions with sharp layers. Different approaches have been proposed to improve this behavior, such as the streamline upwind Petrov-Galerkin method (SUPG) [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF] and standard Galerkin methods with symmetric stabilization in various flavors, e.g., discontinuous Galerkin (DG) [START_REF] Di Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF][START_REF] Ern | Discontinuous Galerkin methods for Friedrichs' systems. I. General theory[END_REF][START_REF] Johnson | An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[END_REF][START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF], subgrid viscosity [START_REF] Guermond | Stabilization of Galerkin approximations of transport equations by subgrid modeling[END_REF][START_REF] Guermond | Subgrid stabilization of Galerkin approximations of linear monotone operators[END_REF], orthogonal subscale stabilization [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods[END_REF][START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF], local projection stabilization [START_REF] Braack | Stabilized finite element methods for the generalized Oseen problem[END_REF][START_REF] Roos | Robust numerical methods for singularly perturbed differential equations[END_REF], and continuous interior penalty on interelement normal gradient jumps (CIP) [START_REF] Burman | A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty[END_REF][START_REF] Burman | Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems[END_REF]. All these methods lead to similar L2 -norm error estimates for smooth solutions, resulting in the loss of half a power of h in the advectiondominated regime (compared to a full power in the unstabilized case). For solutions with sharp layers, it has been proven for SUPG [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF], DG [START_REF] Guzmán | Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems[END_REF], and CIP [START_REF] Burman | Weighted error estimates of the continuous interior penalty method for singularly perturbed problems[END_REF] that quasi-optimal convergence is retained away from layers, hence prohibiting the global spreading of spurious oscillations.

In the transient case, DG-based time discretization has been the favored alternative for SUPG [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF], whereas Runge-Kutta (RK) methods have been popular for time discretization combined with DG in space [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws[END_REF]. For symmetric stabilizations in general, standard A-stable finite difference methods in time have been shown to be stable and optimally convergent [START_REF] Burman | Finite element methods with symmetric stabilization for the transient convection-diffusionreaction equation[END_REF][START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF][START_REF] Ern | Theory and Practice of Finite Elements[END_REF][START_REF] Guermond | Subgrid stabilization of Galerkin approximations of linear monotone operators[END_REF]. Similar results for SUPG and the transient advection-diffusion equation are very recent [START_REF] Burman | Consistent SUPG-method for transient transport problems: Stability and convergence[END_REF][START_REF] Burman | Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations[END_REF]. The implicit time stepping by A-stable methods leads to a nonsymmetric matrix to be inverted at each time step. Moreover, treating nonlinear transport operators with such methods or incorporating nonlinear slope limiters can be quite demanding computationally. Ideally, one would like to treat the advective and stabilization operators explicitly and the diffusive operator implicitly. A suitable class of methods is that of implicit-explicit (IMEX) RK methods. The application of IMEX methods to partial differential equations (PDEs) was introduced in [START_REF] Crouzeix | Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques[END_REF], and IMEX RK methods were first proposed in [START_REF] Ascher | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF][START_REF] Ascher | Implicit-explicit methods for time-dependent partial differential equations[END_REF]. From a computational viewpoint, IMEX RK methods only require symmetric systems to be solved at each time step, and the stencil of the corresponding matrix is that of the diffusion operator. Moreover, nonlinear transport operators and nonlinear slope limiters can be treated explicitly.

Although a substantial amount of literature exists on IMEX RK methods, deriving stability and error estimates for stabilized finite elements combined with IMEX RK time discretization remains, to the authors' knowledge, an open issue. In particular, we aim at an analysis that is valid in all flow regimes, that is, either advection-dominated or diffusion-dominated. Following the seminal work of Levy and Tadmor [START_REF] Levy | From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method[END_REF], the present analysis relies on L 2 -energy estimates, that is, we work directly with discrete functions in the physical space. In other words, we account for the full geometric structure of eigenvectors, instead of the more classical approach using only scalar eigenvalue arguments which may be misleading in the context of nonnormal operators.

Concerning IMEX RK schemes, a first important issue is that the analysis of the truncation error in time by means of Butcher tables is not sufficient in the context of PDEs. In particular, this error involves the partial differential operators A and B acting on suitable functions associated with the intermediate stages of the scheme. In the IMEX scheme, bounding (high-order) derivatives of these functions is not straightforward and, in particular, requires a careful study of the role played by boundary conditions. A second important issue is that the explicit part of the RK scheme is anti-dissipative, that is, it produces energy, so that this energy production must be controlled by the stability induced by space discretization. In the context of finite element methods with symmetric stabilization, explicit (second-and third-order) RK methods were analyzed in [START_REF] Burman | Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems[END_REF], in particular for the pure advection equation, leading to stability and error estimates for smooth solutions. The presence of the diffusion operator poses additional difficulties to be tackled herein.

The two-stage IMEX RK scheme we consider for time discretization is the so-called SSP2(2,2,2) L-stable scheme proposed in [START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF] for hyperbolic systems with stiff relaxation terms and no sources. This scheme combines an explicit two-stage RK scheme for the transport operator together with a diagonally implicit, two-stage RK scheme for the stiff relaxation terms. Moreover, this scheme is formulated in terms of a parameter γ, and the value γ = γ * := 1 -1 √ where σ := β L ∞ (Ω) is the reference velocity, h the mesh size, and τ the time step. For simplicity, the time step is taken to be constant, and we use a single Péclet number for the whole domain. In all flow regimes, we assume a hyperbolic type CFL restriction on the time step of the form Co ≤ ̺ with ̺ independent of the mesh size h, the time step τ , and the problem data. Furthermore, the analysis of the truncation error in time requires the technical assumptions that the normal component of β and the source term f vanish on ∂Ω and that elliptic regularity holds for the Laplace operator. In the advection-dominated regime (Pe ≥ 1), stability and convergence are achieved for γ ∈ (0, 1 2 ); to fix the ideas, we take γ ∈ [ 1 5 , 2 5 ] (the actual value of γ influences only the numerical bound on the Courant number). Our main convergence result (Theorem 4.2 and Proposition 4.1) takes the form

u(t F ) -u N h L + τ N n=1 µ ∇(u(t n ) -u n h ) 2 L d 1/2 τ 3/2 + σ 1/2 h 3/2 .
The estimate for the space error is quasi-optimal (1/2-suboptimal), similarly to the steady case. The estimate for the time error is also quasi-optimal (1/2-suboptimal considering that a two-stage IMEX RK scheme is used).

Owing to the CFL restriction on the time step, this estimate is actually sufficient to equilibrate space and time errors. In the diffusion-dominated regime (Pe ≤ 1), stability and convergence are achieved for γ in a sufficiently small neighborhood of γ * . In addition to the bound on the Courant number (which becomes trivial in the purediffusion limit), the time step is restricted by the bound τ ≤ (t * /µ) 

τ N n=1 µ ∇(u(t n ) -u n h ) 2 L d 1/2 τ + µ 1/2 h.
The estimate on the space error is optimal, while the estimate on the time error is 1-suboptimal, but, again, owing to the CFL restriction, it is actually sufficient to equilibrate space and time errors. Finally, still in the diffusion-dominated regime, we prove that (Proposition 4.2)

u(t F ) -u N h L τ 3/2 + σ 1/2 h 3/2 + µ -1/2 h 2 .
This estimate is 1/2-suboptimal in time and in space, but, as the other estimates, equilibrates both errors owing to the CFL restriction. Moreover, as σ → 0, that is, in the pure diffusion limit, second-order convergence is recovered in h. Finally, we observe that under an additional assumption on the boundary, the convergence order in time of all the above estimates can be improved by a factor τ 1/2 ; see Remark 3.1. The material is organized as follows. §2 states the basic assumptions, presents the setting for the space and time discretization, and introduces the truncation error in time together with the error equations. §3 is devoted to the analysis of the truncation error and the approximation error in space. §4 contains the stability and error analysis, while §5 presents numerical results. §6 discusses extensions to other space discretization schemes. In what follows, we often abbreviate a b the inequality a ≤ Cb for positive C independent of the mesh size h, the time step τ , and the problem data. We only keep track of constants if they are to be used later in thresholds for the Courant number.

The setting semi

In this section, we specify the basic assumptions for the time evolution problem (1) and the discretization parameters. We also present the stabilized finite element method for space discretization together with the twostage IMEX RK scheme for time discretization. Then, we identify the truncation error in time upon introducing suitable intermediate functions associated with the intermediate stages of the IMEX RK scheme, and we derive the error equation. Finally, we collect important stability and boundedness properties of the discrete operators used for space discretization.

Basic assumptions basic

Let L := L 2 (Ω) and let V := H 2 (Ω) ∩ H 1 0 (Ω). We assume that the exact solution u and the source term f are such that

u ∈ C 0 ([0, t F ]; H 4 (Ω) ∩ H 1 0 (Ω)) ∩ C 1 ([0, t F ]; H 3 (Ω)) ∩ C 3 ([0, t F ]; L), ( 2a 
) eq:hyp.u f ∈ C 0 ([0, t F ]; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 2 ([0, t F ]; L), (2b 
) eq:hyp.f and we observe that (2b) means, in particular, that f | ∂Ω = 0. We assume that the domain Ω is convex so that elliptic regularity holds true for the Laplace operator with homogeneous Dirichlet boundary conditions. Finally, we assume that β is in the Sobolev space [W 1,∞ (Ω)] d , so that β is bounded and has bounded derivatives, and that the normal component of β vanishes at the boundary, that is, ν•β| ∂Ω = 0 where ν denotes the unit outward normal to Ω. For later use, we set

σ 1 := ∇β [L ∞ (Ω)] d,d
and observe that σ -1 1 can be interpreted as a time scale. We also consider the reference time t * := min(σ -1 1 , t F ). An important consequence of the fact that the normal component of β and the source term f vanish at the boundary is the following.

Bu.dO

Proposition 2.1 (Boundary value of Bu(t) and Au(t)). For all t ∈ [0, t F ],

Bu(t)| ∂Ω = Au(t)| ∂Ω = 0. ( 3 
)
Proof. The fact that Bu(t)| ∂Ω = 0 results from β having zero normal component on ∂Ω and u vanishing on ∂Ω.

The fact that Au(t)| ∂Ω = 0 then results from the evolution equation since

f (t)| ∂Ω = ∂ t u(t)| ∂Ω = 0.
Concerning the discretization parameters, we always assume to fix the ideas that Co ≤ 1; bounds on the Courant number with different constants will be introduced later. We also assume the following mild reverseparabolic CFL inequality h 2 μτ, (4) eq:reverse.CF

where μ := max(µ, σ 2 t * ). Finally, we make the mild assumption that the mesh size and the time step resolve the spatial variations of the advection velocity, that is,

σ 1 h ≤ σ, σ 1 τ ≤ 1, (5) 
and observe that the second bound implies τ ≤ t * since τ ≤ t F as well.

Space discretization

Let {T h } h>0 be a family of affine, simplicial meshes of Ω. We assume that the meshes are kept fixed in time and that the family {T h } h>0 is quasi-uniform. It is also possible to work with shape-regular mesh families. In this case, as usual, the space scale in the CFL condition is no longer h, but the smallest element diameter in the mesh. Mesh faces are collected in the set F h which is split into the set of interior faces, F int h , and boundary faces, F ext h . For a smooth enough function v that is possibly double-valued at F ∈ F int h with F = ∂T -∩ ∂T + , we define its jump at F as [[v]] := v| T --v| T + , and we fix the unit normal vector to F , denoted by ν F , as pointing from T -to T + . The arbitrariness in the sign of [[v]] is irrelevant in what follows.

Let V h be the finite element space spanned by continuous and piecewise affine functions. Set V (h) := H 2 (Ω) + V h . The space semi-discretized formulation can be written as follows: For all t ∈ [0,

t F ], find u h (t) ∈ V h such that ∂ t u h (t) + B h u h (t) + A h u h (t) = f h (t), (6) space_semi_di 
with initial condition u h (0) = π h u 0 and source term f h := π h f , where π h denotes the L-orthogonal projection onto V h . The discrete linear operators B h :

V (h) → V h and A h : V (h) → V h are such that for all (z, w h ) ∈ V (h) × V h , (B h z, w h ) L := (β•∇z, w h ) L + F ∈F int h S cip h 2 F (|ν F •β|ν F •[[∇z]], ν F •[[∇w h ]]) L,F , (7a) 
(A h z, w h ) L := (µ∇z, ∇w h ) L d -(µ(ν•∇z), w h ) L,∂Ω -(µz, ν•∇w h ) L,∂Ω + S bc h -1 (µz, w h ) L,∂Ω . (7b) 
Here, (•, •) L denotes the L 2 (Ω)-inner product (with associated norm • L ) and (•,

•) L d the [L 2 (Ω)] d -inner product (with associated norm • L d )
, while for a subset ω ⊂ Ω (a mesh face or a collection thereof), (•, •) L,ω denotes the corresponding L 2 (ω)-inner product. We observe that the homogeneous Dirichlet boundary condition is weakly enforced in A h (and that the additional boundary term

F ∈F ext h ∩∂Ω -(|ν•β|z, v h ) L,F
, where ∂Ω -denotes the inflow boundary, has been discarded from B h since we assume ν•β| ∂Ω = 0). Moreover, the user-dependent parameter S cip is positive, while the user-dependent parameter S bc is sufficiently large (see §2.6).

The discrete linear operators A h and B h satisfy important stability and boundedness properties collected in §2.6. For the time being, we record the following consistency property: For all v ∈ V ,

B h v = π h (Bv), A h v = π h (Av). (8) 

Time discretization

For 0 ≤ n ≤ N with N := ⌊t F /τ ⌋, a superscript n indicates the value of a function at the discrete time nτ , and for 0 ≤ n ≤ N -1, we set I n := (nτ, (n + 1)τ ]. For a real parameter γ ∈ (0, 1 2 ), we consider the following time discretization scheme:

q:RK2 v n h = u n h -γτ A h v n h + γτ f n h , (9a) eq 
:RK2.a

w n h = u n h -τ B h v n h -(1 -2γ)τ A h v n h -γτ A h w n h + (1 -γ)τ f n h , (9b) eq:RK2.b u n+1 h = u n h -1 2 τ B h (v n h + w n h ) -1 2 τ A h (v n h + w n h ) + τ f n+ 1 2 h . ( 9c 
) eq:RK2.c
Here, f

n+ 1 2 h := π h f ((n + 1 
2 )τ ) can be replaced by any second-order approximation in time, e.g., 1 2 (f n h + f n+1 h

). We observe that the operator B h is treated using an explicit two-stage RK scheme and the operator A h using a diagonally implicit two-stage RK scheme. By using equation (9a) in (9b) and equations (9a)-(9b) in (9c), we obtain the following alternative form of the system (9):

2.bis v n h = u n h -γτ A h v n h + γτ f n h , (10a) 
eq:RK2.aa

w n h = v n h -τ B h v n h -(1 -3γ)τ A h v n h -γτ A h w n h + (1 -2γ)τ f n h , (10b) 
eq:RK2.bb

u n+1 h = 1 2 (v n h + w n h ) -1 2 τ B h w n h -1 2 γτ A h v n h -1 2 (1 -γ)τ A h w n h + τ (f n+ 1 2 h -1 2 f n h ).
(10c) eq:RK2.cc

Truncation error in time

The goal of this section is to identify the truncation error in time. Recalling the operators B :

V ∋ v → β•∇v ∈ L and A : V ∋ v → -µ∆v ∈ L, we introduce, for all 0 ≤ n ≤ N -1, the auxiliary functions v n , w n ∈ H 1 0 (Ω) such that (compare with (9a)-(9b)) q:rec v n + γτ Av n = u n + γτ f n , (11a) eq:rec.v w n + γτ Aw n = u n -τ Bv n -(1 -2γ)τ Av n + (1 -γ)τ f n , (11b 
) eq:rec.w or, equivalently, subtracting (11a) from (11b) (compare with (10b))

w n + γτ Aw n = v n -τ Bv n -(1 -3γ)τ Av n + (1 -2γ)τ f n . ( 12 
) eq:rec.w.a
Moreover, owing to elliptic regularity, v n , w n ∈ V .

f:Psi Definition 2.1 (Truncation error). The truncation error Ψ n ∈ L at the discrete time nτ is defined as

Ψ n := τ -1 (u n+1 -u n ) + 1 2 (A + B)(v n + w n ) -f n+1/2 . ( 13 
) eq:def.Psi
It is straightforward to verify that (compare with (9c) and (10c))

u n+1 = u n -1 2 τ B(v n + w n ) -1 2 τ A(v n + w n ) + τ f n+1/2 + τ Ψ n = 1 2 (v n + w n ) -1 2 τ Bw n -1 2 γτ Av n -1 2 (1 -γ)τ Aw n + τ (f n+1/2 -1 2 f n ) + τ Ψ n . ( 14 
) eq:u.n+1

Error equation

To formulate the error equation, we define

ξ n h = u n h -π h u n , θ n h = v n h -π h v n , ζ n h = w n h -π h w n , (15a) 
ξ n π = u n -π h u n , θ n π = v n -π h v n , ζ n π = w n -π h w n . (15b) eq:def.pi.n
Hence, the approximation error can be written as u n -u n h = -ξ n h + ξ n π and similarly for v n -v n h and w n -w n h . The functions ξ n π , θ n π , and ζ n π are classically used to measure the space approximation errors. Lemma 2.1 (Error equation). There holds

:pert θ n h = ξ n h -γτ A h θ n h + τ α n h , (16a) eq 
:pert.a

ζ n h = θ n h -τ B h θ n h -(1 -3γ)τ A h θ n h -γτ A h ζ n h + τ β n h , (16b) eq 
:pert.b

ξ n+1 h = 1 2 (θ n h + ζ n h ) -1 2 τ B h ζ n h -1 2 γτ A h θ n h -1 2 (1 -γ)τ A h ζ n h + τ δ n h -τ Ψ n h , ( 16c 
) eq:pert.c
where Ψ n h := π h Ψ n and

α n h = γA h θ n π , β n h = B h θ n π + (1 -3γ)A h θ n π + γA h ζ n π , δ n h = 1 2 B h ζ n π + 1 2 γA h θ n π + 1 2 (1 -γ)A h ζ n π .
Proof. Apply the projector π h to (11a), [START_REF] Burman | Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations[END_REF], and ( 14), use consistency, and subtract the resulting equations from (10).

2.6. Stability and boundedness of the discrete operators A h and B h nd.AB

We define the following seminorm and norm on V (h),

|z| 2 S := F ∈F int h S cip h 2 F |ν F •β| 1/2 ν F •[[∇z]] 2 L,F , (17a) eq:def.S z 2 A := µ ∇z 2 L d + µh -1 z 2 L,∂Ω . (17b) eq:def.norme.
It is well-known that provided S bc is sufficiently large, there is c a > 0 such that for all

v h ∈ V h , (A h v h , v h ) L ≥ c a v h 2 A . ( 18 
) eq:Ah.dissip
To allow for a more compact notation, we also consider the norm

v h a := (A h v h , v h ) 1/2 L
for all v h ∈ V h . Furthermore, integration by parts readily yields

(B h v h , v h ) L = |v h | 2 S . ( 19 
) eq:Bh.dissip
We now examine briefly some important boundedness properties of the discrete operators A h and B h . In addition to the |•| S -seminorm and the • A -norm defined above, we consider the following norms on V (h),

m.AB* z B * := |z| S + σ 1/2 h -1/2 z L , (20a) 
z A * := z A + µ 1/2 h 1/2 ν•∇z L,∂Ω . (20b) 
These norms will be used to measure the space approximation errors. The following properties of B h are established in [START_REF] Burman | A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty[END_REF][START_REF] Burman | A continuous finite element method with face penalty to approximate Friedrichs' systems[END_REF][START_REF] Burman | Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems[END_REF].

bnd.B Lemma 2.2 (Boundedness of B h ). For all z ∈ V (h), B h z L ≤ σ ∇z L d + C S σ 1/2 h -1/2 |z| S , ( 21 
) eq:bnd.B for all (z, v h ) ∈ V (h) × V h , |(B h (z -π h z), v h ) L | z -π h z B * (|v h | S + σ 1/2 1 v h L ), ( 22 
) eq:OSS.B
and for all

(v h , w h ) ∈ V h × V h , |(B h v h , w h -π 0 h w h ) L | ≤ C B σ 1/2 h -1/2 (|v h | S + σ 1/2 1 v h L ) w h -π 0 h w h L , (23) eq 
:OSS.B'
where π 0 h denotes the L-orthogonal projection onto piecewise constant functions.

Using discrete trace and inverse inequalities, together with ( 21) yields for all v h ∈ V h ,

|v h | S σ 1/2 h -1/2 v h L , B h v h L σh -1 v h L , (24) 
eq:bnd.B.bis while using [START_REF] Guzmán | Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems[END_REF] and the previous bound on |v h | S yields for all z ∈ V (h),

τ B h (z -π h z) L τ 1/2 Co 1/2 z -π h z B * . ( 25 
) eq:bnd.B.star
The following properties of A h are established using fairly standard arguments, in particular discrete trace and inverse inequalities and the uniform equivalence of the • A -and

• A * -norms on V h . bnd.A Lemma 2.3 (Boundedness of A h ). For all (z, w h ) ∈ V (h) × V h , |(A h z, w h ) L | z A * w h A so that A h z L µ 1/2 h -1 z A * . ( 26 
) eq:cont.Ah
Additionally, for all

(z h , w h ) ∈ V h × V h , |(A h z h , w h ) L | z h A w h A so that A h z h L µ 1/2 h -1 z h A . ( 27 
) eq:cont.Ahh

Truncation and space approximation errors trunc

The goal of this section is to establish bounds on the truncation error Ψ n defined by [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws[END_REF] and on the space approximation errors associated with the functions θ n π and ζ n π defined by (15b). To this end, we first derive bounds on the auxiliary functions at intermediate stages, namely the functions v n and w n defined by [START_REF] Burman | Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems[END_REF]. Recall that owing to elliptic regularity, these functions are in V = H 2 (Ω) ∩ H 1 0 (Ω).

Bounds on the auxiliary functions at intermediate stages

Bounding Sobolev norms of the functions v n and w n hinges on the stability properties of the operator (I + γτ A) (where I is the identity in V ). basic Lemma 3.1 (Stability of (I + γτ A)). Let v ∈ L and let u ∈ V be such that

(I + γτ A)u = v.
(28) eq:basic.eq

Then,

u L v L , (µτ ) 1/2 ∇u L d v L . ( 29 
) eq:basic1 If, additionally v ∈ H 1 0 (Ω), ∇u L d ∇v L d , (µτ ) 1/2 ∆u L ∇v L d . ( 30 
) eq:basic2 If, additionally v ∈ V , ∆u L ∆v L , (µτ ) 1/2 ∇∆u L d ∆v L .
(31) eq:basic3

Proof. Take the L-scalar product of ( 28) with u and integrate by parts to infer [START_REF] Roos | Robust numerical methods for singularly perturbed differential equations[END_REF], apply the same procedure to [START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF] with ∆u observing that ∆u| ∂Ω = 0 owing to [START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF] to infer (30), and take the Laplacian of ( 28) and apply the same procedure with ∆u to infer (31).

As a first application, we derive bounds on (v n -u n ) and on v n .

d.v-u Lemma 3.2 (Bounds on (v n -u n ) and v n ). For s ∈ {1, 2}, set K n s := |f n | H s + µ|u n | H s+2 . Then, ∇(v n -u n ) L d τ K n 1 , ∆(v n -u n ) L τ K n 2 , (µτ ) 1/2 ∇∆(v n -u n ) L τ K n 2 , ( 32 
) eq:bnd.v-u and letting Kn s = |u n | H s + τ K n s , ∇v n L d Kn 1 , |v n | H 2 Kn 2 .
(33) eq:bnd.v

Proof. Take u := v n -u n so that v = γτ (f n -Au n ) owing to (11a). Since v ∈ V (recall that f n and Au n vanish on ∂Ω), the bound on ∇(v n -u n ) L d results from (30) and the two other bounds on (v n -u n ) from (31). Finally, the bounds (33) on v n result from (32), the triangle inequality, and elliptic regularity.

As a second application, we derive bounds on (w n -u n ) and on w n .

d.w-u Lemma 3.3 (Bounds on (w n -u n ) and w n ). Let K n w-u := K n 1 + σ Kn 2 + σ 1 Kn 1 . Then, ∇(w n -u n ) L d τ K n w-u , (µτ ) 1/2 ∆(w n -u n ) L τ K n w-u , ( 34 
) eq:bnd.w-u and (µτ ) 1/2 |w n | H 2 (µτ ) 1/2 |u n | H 2 + τ K n w-u . ( 35 
) eq:bnd.w
Proof. We first deduce from ( 11) that

(I + γτ A)(w n -u n ) = γτ (f n -Au n ) + γ -1 (1 -2γ)(v n -u n ) -τ Bv n . ( 36 
) eq:fkv.w-u
As a result, we can apply Lemma 3.1 with u := w n -u n and v equal to the right-hand side of (36). We observe that v ∈ H 1 0 (Ω) and that ∇v

L d τ K n w-u since, in particular, ∇(Bv n ) L d ≤ σ|v n | H 2 +σ 1 ∇v n L d σ Kn 2 +σ 1 Kn 1
where we have used (33) to bound v n . Hence, the bounds (34) on (w n -u n ) result from (30). Finally, the bound (35) on w n results from (34), the triangle inequality, and elliptic regularity.

Bound on the truncation error

In this section, we derive two bounds on the truncation error. To this end, it is useful to consider the following equivalent expression for Ψ n (the proof, which amounts to a direct verification, is skipped for brevity). m:Psi Lemma 3.4 (Equivalent expression for Ψ n ). Let x n ∈ V be defined such that

x n := 1 2 (v n + w n ) -u n -1 2 τ ∂ t u n .
(37) eq:def.

x

Then, letting

Ψn := τ -1 (u n+1 -u n -τ ∂ t u n -1 2 τ 2 ∂ tt u n ) + (f n + 1 2 τ ∂ t f n -f n+1/2
), there holds

Ψ n = Ψn + Bx n + Ax n . ( 38 
) eq:Psi.ABx
We observe that it is necessary to bound spatial derivatives of x n in order to control the terms Bx n and Ax n . Here, the bounds on

(v n -u n ) derived in Lemma 3.2 are instrumental. bnd.x Lemma 3.5 (Bounds on x n ). Let C n x := µ 1/2 K n 2 + τ 1/2 (σK n 2 + σ 1 K n 1 + µ|∂ t u n | H 3 ). Then, d.ABx Bx n L σC n x τ 3/2 , ( 39a 
) eq:bnd.Bx Ax n L µ 1/2 C n x τ, ( 
39b) eq:bnd.Ax

x n A * μ1/2 C n x τ 3/2 . (39c) eq:bnd.xA
Proof. A direct calculation shows that

y n := (I + γτ A)x n = -1 2 τ B(v n -u n ) -1 2 (1 -2γ)τ A(v n -u n ) -1 2 γτ 2 A∂ t u n .
(40) eq:x.y

Applying Lemma 3.1 with u = x n and v = y n and observing that y n ∈ H 1 0 (Ω) (for the first term, ν•β as well as (v n -u n ) vanish on ∂Ω; for the second term, Av n vanishes on ∂Ω owing to (11a) and Au n by Proposition 2.1; for the third term, Au(t) vanishes on ∂Ω at all times by Proposition 2.1 and, hence, so does its time-derivative), we infer using (30) that ∇x n x τ 3/2 , whence (39a) and (39b). Finally, a continuous scaled trace inequality together with elliptic regularity yield

x n A * µ 1/2 ( ∇x n L d + h|x n | H 2 ) µ 1/2 ( ∇x n L d + h ∆x n L ).
Using the reverse-parabolic CFL inequality (4) and the above bounds on ∇x n L d and ∆x n L , we infer

x n A * μ1/2 ( ∇x n L d + (µτ ) 1/2 ∆x n L ) μ1/2 ∇y n L d ,
whence (39c) results from the bound on ∇y n L d .

We can now state the main result of this section, providing two ways to bound the truncation error. The first bound (42a) is simpler, but is only first-order in time; the second bound (42b) is of higher-order, namely 3/2, but estimates the diffusive contribution of x n differently. Both bounds will be used in what follows.

d.Psi Lemma 3.6. Let C n Ψ := (t * τ ) 1/2 C n u,f + t 1/2 * σC n x + μ1/2 C n x , ( 41a 
) eq:Cpsi Cn Ψ := τ C n u,f + τ 1/2 σC n x + μ1/2 C n x , (41b 
) eq:tCpsi where C n x is defined in Lemma 3.5 and C n u,f := u C 3 (In;L) + f C 2 (In;L) . Then,

Ψ n L ≤ Ψn L + Bx n L + Ax n L Cn Ψ τ, (42a) eq:bnd.Psi Ψn L + Bx n L + t -1/2 * x n A * t -1/2 * C n Ψ τ 3/2 .
(42b) eq:bnd.Psi.sh

Proof. Using the definition (38) and the triangle inequality leads to

Ψ n L ≤ Ψn L + Bx n L + Ax n L ,
whence (42a) results from (39a), (39b), and the obvious bound Ψn L ≤ C n u,f τ 2 . Furthermore, the second bound (42b) results from (39a), (39c), and the same bound on Ψn L .

.time Remark 3.1 (Convergence order in time). Although the two-stage IMEX RK scheme is formally of second-order, as reflected by the bound on Ψn L based on Taylor polynomial expansions on u and f , the bounds on the truncation error derived in Lemma 3.6 are not of second-order. In fact, although x n L is second-order in time (this results from (40) so that x n L ≤ y n L and the fact that

y n L τ 2 (σK 1 + µK 2 + µ|∂ t u n | H 2 )
), the firstand second-order derivatives of x n are not second-order in time, as reflected by the bounds derived in Lemma 3.5 on Bx n L and Ax n L . The difficulty in deriving higher-order bounds on Bx n L and Ax n L stems from boundary conditions. To establish the present bounds, we have, in particular, made use of Au n | ∂Ω = 0 and Bu n | ∂Ω = 0 owing to Proposition 2.1. Under the more restrictive assumption ABu n | ∂Ω = 0 (which holds true, e.g., if the normal derivative of β and the Laplacian of the normal component of β vanish on ∂Ω), it is possible to gain a factor τ 1/2 in the bounds on Bx n L and Ax n L . This results from the fact that the function y n defined by ( 40) is such that (I +γτ A)

y n = τ 2 (z n 1 +z n 2 ) with z n 1 = -1 2 γB(f n -Au n )-1 2 (1-2γ)γA(f n -Au n )-1 2 γA∂ t u n ∈ H 1 0 (Ω) (since ABu n | ∂Ω = 0) and z n 2 = -1 2 γ(AB -BA)(v n -u n ) -1 2 γ 2 τ A 2 ∂ t u n ∈ L so that ∇y n L d
τ 2 (details are skipped for brevity). An alternative assumption leading to the same conclusion is to use periodic boundary conditions. Finally, we stress that the present bounds are, however, sufficient to equilibrate the space and time errors in our error estimates in the context of the CFL restriction on the time step.

Bounds on the space approximation errors

The goal of this section is to bound the • A * -and • B * -norms of θ n π and ζ n π . We first observe that standard approximation properties in finite element spaces yield for all z ∈ H 2 (Ω),

z -π h z B * σ 1/2 h 3/2 |z| H 2 , z -π h z A * µ 1/2 h|z| H 2 .
(43) eq:app.star h.zet Lemma 3.7 (Bound on θ n π and ζ n π ). There holds

θ n π B * + θ n π A * (σ 1/2 h 3/2 + µ 1/2 h) Kn 2 , ( 
44a) eq:bnd.theta. 

ζ n π B * + ζ n π A * (σ 1/2 h 3/2 + µ 1/2 h) Kn 2 + τ 1/2 hK n w-u . ( 44b 
n π A * µ 1/2 h|u n | H 2 + τ 1/2 hK n w-u . To bound ζ n π B * , we first observe that for a function z ∈ V , z -π h z B * σ 1/2 h 1/2 ∇z L d .
This assertion is clear for the • L -norm contribution, while using a discrete trace inequality and the

H 1 -stability of π h yields |z -π h z| S = |π h z| S σ 1/2 h 1/2 ∇π h z L d σ 1/2 h 1/2 ∇z L d .
(45) eq:bnd.z-Piz. As a result, starting from the triangle inequality

ζ n π B * ≤ u n -π h u n B * + (w n -u n ) -π h (w n -u n ) B * ,
and using the approximation property (43) for the first term together with (45), we infer

ζ n π B * σ 1/2 h 3/2 |u n | H 2 + σ 1/2 h 1/2 τ K n w-u ≤ σ 1/2 h 3/2 |u n | H 2 + τ 1/2 hK n w-u ,
where we have used (34) to bound ∇(w n -u n ) L d and the fact that Co ≤ 1. The conclusion is straightforward since

|u n | H 2 ≤ Kn 2 .

Stability and convergence analysis

V.RK2

This section is devoted to the stability and convergence analysis of the IMEX RK scheme [START_REF] Burman | Weighted error estimates of the continuous interior penalty method for singularly perturbed problems[END_REF]. Firstly, we derive a basic energy estimate valid in all flow regimes (Theorem 4.1). On the right-hand side of this estimate appears an anti-dissipative term together with the time and space discretization errors. Then, we bound the anti-dissipative term depending on the flow regime, yielding our main convergence results (Theorems 4.2 and 4.3 together with Propositions 4.1 and 4.2).

Basic energy identity

We begin the analysis with a basic energy identity valid in all flow regimes. gy.id Lemma 4.1 (Basic energy identity). Assume γ ∈ (0, 1 2 ). There holds

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 1 2 τ |θ n h | 2 S + 1 2 τ |ζ n h | 2 S + 1 2 -γ τ θ n h 2 a + 1 2 -γ τ ζ n h 2 a
(46) energy.id

+ 1 2 γτ ζ n h + θ n h 2 a = 1 2 ξ n+1 h -ζ n h 2 L + τ (α n h + 1 2 β n h , θ n h ) L + τ (δ n h , ζ n h ) L -τ (Ψ n h , ζ n h ) L .
Remark 4.1 (Pure advection, role of diffusion). Setting the diffusion coefficient to zero, the energy identity (46) reduces to the one derived in [START_REF] Burman | Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems[END_REF] for explicit RK2 schemes in the purely advective case. Moreover, in the presence of diffusion, all the additional terms involving the • a -norm are dissipative for γ ∈ (0, 1 2 ). Proof. We multiply equation (16a) by θ n h to obtain using the discrete stability (18

) of A h , 1 2 θ n h 2 L + 1 2 θ n h -ξ n h 2 L = 1 2 ξ n h 2 L + (θ n h -ξ n h , θ n h ) L = 1 2 ξ n h 2 L -γτ θ n h 2 a + τ (α n h , θ n h ) L . ( 47 
) stab1
Then, we multiply equation (16b) by 1 2 θ n h and equation (16c) by ζ n h to obtain

1 2 (ζ n h , θ n h ) L = 1 2 θ n h 2 L -1 2 τ (B h θ n h , θ n h ) L -1 2 (1 -3γ)τ θ n h 2 a -1 2 γτ (A h ζ n h , θ n h ) L + 1 2 τ (β n h , θ n h ) L (48) stab2 and (ξ n+1 h , ζ n h ) L = 1 2 (θ n h + ζ n h , ζ n h ) L -1 2 τ (B h ζ n h , ζ n h ) L -1 2 γτ (A h θ n h , ζ n h ) L -1 2 (1 -γ)τ ζ n h 2 a + τ (δ n h -Ψ n h , ζ n h ) L . (49) stab3
Summing (47) and (48) we deduce

1 2 (ζ n h , θ n h ) L = -1 2 θ n h -ξ n h 2 L + 1 2 ξ n h 2 L -1 2 τ (B h θ n h , θ n h ) L -1 2 (1 -γ)τ θ n h 2 a -1 2 γτ (A h ζ n h , θ n h ) L (50) stab4 + τ (α n h + 1 2 β n h , θ n h ) L .
Using now the identity (ξ

n+1 h , ζ n h ) L = 1 2 ξ n+1 h 2 L -1 2 ξ n+1 h -ζ n h 2 L + 1 2 ζ n h 2
L together with (49) and (50), we infer

1 2 ξ n+1 h 2 L -1 2 ξ n+1 h -ζ n h 2 L + 1 2 ζ n h 2 L = 1 2 ζ n h 2 L -1 2 θ n h -ξ n h 2 L + 1 2 ξ n h 2 L -1 2 τ (B h θ n h , θ n h ) L -1 2 τ (B h ζ n h , ζ n h ) L -1 2 (1 -γ)τ θ n h 2 a -γτ (A h ζ n h , θ n h ) L -1 2 (1 -γ)τ ζ n h 2 a + τ (α n h + 1 2 β n h , θ n h ) L + τ (δ n h , ζ n h ) L -τ (Ψ n h , ζ n h ) L .
Rearranging the relation, completing the square in the three terms involving the • a -norm, and using the discrete stability [START_REF] Ern | Discontinuous Galerkin methods for Friedrichs' systems. I. General theory[END_REF] of B h yields the assertion.

Bound on source terms and basic energy estimate

The goal of our second step is to bound the contributions of the source terms α n h , β n h , δ n h , and Ψ n h on the right-hand side of the basic energy identity (46). To this purpose, we exploit the presence of the |•| 2 S -terms and the • 2 a -terms on the left-hand side (Lemma 4.2) so as to arrive at a basic energy estimate valid in all flow regimes and where the only term left to be bounded is the anti-dissipative term 1 2

ξ n+1 h -ζ n h 2
L (Theorem 4.1). To fix the ideas, we assume γ ∈ [ 1 5 , 2 5 ]. A larger interval included in (0, 1 2 ) can be considered; this will only modify the numerical factors in front of the • 2 a -terms. We introduce the quantity 

E n h := t -1/2 * ξ n h L + θ n π B * + θ n π A * + ζ n π B * + ζ n π A * + C n Ψ τ 3/2 , ( 
τ |(α n h + 1 2 β n h , θ n h ) L + (δ n h , ζ n h ) L -(Ψ n h , ζ n h ) L | ≤ 1 8 τ |θ n h | 2 S + 1 8 τ |ζ n h | 2 S + 1 40 τ θ n h 2 a + 1 80 τ ζ n h 2 a + Cτ (E n h ) 2 .
(52) eq:bnd.source

Proof. We first bound θ n h L and ζ n h L . Taking the L-scalar product of (16a) with θ n h yields

θ n h 2 L + γτ θ n h 2 a = (ξ n h , θ n h ) L + γτ (A h θ n π , θ n h ) L .
Using [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF] and the Cauchy-Schwarz inequality yields θ n h 2

L + τ θ n h 2 a ξ n h L θ n h L + τ θ n π A * θ n h A .
Hence, using Young's inequality together with [START_REF] Ern | Theory and Practice of Finite Elements[END_REF], we obtain

θ n h 2 L + τ θ n h 2 a ξ n h 2 L + τ θ n π 2 A * .
(53) eq:bnd.theta

Taking now the L-scalar product of (16b) with ζ n h yields

ζ n h 2 L + γτ ζ n h 2 a = (θ n h , ζ n h ) L -τ (B h θ n h , ζ n h ) L -(1 -3γ)τ (A h θ n h , ζ n h ) L + τ (β n h , ζ n h ) L .
Using [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF], the Cauchy-Schwarz inequality, and Co ≤ 1, we infer τ [START_REF] Levy | From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method[END_REF] and [START_REF] Ern | Theory and Practice of Finite Elements[END_REF], while using the boundedness ( 22) and ( 26) of B h and A h , we infer

|(B h θ n h , ζ n h ) L | θ n h L ζ n h L . In addition, τ |(A h θ n h , ζ n h ) L | τ θ n h a ζ n h a owing to
τ |(β n h , ζ n h ) L | τ θ n π B * (|ζ n h | S + σ 1/2 1 ζ n h L ) + τ ( θ n π A * + ζ n π A * ) ζ n h A τ 1/2 θ n π B * ζ n h L + τ ( θ n π A * + ζ n π A * ) ζ n h A ,
where we have used τ σ 1 ≤ 1, Co ≤ 1, and [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF]. Hence,

ζ n h 2 L + τ ζ n h 2 a θ n h 2 L + τ θ n h 2 a + τ ( θ n π 2 B * + θ n π 2 A * + ζ n π 2 A * ),
and accounting for (53) finally yields

ζ n h 2 L + τ ζ n h 2 a ξ n h 2 L + τ ( θ n π 2 B * + θ n π 2 A * + ζ n π 2 A * ).
(54) eq:bnd.zeta

We are now ready to bound the source terms. Since

α n h = γA h θ n π and |(A h θ n π , θ n h ) L | θ n π A * θ n h A
θ n π A * θ n h a owing to ( 26) and ( 18), we first obtain using Young's inequality

τ |(α n h , θ n h ) L | ≤ 1 80 τ θ n h 2 a + Cτ θ n π 2 A * ≤ 1 80 τ θ n h 2 a + Cτ (E n h ) 2 .
(55) eq:bnd.aa

Similarly, recalling β n h = B h θ n π + (1 -3γ)A h θ n π + γA h ζ n π and using ( 22),

1 2 τ |(β n h , θ n h ) L | ≤ 1 8 τ (|θ n h | 2 S + σ 1 θ n h 2 L ) + 1 80 τ θ n h 2 a + Cτ ( θ n π 2 B * + θ n π 2 A * + ζ n π 2 A * ).
Hence, using (53) to bound θ n h L and since τ ≤ t * ≤ σ -1 1 , we infer

1 2 τ |(β n h , θ n h ) L | ≤ 1 8 τ |θ n h | 2 S + 1 80 τ θ n h 2 a + Cτ (E n h ) 2 .
(56) eq:bnd.bb

Turning to δ n h and recalling that

δ n h = 1 2 B h ζ n π + 1 2 γA h θ n π + 1 2 (1 -γ)A h ζ n
π and proceeding as above, we infer

τ |(δ n h , ζ n h ) L | ≤ 1 8 τ |ζ n h | 2 S + 1 160 τ ζ n h 2 a + Cτ (E n h ) 2 .
(57) eq:bnd.dd

Finally, concerning Ψ n h , we infer using (38), the Cauchy-Schwarz inequality, and Young's inequality (note in particular that (Ax

n , ζ n h ) L = (µ∇x n , ∇ζ n h ) L d -(µζ n h , n•∇x n ) L,∂Ω x n A * ζ n h A ), τ (Ψ n h , ζ n h ) L ≤ τ Ψn h L ζ n h L + τ Bx n L ζ n h L + τ x n A * ζ n h A ≤ τ t * ( Ψn h 2 L + Bx n 2 L ) + τ t -1 * ζ n h 2 L + 1 160 τ ζ n h 2 a + Cτ x n 2 A * .
Using the bound (42b) on Ψn

L + Bx n L + t -1/2 *
x n A * , we obtain

τ (Ψ n h , ζ n h ) L ≤ 1 160 τ ζ n h 2 a + τ t -1 * ζ n h 2 L + Cτ (C n Ψ ) 2 τ 3 ,
so that owing to the bound (54) on ζ n h , τ ≤ t * , and the definition of

E n h , τ (Ψ n h , ζ n h ) L ≤ 1 160 τ ζ n h 2 a + Cτ (E n h ) 2 .
(58) eq:bnd.pp

Collecting the bounds (55), (56), (57), and (58) yields the assertion.

Combining Lemmata 4.1 and 4.2 yields our basic energy estimate.

.engy Theorem 4.1 (Basic energy estimate). Assume γ ∈ [ 1 5 , 2 5 ] and Co ≤ 1. Then,

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 3 8 τ |θ n h | 2 S + 3 8 τ |ζ n h | 2 S + ( 1 2 -γ)τ θ n h 2 a + 1 20 τ ζ n h 2 a + 1 40 τ ζ n h + θ n h 2 a (59) eq:energy.sta ≤ 1 2 ξ n+1 h -ζ n h 2 L + Cτ (E n h ) 2 .
Proof. Using the energy identity (46) together with the fact that 1 2 -γ ≥ 1 10 and γ ≥ 1 5 , and accounting for the bound (52) on the source terms yields

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 3 8 τ |θ n h | 2 S + 3 8 τ |ζ n h | 2 S + ( 1 2 -γ)τ θ n h 2 a + 1 10 τ ζ n h 2 a + 1 10 τ ζ n h + θ n h 2 a ≤ 1 2 ξ n+1 h -ζ n h 2 L + 1 40 τ θ n h 2 a + 1 80 τ ζ n h 2 a + Cτ (E n h ) 2 .
Since the term involving θ n h 2 a on the left-hand side will be used later in a different context, we leave it as it stands and use instead the terms ζ n h 2

a and ζ n h + θ n h 2
a on the left-hand side to absorb the two terms with the • a -norm on the right-hand side. We observe that

θ n h 2 a = θ n h + ζ n h -ζ n h 2 a ≤ 3 2 ζ n h 2 a + 3 ζ n h + θ n h 2 a
to infer the assertion.

The way to tackle the anti-dissipative term

1 2 ξ n+1 h -ζ n h 2
L on the right-hand side of the basic energy estimate (59) depends on the flow regime and will be examined in the two subsequent sections.

Stability and convergence: advection-dominated regime b.adv

In this regime, we assume that Pe ≥ 1 and, as before to fix the ideas, that γ ∈ [ 1 5 , 2 5 ]. Taking a larger interval for γ in (0, 1 2 ) is again possible, and this will only modify the numerical factors in the bound on the Courant number. In the advection-dominated regime, an important ingredient to bound the diffusion operator is that there is

C A such that for all v h ∈ V h , τ A h v h L ≤ C A (Co/Pe) 1/2 τ 1/2 v h A , ( 60 
) eq:C.A since owing to (27), τ A h v h L τ µ 1/2 h -1 v h A and τ 1/2 µ 1/2 h -1 = (Co/Pe) 1/2 . Our first step is to control the anti-dissipative term 1 2 ξ n+1 h -ζ n h 2
L on the right-hand side of the basic energy estimate (59). We recall the following inverse inequality valid for piecewise affine functions: There is

C i such that for all v h ∈ V h , ∇v h L d ≤ C i h -1 v h -π 0 h v h L . ( 61 
) eq:Cinv v.dom Lemma 4.3 (Stability). Assume Pe ≥ 1, γ ∈ [ 1 5 , 2 5 
], and Co ≤ 1. Assume further that

Co ≤ min 1 2 (C i C B ) -2/3 , 1 8 C -2 S , 5 4 c a (2C i + 3) -2 C -2 A Pe , (62) 
eq:Co.adv recalling that C B and C S are defined in Lemma 2.2. Then,

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 1 8 τ |θ n h | 2 S + 1 8 τ |ζ n h | 2 S + 1 20 c a τ θ n h 2 A + 1 40 c a τ ζ n h + θ n h 2 A τ (E n h ) 2 .
(63) eq:energy.sta

Proof. We start from the basic energy estimate (59) and observe that 1 2 -γ ≥ 1 10 to write

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 3 8 τ |θ n h | 2 S + 3 8 τ |ζ n h | 2 S + 1 10 c a τ θ n h 2 A + 1 20 c a τ ζ n h 2 A + 1 40 c a τ ζ n h + θ n h 2 A ≤ 1 2 ξ n+1 h -ζ n h 2 L + Cτ (E n h ) 2 ,
where we have used [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] to replace the • a -norm by the • A -norm. Set η n h := θ n h -ζ n h , so that by (16b) and (16c),

ξ n+1 h -ζ n h = 1 2 τ B h η n h + 1 2 -2γ τ A h θ n h -1 2 -γ τ A h ζ n h -1 2 τ β n h + τ δ n h -τ Ψ n h .
(64) eq:xi-zeta Using the triangle inequality and the bound (21) on B h yields

ξ n+1 h -ζ n h L ≤ 1 2 στ ∇η n h L d + 1 2 C S Co 1/2 τ 1/2 |η n h | S + 1 2 -2γ τ A h θ n h L + 1 2 -γ τ A h ζ n h L + τ ( 1 2 β n h L + δ n h L + Ψ n L ).
The terms involving the discrete operator A h are bounded using (60), 1 2 -2γ ≤ 3 10 , and 1 2 -γ ≤ 3 10 yielding

1 2 -2γ τ A h θ n h L + 1 2 -γ τ A h ζ n h L ≤ 3 10 τ 1/2 C A (Co/Pe) 1/2 ( θ n h A + ζ n h A ).
The contributions of A h to β n h and δ n h are bounded using [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF] and

τ 1/2 µ 1/2 h -1 = (Co/Pe) 1/2 ≤ 1 so that τ A h θ n π L + τ A h ζ n π L τ µ 1/2 h -1 ( θ n π A * + ζ n π A * ) ≤ τ 1/2 E n h .
The contributions of B h to β n h and δ n h are bounded using [START_REF] Johnson | An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[END_REF] and Co ≤ 1 so that

τ B h θ n π L + τ B h ζ n π L τ 1/2 ( θ n π B * + ζ n π B * ) ≤ τ 1/2 E n h .
Hence,

τ β n h L + τ δ n h L τ 1/2 E n h . ( 65 
) eq:bnd.beta.d Finally, τ Ψ n h L ≤ τ Ψ n L τ Cn Ψ τ ≤ τ 1/2 C n Ψ τ 3/2 ≤ τ 1/2 E n h , ( 
66) eq:bnd.Psi.bi owing to the bound (42a) on Ψ n L and the fact that Cn Ψ ≤ C n Ψ . As a result,

ξ n+1 h -ζ n h L ≤ 1 2 στ ∇η n h L d + 1 2 C S Co 1/2 τ 1/2 |η n h | S + 3 10 C A (Co/Pe) 1/2 τ 1/2 ( θ n h A + ζ n h A ) + Cτ 1/2 E n h . (67) eq:step1
The next step is to control

∇η n h L d . Let ς n h = η n h -π 0 h η n h and observe that ς n h 2 L = (η n h , ς n h ) L = τ (B h θ n h , ς n h ) L + (1 -3γ)τ (A h θ n h , ς n h ) L + γτ (A h ζ n h , ς n h ) L -τ (β n h , ς n h ) L , since η n h = τ B h θ n h + (1 -3γ)τ A h θ n h + γτ A h ζ n h -τ β n h owing to (16b).
To bound the first term on the right-hand side, we use the bound [START_REF] Hecht | FreeFem++, Third Edition, Version 3.0-1. User's Manual[END_REF] 

on B h to infer τ |(B h θ n h , ς n h ) L | ≤ C B Co 1/2 τ 1/2 (|θ n h | S + σ 1/2 1 θ n h L ) ς n h L .
Furthermore, bounding the three other terms by the Cauchy-Schwarz inequality, using the fact that γ ∈ [ 1 5 , 2 5 ] and the bound (60) for the terms involving the discrete operator A h , and simplifying by ς n h L ,

ς n h L ≤ C B Co 1/2 τ 1/2 (|θ n h | S + σ 1/2 1 θ n h L ) + 2 5 C A (Co/Pe) 1/2 τ 1/2 ( θ n h A + ζ n h A ) + τ β n h L ,
so that using the bound (53) on θ n h L , τ σ 1 ≤ 1, and (65) to bound τ β n h L ,

ς n h L ≤ C B Co 1/2 τ 1/2 |θ n h | S + 2 5 C A (Co/Pe) 1/2 τ 1/2 ( θ n h A + ζ n h A ) + Cτ 1/2 E n h .
Thus, using the inverse inequality (61),

στ ∇η n h L d ≤ C i στ h -1 ς n h L = C i Co ς n h L ≤ C i C B Co 3/2 τ 1/2 |θ n h | S + 2 5 C i C A Co(Co/Pe) 1/2 τ 1/2 ( θ n h A + ζ n h A ) + Cτ 1/2 E n h .
Substituting back into (67), re-arranging terms, and since Co ≤ 1, we infer

ξ n+1 h -ζ n h L ≤ 1 2 C i C B Co 3/2 τ 1/2 |θ n h | S + 1 2 C S Co 1/2 τ 1/2 |θ n h -ζ n h | S + ( 1 5 C i + 3 10 )C A (Co/Pe) 1/2 τ 1/2 ( θ n h A + ζ n h A ) + Cτ 1/2 E n h .
Let χ 1 := 32 -1/2 and χ 2 := 80 -1/2 . Then, owing to the assumption (62) on the Courant number, the above inequality becomes

ξ n+1 h -ζ n h L ≤ χ 1 τ 1/2 (|θ n h | S + |θ n h -ζ n h | S ) + χ 2 c 1/2 a τ 1/2 ( θ n h A + ζ n h A ) + Cτ 1/2 E n h . Since |θ n h | S +|θ n h -ζ n h | S ≤ 2(|θ n h | S +|ζ n h | S )
, squaring the above bound, and using that 1 2 (a+b+c) 2 ≤ a 2 +2b 2 +2c 2 where a, b, and c denote the three addends on the right-hand side of the above equation yields

1 2 ξ n+1 h -ζ n h 2 L ≤ 8χ 2 1 τ (|θ n h | 2 S + |ζ n h | 2 S ) + 4χ 2 2 c a τ ( θ n h 2 A + ζ n h 2 A ) + Cτ E n h .
Finally, observing that 8χ 2 1 = 1 4 and 4χ 2 2 = 1 20 yields the assertion. Remark 4.2 (Purely advective case). In the purely advective case (µ = 0), the third argument in the bound (62) on the Courant number can be dropped, leading to the bound derived in [START_REF] Burman | Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems[END_REF].

Remark 4.3 (Parabolic CFL restriction). In the advection-dominated regime, there holds τ µh -2 = CoPe -1 ≤ 1, that is, a parabolic CFL restriction on the time step. In particular, this property has been used in the proof of Lemma 4.3 to control the terms with the discrete operator A h using (60). We stress that this property is not used in the diffusion-dominated regime, where it will be too restrictive.

We can now derive our main convergence result in the advection-dominated regime. 

u N -u N h L C tim τ 3/2 + C spc σ 1/2 h 3/2 , ( 68 
) eq:err.est.ad
where

C 2 tim = N -1 n=0 τ (C n Ψ ) 2 with C n Ψ defined by (41a) and C 2 spc = N -1 n=0 τ (( Kn 2 ) 2 + (σ -1 K n w-u ) 2 )
with Kn 2 and K n w-u defined in Lemmata 3.2 and 3.3 respectively. Proof. Using the stability result of Lemma 4.3, we sum over n, discard the dissipative terms on the left-hand side, and use a discrete Gronwall lemma to eliminate the contribution of ξ n h 2

L in E n h . This yields

ξ N h 2 L N -1 n=0 τ ( θ n π 2 B * + ζ n π 2 B * + θ n π 2 A * + ζ n π 2 A * + (C n Ψ ) 2 τ 3 ).
To bound the terms with θ n π and ζ n π , we use the result of Lemma 3.7, and the fact that A . For our first step, it is sufficient that γ ∈ ( 1 4 , 2 5 ]; the minimal threshold on γ serves to obtain only positive factors on the left-hand side of the new energy estimate (70). For our second and third steps, we need the parameter γ to be sufficiently close to γ * = 1 -1 √ 2 ≃ 0.293. For simplicity, we assume γ = γ * and postpone to Remark 4.5 the discussion when γ slightly deviates from γ * , as motivated for instance by finite arithmetic precision.

µ 1/2 ≤ σ 1/2 h 1/2 since Pe ≥ 1 and τ 1/2 hK n w-u ≤ σ 1/2 h 3/2 (σ -1 K n w-u ) since Co ≤ 1. This yields ξ N h L C tim τ 3/2 + C spc σ 1/2 h 3/
In the diffusion-dominated regime, an important ingredient to bound the operator B h is that there is

C BA such that for all v h ∈ V h , τ B h v h L ≤ C BA τ σµ -1/2 v h A = C BA (CoPe) 1/2 τ 1/2 v h A , ( 69 
) eq:C.BA
since owing to the definition of the

• A -norm, ∇v h L d ≤ µ -1/2 v h A , while a discrete trace inequality yields |v h | S ( σh µ ) 1/2 v h A , so that (69) results from (21) and τ 1/2 σµ -1/2 = (CoPe) 1/2 . rgy.+ Lemma 4.4. Assume γ ∈ ( 1 4 , 2 5 ]. Assume Co ≤ min(1, 1 30 c a C -2 BA Pe -1 ). Then, 1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 3 8 θ n h -ζ n h 2 L + 1 8 τ |θ n h | 2 S + 1 8 τ |ζ n h | 2 S + 1 8 ( 1 2 -γ)c a τ θ n h 2 A (70) energy.+ + 1 8 c a τ ζ n h 2 A + 3 4 (γ -1 4 )c a τ θ n h -ζ n h 2 A + 1 40 c a τ ζ n h + θ n h 2 A ≤ 1 2 ξ n+1 h -ζ n h 2 L + Cτ (E n h ) 2 .
Proof. We first observe that (16b) implies

θ n h -ζ n h = τ B h θ n h + (1 -3γ)τ A h θ n h + γτ A h ζ n h -τ β n h ,
and re-arranging terms leads to

θ n h -ζ n h = τ B h θ n h -(γ -1 2 )τ A h (θ n h + ζ n h ) -(2γ -1 2 )τ A h (θ n h -ζ n h ) -τ β n h .
Taking the L-scalar product with θ n h -ζ n h and using the symmetry of a h yields

θ n h -ζ n h 2 L = τ (B h θ n h , θ n h -ζ n h ) L -(γ -1 2 )τ ( θ n h 2 a -ζ n h 2 a ) -(2γ -1 2 )τ θ n h -ζ n h 2 a -τ (β n h , θ n h -ζ n h ) L . Since τ (B h θ n h , θ n h -ζ n h ) L ≤ 1 2 τ 2 B h θ n h 2 L + 1 2 θ n h -ζ n h 2
L , this yields, re-arranging terms,

1 2 θ n h -ζ n h 2 L + (γ -1 2 )τ ( θ n h 2 a -ζ n h 2 a ) + (2γ -1 2 )τ θ n h -ζ n h 2 a ≤ 1 2 τ 2 B h θ n h 2 L -τ (β n h , θ n h -ζ n h ) L . ( 71 
) add.energy
The idea is now to combine (71) with (59) so as to absorb the positive term

1 2 τ 2 B h θ n h 2
L by dissipative terms on the left-hand side. To this purpose, we multiply (71) by a real number α ∈ (0, 1) and sum the resulting estimate to (59). To fix the ideas, we take α = 3 4 yielding

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 2 θ n h -ξ n h 2 L + 3 8 θ n h -ζ n h 2 L + 3 8 τ |θ n h | 2 S + 3 8 τ |ζ n h | 2 S + 1 4 ( 1 2 -γ)c a τ θ n h 2 A + 1 8 c a τ ζ n h 2 A + 3 4 (2γ -1 2 )c a τ θ n h -ζ n h 2 A + 1 40 c a τ ζ n h + θ n h 2 A ≤ 1 2 ξ n+1 h -ζ n h 2 L + 3 8 τ 2 B h θ n h 2 L -3 4 τ (β n h , θ n h -ζ n h ) L + Cτ (E n h ) 2 ,
where we have used the discrete stability [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] of A h to substitute the • a -norms by • A -norms on the left-hand side and the fact that 1 2 -γ ≥ 1 10 to simplify the term with ζ n h 2

A . Using (69) and the assumption on the Courant number yields

3 8 τ 2 B h θ n h 2 L ≤ 1 80 c a τ θ n h 2 A = 1 8 min γ∈( 1 4 , 2 5 ] 
(

1 2 -γ) c a τ θ n h 2 A ,
so that this term can be absorbed using half of the θ n h 2

A -term on the left-hand side of the above energy estimate. Finally, we bound 3 4 τ (β n h , θ n h -ζ n h ) L . We obtain using the boundedness ( 22) and ( 26) of B h and A h ,

3 4 τ |(β n h , θ n h -ζ n h ) L | τ θ n π B * (|θ n h -ζ n h | S + σ 1/2 1 θ n h -ζ n h L ) + τ ( θ n π A * + ζ n π A * ) θ n h -ζ n h A .
The first term is bounded as

τ θ n π B * (|θ n h -ζ n h | S + σ 1/2 1 θ n h -ζ n h L ) ≤ 1 4 τ (|θ n h | 2 S + |ζ n h | 2 S ) + Cτ ( θ n π 2 B * + σ 1 θ n h 2 L + σ 1 ζ n h 2 L ) ≤ 1 4 τ (|θ n h | 2 S + |ζ n h | 2 S ) + Cτ (E n h ) 2 ,
where we have used τ σ 1 ≤ 1 and the bounds (53) and (54) on θ n h L and ζ n h L . For the second term,

τ ( θ n π A * + ζ n π A * ) θ n h -ζ n h A ≤ 3 4 (γ -1 4 )τ θ n h -ζ n h 2 A + Cτ ( θ n π 2 A * + ζ n π 2 A * ).
Collecting the above estimates yields the assertion.

Our second step aims at controlling the anti-dissipative term

1 2 ξ n+1 h -ζ n h 2
L on the right-hand side of the energy estimate (70). To this purpose, it is useful to reformulate the last step (16c) of the error equation without using the discrete operator A h . We simply state the result, since the proof amounts to a direct verification.

eform Lemma 4.5 (Reformulation of last step without A h ). Let ω 1 := γ -1 ( 1 2 -γ) and ω 2 := 1 2γ 2 (-1 + 4γ -2γ 2 ). Then, ξ n+1 h -ζ n h = ω 1 (ζ n h -θ n h ) + ω 2 (θ n h -ξ n h ) -1 2 τ B h (ζ n h -θ n h ) + ω 1 τ B h θ n h -τ Ξ n h -τ Ψ n h , ( 72 
) inc_diff where Ξ n h := -1 2 B h (ζ n π -θ n π ) + ω 1 B h θ n π . ( 73 
) eq:def.Xi
In what follows, we assume γ = γ * . An important fact used hereafter is that ω 2 (γ * ) = 0, thereby zeroing out the contribution of ξ n h on the right-hand side of (72). We are now ready to bound the anti-dissipative term. Note that we tighten the assumption on the Courant number with respect to Lemma 4.4. (74) eq:Co.dif Then,

1 2 ξ n+1 h 2 L -1 2 ξ n h 2 L + 1 8 τ |θ n h | 2 S + 1 8 τ |ζ n h | 2 S + 1 80 c a τ θ n h 2 A + 1 8 c a τ ζ n h 2 A + 1 40 c a τ ζ n h + θ n h 2 A τ (E n h ) 2 . (75) energy.++
Proof. We start from the result of Lemma 4.5. Observing that ω 1 = 1 √ 2 and ω 2 = 0 for γ = γ * and setting

X n h = -1 2 B h (ζ n h -θ n h ) + 1 √ 2 B h θ n h -Ξ n h -Ψ n h ,
where Ξ n h is defined by (73), we infer

ξ n+1 h -ζ n h = 1 √ 2 (ζ n h -θ n h ) + τ X n h .
This yields for positive real number ǫ,

1 2 ξ n+1 h -ζ n h 2 L ≤ 1 2 (1 + ǫ -1 )τ 2 X n h 2 L + 1 4 (1 + ǫ) ζ n h -θ n h 2 L . Choosing ǫ = 1 2 , we infer 1 2 ξ n+1 h -ζ n h 2 L ≤ 3 2 τ 2 X n h 2 L + 3 8 ζ n h -θ n h 2 L . We now bound the term X n h 2 L . Since 1 3 (a + b + c) 2 ≤ a 2 + b 2 + c 2
for real numbers a, b, and c, we obtain using (69),

1 3 τ 2 X n h 2 L ≤ 1 4 τ 2 B h (ζ n h -θ n h ) 2 L + 1 2 τ 2 B h θ n h 2 L + τ 2 Ξ n h + Ψ n h 2 L ≤ C 2 BA (CoPe)τ ( 1 4 ζ n h -θ n h 2 A + 1 2 θ n h 2 A ) + τ 2 Ξ n h + Ψ n h 2 L .
Owing to [START_REF] Johnson | An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[END_REF] and

Co ≤ 1, τ Ξ n h L τ 1/2 E n h and recalling τ Ψ n h L τ 1/2 E n h from (66), we obtain 1 3 τ 2 X n h 2 L ≤ C 2 BA (CoPe)τ ( 1 4 ζ n h -θ n h 2 A + 1 2 θ n h 2 A ) + Cτ (E n h ) 2 .
Owing to the assumption on the Courant number,

3 3 2 1 4 C 2 BA c -1 a (CoPe) ≤ 1 160 ≤ 3 4 (γ * -1 4 ), 3 3 2 1 2 C 2 BA c -1 a (CoPe) ≤ 1 80 ≤ 1 16 ( 1 2 -γ * ).
As a result,

1 2 ξ n+1 h -ζ n h 2 L ≤ 3 4 (γ * -1 4 )c a τ ζ n h -θ n h 2 A + 1 16 ( 1 2 -γ * )c a τ θ n h 2 A + 3 8 ζ n h -θ n h 2 L + Cτ (E n h ) 2 .
Using this estimate in (70) yields the assertion since Proof. We take the L-scalar product of (72) with τ A h ξ n+1 h to infer

τ (ξ n+1 h , A h ξ n+1 h ) L = τ (T 1 + T 2 , A h ξ n+1 h ) L + τ 2 (T 3 -Ξ n h -Ψ n h , A h ξ n+1 h ) L , ( 79 
) eq:xi.A.xi
where

T 1 = (1 + ω 1 )ζ n h + (ω 2 -ω 1 )θ n h , T 2 = -ω 2 ξ n h , T 3 = -1 2 B h (ζ n h -θ n h ) + ω 1 B h θ n h .
Since γ = γ * , ω 2 = 0 so that T 2 = 0. We now bound the other terms on the right-hand side of (79). To bound the term with T 1 , we use the boundedness [START_REF] Levy | From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method[END_REF] of A h to infer

τ (T 1 , A h ξ n+1 h ) L τ ( θ n h A + ζ n h A ) ξ n+1 h A .
To bound the term with T 3 , we use the Cauchy-Schwarz inequality, (69), [START_REF] Levy | From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method[END_REF], and Co ≤ 1, yielding

τ 2 (B h θ n h , A h ξ n+1 h ) L ≤ τ 2 B h θ n h L A h ξ n+1 h L τ 2 σµ -1/2 θ n h A µ 1/2 h -1 ξ n+1 h A ≤ τ θ n h A ξ n+1 h A .
Proceeding similarly for the contribution of ζ n h , we infer

τ 2 (T 3 , A h ξ n+1 h ) L τ ( θ n h A + ζ n h A ) ξ n+1 h A .
To bound the term with Ξ n h , recalling (73), we first observe using ( 27) that

τ 2 (B h θ n π , A h ξ n+1 h ) L τ 2 B h θ n π A ξ n+1 h A τ ( θ n π A * + ( µ σh ) 1/2 |θ n π | S ) ξ n+1 h A ,
since owing to ( 27), [START_REF] Guermond | Subgrid stabilization of Galerkin approximations of linear monotone operators[END_REF], and Co ≤ 1,

τ B h θ n π A τ µ 1/2 h -1 B h θ n π L τ µ 1/2 h -1 σ ∇θ n π L d + σ 1/2 h -1/2 |θ n π | S ≤ µ 1/2 ∇θ n π L d + ( µ σh ) 1/2 |θ n π | S .
Proceeding similarly for the contribution of ζ n π , we infer

τ 2 (Ξ n h , A h ξ n+1 h ) L τ ( θ n π A * + ζ n π A * + ( µ σh ) 1/2 (|θ n π | S + |ζ n π | S )) ξ n+1 h A .
Finally, to bound the term with Ψ n h , we use the Cauchy-Schwarz inequality and ( 27) to infer

τ 2 (Ψ n h , A h ξ n+1 h ) L ≤ τ 2 Ψ n h L µ 1/2 h -1 ξ n+1 h A ≤ τ t 1/2 * Ψ n h L ξ n+1 h A ≤ τ Ẽn h ξ n+1 h A ,
owing to the assumption (77) on the time step and the fact that t 1/2 * Ψ n h L ≤ Ẽn h owing to (42a). Combining the above bounds and using the discrete stability [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] we obtain

τ c a ξ n+1 h 2 A τ θ n h A + ζ n h A + Ẽn h ξ n+1 h A ,
whence the conclusion is straightforward using the stability estimate (75).

Remark 4.4 (Restrictions on the time step). When the Péclet number is sufficiently large, the condition (74) simply reduces to Co ≤ 1. In the pure-diffusion limit, this condition, in turn, becomes trivial, and the only restriction on the time step is (77), which is needed to handle the truncation error in Lemma 4.7. Note also that the conditions Co ≤ 1 and (77) can be regrouped into the condition τ ≤ t 

1 2 ξ n+1 h -ζ n h 2 L ≤ 1 2 (1 + ǫ -1 )τ 2 X n h 2 L + 1 2 (1 + ǫ) ω 1 (ζ n h -θ n h ) + ω 2 (θ n h -ξ n h ) 2 L ≤ 1 2 (1 + ǫ -1 )τ 2 X n h 2 L + 1 2 (1 + ǫ)(1 + ǫ)ω 2 1 ζ n h -θ n h 2 L + 1 2 (1 + ǫ)(1 + ǫ-1 )ω 2 2 θ n h -ξ n h 2 L . For γ ∈ [ 1 4 , 1 2 ]
, ω 1 is a decreasing function of γ taking values in [0, 1], while ω 2 is an increasing function of γ taking values in [-1, 1] with ω 2 (γ * ) = 0. The proof of Lemma 4.6 can be extended as long as there is ǫ > 0 such that 1 2 (1 + ǫ)ω 2 1 ≤ 3 8 and 1 2 (1 + ǫ-1 )ω 2 2 ≤ 1 2 exploiting the presence of the term

1 2 θ n h -ζ n h 2
L on the left-hand side of (70). A direct verification shows that this is possible as long as γ ∈ (γ * * , 1 2 ) with γ * * = (2 + 8/3) -1 ≃ 0.275 (corresponding to ω 1 = 2/3 and ω 2 = -1/3). We observe that the above numerical values depend on the choice α = 3 4 made in the proof of Lemma 4.4. Taking a larger value for α < 1 yields a more stringent bound on the Courant number in Lemma 4.4 but more flexibility in the choice of γ. Finally, the result of Lemma 4.7 is slightly modified since bounding the term ω 2 τ (ξ n h , A h ξ n+1 h ) L by Young's inequality leads to an additional term on the right-hand of (78) of the form 1 80 λc a τ ξ n h 2

A where λ can be chosen < 1 provided γ is sufficiently close to γ * so that ω 2 is sufficiently small. Details are skipped for brevity.

We can now derive our main convergence result in the diffusion-dominated regime.

f.dom Theorem 4.3 (Convergence in • A -norm). With the basic assumptions stated in Section 2.1, assume Pe ≤ 1, take γ = γ * , and assume the bound (74) on the Courant number together with the bound (77) on the time step. Then,

τ N n=1 u n -u n h 2 A 1/2 Ctim t 1/2 * τ + Cspc µ 1/2 h, ( 80 
) eq:err.est.di where C2 tim = N -1 n=0 τ ( Cn Ψ ) 2 and C2 spc = N -1 n=0 τ (( Kn 2 ) 2 + (τ /µ)(K n w-u ) 2 ).
Proof. Using the stability result of Lemma 4.7, we sum over n, discard the |•| S -terms on the left-hand side, and use a discrete Gronwall lemma to eliminate the contribution of ξ n h 2

L in Ẽn h . This yields The graph of u 0 corresponds to a cylinder centered at x = (0.3, 0.3) T . The width of the inner layer is 10 -4 . The mesh is built using M = 512 so that it does not resolve this inner layer. The final time is t F = 2π corresponding to one full rotation of the initial datum. Figure 1 displays the initial datum, the approximate solution without stabilization (S cip = 0), and the solution with stabilization (S cip = 0.005). The unstabilized solution exhibits global spurious oscillations, while the improved quality of the stabilized solution is clearly visible.

τ N n=1 ξ n h 2 A N -1 n=0 τ ( θ n π 2 B * + ζ n π 2 B * + θ n π 2 A * + ζ n π 2 A * + Pe -1 (|θ n π | 2 S + |ζ n π | 2 S ) + t * ( Cn Ψ ) 2 τ 2 ). mooth m µ = 0.1 µ = 10 -4 L ∞ t (L 2 ) L 2 t (H 1 ) L ∞ t (L 2 ) 0 2.8e-3 5 

Extensions c:ext

For simplicity, the above analysis was presented in the case where space discretization was performed using continuous, piecewise affine finite elements with CIP. Other finite element methods with symmetric stabilization can be used. This requires establishing discrete stability and boundedness for the discrete operators B h and A h . For consistent methods, the stability and convergence analysis of §4 can then be readily applied, while minor adaptations are needed in the case of nonconsistent methods to formulate the truncation errors.

To illustrate, we briefly consider a DG method for space discretization using upwinding for the advective part and symmetric interior penalty for the diffusive part. Let V d h denote the space spanned by (discontinuous) piecewise affine functions on the mesh T h . For a smooth enough function v that is possibly double-valued at F ∈ F int h with F = ∂T -∩ ∂T + , we define, in addition to its jump, its mean value as { {v} } := 1 2 (v| T -+ v| T + ). On boundary faces, the jump and mean value refer to the actual value of v on F . The discrete operators B h and A h are now such that

(B h z, w h ) L := (β•∇ h z, w h ) L - F ∈F int h ((ν F •β)[[z]], { {w h } }) L,F + F ∈F int h S upw (|ν F •β|[[z]], [[w h ]]) L,F , (A h z, w h ) L = µ(∇ h z, ∇ h w h ) L d - F ∈F h µ(ν F •{ {∇ h z} }, [[w h ]]) L,F - F ∈F h µ([[z]], ν F •{ {∇ h w h } }) L,F + F ∈F h S ip µh -1 F ([[z]], [[w h ]]) L,F ,
where ∇ h denotes the broken (elementwise) gradient operator, while S upw = 1 2 for classical upwinding, and S ip is taken large enough. Then, letting

|z| 2 S := F ∈F int h 1 2 |ν F •β| 1/2 [[z]] 2 L,F , z 2 A := µ ∇z 2 L d + F ∈F h µh -1 F [[z]] 2 L,F ,
it is readily verified that the discrete stability properties stated in §2.6 hold true. Moreover, letting

z B * := |z| S + σ 1/2 h -1/2 z L + T ∈T h F ⊂∂T σ z 2 L,F 1/2 , z A * := z A + T ∈T h F ⊂∂T µh F ν F •∇z 2 L,F 1/2 
, it is readily verified that the boundedness properties stated in §2.6 hold true. Finally, it is also possible to consider higher-order continuous or discontinuous finite elements with symmetric stabilization. To achieve stability, the sole modification in the above analysis concerns the advection-dominated regime, since the discrete inverse inequality (61) can no longer be used. It is then necessary to modify the proof of Lemma 4.3 when bounding

1 2 ξ n+1 h -ζ n h 2 
L . In particular, following [START_REF] Burman | Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems[END_REF] (details are skipped for brevity), the term 1 2 τ B h η n h on the right-hand side of (64) is controlled by the so-called 4/3-CFL condition τ t -1/3 * (h/σ) 4/3 . Deriving convergence rates is a more delicate question not covered herein; it entails, in particular, obtaining bounds for higher-order Sobolev norms of the auxiliary functions v n and w n . The proof, which proceeds along that of Lemma 4.7, is only sketched. There are essentially two differences. Firstly, the term T 2 in this proof needs to be bounded since we do not assume here that γ = γ * . To this purpose, we use (16a) and the definition of α n h to obtain

τ (ξ n h , A h ξ n+1 h ) L = τ (θ n h , A h ξ n+1 h ) L + γτ 2 (A h θ n h , A h ξ n+1 h ) L -γτ 2 (A h θ n π , A h ξ n+1 h ) L .
The first term on the right-hand side is treated as the term T 1 in the proof of Lemma 4.7. For the second term, the Cauchy-Schwarz inequality and (60) yield

τ 2 (A h θ n h , A h ξ n+1 h ) L ≤ τ 2 A h θ n h L A h ξ n+1 h L (Co/Pe)τ θ n h A ξ n+1 h A ≤ τ θ n h A ξ n+1 h A ,
since Co ≤ 1 and Pe ≥ 1. Finally, for the third term, the Cauchy-Schwarz inequality, (60), and (26) lead to

τ 2 (A h θ n π , A h ξ n+1 h ) L ≤ τ 2 A h θ n π L A h ξ n+1 h L τ θ n π A * ξ n+1 h A ,
since τ 1/2 µ 1/2 h -1 = (Co/Pe) 1/2 ≤ 1. Collecting these estimates, we infer

τ (T 2 , A h ξ n+1 h ) L τ ( θ n h A + θ n π A * ) ξ n+1 h A .
Secondly, when dealing with the truncation error in time, we exploit the fact that Pe ≥ 1 to derive a sharper bound than in the proof of Lemma 4.7, namely

τ 2 (Ψ n h , A h ξ n+1 h ) L ≤ τ 2 Ψ n h L µ 1/2 h -1 ξ n+1 h A ≤ (Co/Pe) 1/2 τ 3/2 Ψ n L ξ n+1 h A τ E n h ξ n+1 h A ,
where we have used (66). As a result, an estimate similar to (78) is inferred, but with a quantity Ên h on the right-hand side which is defined as (76) except that t For brevity, we only sketch the proof. We introduce the discrete Riesz projection of u n and of the auxiliary functions v n and w n . Specifically, r h u n ∈ V h is defined such that A h r h u n := A h u n and similarly for r h v n and r h w n . Then, redefining the quantities ξ n h := u n h -r h u n , ξ n π := u n -r h u n and similarly for θ n h , θ n π , ζ n h , and ζ n π , the error equation takes again the form [START_REF] Crouzeix | Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques[END_REF] with the new source terms

α n h = τ -1 π h (I -r h )(v n -u n ), β n h = τ -1 π h (I -r h )(w n -v n ) -B h (I -r h )v n , δ n h = τ -1 π h (I -r h )(u n+1 -1 2 (v n + w n )) -1 2 B h (I -r h )w n .
Then, the basic energy identity of Lemma 4.1 is not modified. Instead, the basic energy estimate of Theorem 4.1 requires bounding the new source terms. Using the Cauchy-Schwarz inequality, the Poincaré inequality, the approximation properties of the Riesz projector r h , the bound (32) on ∆(v n -u n ) L , and elliptic regularity, we obtain

τ (α n h , θ n h ) L ≤ µ -1/2 C P (I -r h )(v n -u n ) L θ n h A µ -1/2 C P h 2 |v n -u n | H 2 θ n h A µ -1/2 C P h 2 τ K n 2 θ n h A .
Hence, by Young's inequality,

τ (α n h , θ n h ) L ≤ Cτ (µ -1/2 C P h 2 K n 2 ) 2 + λτ θ n h 2 A ,
where λ can be chosen as small as needed. To bound τ (β n h , θ n h ) L , we write w n -v n = (w n -u n ) -(v n -u n ), and estimate the contribution of (v n -u n ) as for α n h . To bound the contribution of (w n -u n ), we observe that

(I -r h )(w n -u n ) L h 2 |w n -u n | H 2 h 2 ∆(w n -u n ) L .
We use a different bound on ∆(w n -u n ) L than (34), whereby we exploit that the advection field β has bounded second-order derivatives. Letting v denote the right-hand side of (36) and observing that v ∈ V , (31) yields ∆(w n -u n ) L ∆v L . Using the bounds (33) on v n and the bound (32) on ∇∆(v n -u n ) L d , we infer ∆(Bv n ) L σ Kn w-u with Kn w-u = |u n | H 3 + (τ /µ) Remark 7.1 (Optimality in h). We observe that the error term defined by (82) exhibits second-order convergence as h → 0 owing to the presence of the Pe 1/2 factor in the last term. This is no longer the case for the error term Ēn h , where the loss of the Pe 1/2 factor is caused by the contribution of B h when bounding the anti-dissipative term. Optimality is recovered for vanishing advection.

  L d ∇y n L d and (µτ ) 1/2 ∆x n L ∇y n L d . Using the bounds (32) on (v n -u n ) yields ∇y n L d C n

Theorem 4 . 2 (

 42 Convergence in L-norm). With the basic assumptions stated in Section 2.1, assume Pe ≥ 1, take γ ∈ [ 1 5 , 2 5 ], and assume the bound (62) on the Courant number. Then,

2 2 C tim τ 3 / 2 + C spc σ 1 /2 h 3/ 2 . 4 . 4 . 2 Lξ n+1 h -ζ n h 2 L

 2232124422 and we conclude using the triangle inequality. The convergence result of Theorem 4.2 can be completed by showing additionally convergence in the • Anorm. The proof is postponed to §7.1. v.dom Proposition 4.1 (Convergence in • A -norm). Under the assumptions of Theorem 4.2, there holds τ Stability and convergence: diffusion-dominated regime b.difIn this regime, we assume Pe ≤ 1. We derive three intermediate stability results. First (Lemma 4.4), we tighten the basic energy estimate (59) by achieving additional control on the increment θ n h -ζ n h . Then (Lemma 4.6), we bound the anti-dissipative term1 2 . Finally (Lemma 4.7), we achieve additional control on τ ξ n+1 h 2

Lemma 4 . 6 .

 46 Assume γ = γ * and Co ≤ min(1, 1 180 c a C -2 BA Pe -1).

Figure 1 .

 1 Figure 1. Initial data (left) and solution at final time without (middle) and with (right) stabilization
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 7271 Proofs of Propositions 4.1 and 4.This sections collects the proofs of Propositions 4.1 and 4.2. Proof of Proposition 4.1 s.adv

  ) eq:bnd.zeta.p Proof. The bound (44a) readily results from (43) and the bound (33) on |v n | H 2 . To bound ζ n π A * , we use again (43) together with (35) yielding ζ

  51) eq:def.Ehn , the space and time approximation errors. The contribution of the truncation error is already bounded in terms of the time step and the constant C n Ψ defined by (41a); instead, we do not yet bound the space approximation errors to keep track of these quantities in the proofs below.

	which collects, in addition to t	-1/2 *	ξ n h L

ource Lemma 4.2 (Bound on the source terms). Assume γ ∈ [ 1 5 , 2 5 ] and Co ≤ 1. Then,

  The definition of Ẽnh entails two modifications with respect to E n h . Firstly, the term Pe -1/2 (|θ n π | S + |ζ n π | S ) has been added; this change will not modify the convergence rate in space with respect to the • A * -and • B *norms of θ n π and ζ n π . Secondly, and more importantly, the time error is now of lower-order since the term C n Ψ τ 3/2 has been replaced by t Assume γ = γ * and the bound (74) on the Courant number. Assume the additional hyperbolic-type restriction on the time step, τ ≤ t

		We can now proceed to our third and final step in the stability analysis. Our goal is to infer a control on
		τ ξ n+1 h E n h by	2 A from the control on τ θ n h	2 A and τ ζ n h	2 A achieved in (75). This will require replacing the quantity
			Ẽn h := t	-1/2 *	ξ n h L + θ n π B * + θ n π A * + ζ n π B * + ζ n π A * + Pe -1/2 (|θ n π | S + |ζ n π | S ) + t	1/2 *	Cn Ψ τ.	(76) eq:tilde.E
					1/2 *	Cn Ψ τ .
	y.+++	Lemma 4.7. 1/2 * µ -1/2 h. Then,	(77) eq:CFL.mu
					1 2 ξ n+1 h	2 L -1 2 ξ n h	2 L + 1 8 τ |θ n h | 2 S + 1 8 τ |ζ n h | 2 S + 1 80 c a τ ξ n+1 h	2 A	τ ( Ẽn h ) 2 .	(78) energy.+++
							1 16 ( 1 2 -γ * ) ≥ 1 80 .

  The parameter γ can slightly deviate from the value γ * , but this leads to a more stringent bound on the Courant number than (74). Using (72), for positive real numbers ǫ and ǫ, we obtain

	1/2 *	μ-1/2 h with μ defined in §2.1.

gamma Remark 4.5 (Choice of γ).

Table 1 .

 1 Convergence for smooth solution

			.7e-2	-
	1	9.5e-4	2.7e-2	4.6e-2
	2	2.2e-4	1.0e-2	1.0e-2
	3	5.3e-5	5.5e-3	1.4e-3
	4	-	-	2.1e-4

  CnΨ τ is replaced by the sharper estimate C n Ψ τ 3/2 . The conclusion is straightforward using, in particular, thatPe -1/2 (|θ n π | S + |ζ n π | S ) µ 1/2 h(|v n | H 2 + |w n | H 2 ) µ 1/2 h Kn 2 + τ 1/2 hK n w-u ≤ σ 1/2 h 3/2 ( Kn 2 + σ -1 K n w-u ),since Pe ≥ 1 and Co ≤ 1.

	1/2 *

7.2. Proof of Proposition 4.2 s.dif

  1/2 K n 2 + σ -1 (σ 1 Kn 2 + σ 2 Kn 1 ). Hence, ∆(w n -u n ) L τ (K n 2 + σ Kn w-u ), so that (I -r h )(w n -u n ) L τ h 2 (K n 2 + σ Kn w-u ). Finally, for the last term in β n h , we obtain by integrating by parts the advective derivative that(B h (I -r h )v n , θ n h ) L h 2 |v n | H 2 σµ -1/2 θ n h A σµ -1/2 h 2 Kn 2 θ n h A , since |v n | H 2 Kn 2 .Collecting these bounds and introducing the Péclet number yieldsτ (β n h , θ n h ) L ≤ Cτ (µ -1/2 h 2 C P K n 2 + Pe 1/2 σ 1/2 h 3/2 (C P Kn w-u + Kn 2 )) 2 + λτ θ n h 2 A ,where λ can be chosen as small as needed. The bound on τ (δ n h , ζ n h ) L is obtained using similar arguments, in particular thatu n+1 -1 2 (v n +w n ) = (u n+1 -u n )-( 1 2 (v n +w n )-u n ), (I -r h )(u n+1 -u n ) L τ h 2 ∂ t u C(In;H 2 ) , and that |w n | H 2 Kn 2 +(τ /µ)1/2 K n w-u owing to (35). Therefore, we recover the stability estimates (59) and (70) with E n h = µ -1/2 h 2 C P (K n 2 + ∂ t u C(In;H 2 ) ) + Pe 1/2 σ 1/2 h 3/2 Kn w-u , (82) eq:E.L.Pe with Kn w-u = C P Kn w-u + Kn 2 + (τ /µ) 1/2 K n w-u . The next step is the result of Lemma 4.5 where the identity (72) holds true with Ξn h = ω 2 α n h + (ω 1 + 1 2 )β n h -δ n h .Then, proceeding as in Lemma 4.6, we need to control τ Ξ n h L . We observe thatτ B h (I -r h )v n L + τ B h (I -r h )w n L τ σh(|v n | H 2 + |w n | H 2 ) τ 1/2 σ 1/2 h 3/2 ( Kn 2 + (τ /µ) 1/2 K n w-u ).Defining Ên h as E n h in (82) by dropping the Pe 1/2 factor in the last term, that is,Ên h = µ -1/2 h 2 C P (K n 2 + ∂ t u C(In;H 2 ) ) + σ 1/2h 3/2 Kn w-u , Ên h . Finally, accounting for the truncation error in time, we recover the stability estimate (75) with the right-hand side Ēn h := µ -1/2 h 2 C P (K n 2 + ∂ t u C(In;H 2 ) ) + σ 1/2 h 3/2 Kn w-u + C n Ψ τ 3/2 , whence the conclusion is straightforward.

	we eventually infer τ Ξ n h L	τ 1/2

≃ 0.293 is considered in[START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[END_REF]. Herein, we apply and analyze, for the first time, this scheme in the context of advection-diffusion equations. Space discretization is performed using continuous, piecewise affine finite elements with CIP as a specific example of symmetric stabilization; DG methods can be used as well, as discussed at the end of the manuscript. We treat the advection and stabilization operators explicitly and the diffusion operator implicitly.Our main results are stability and error estimates for smooth solutions in all flow regimes. These results are formulated in terms of the Courant and Péclet numbers defined as

To bound the terms with θ n π and ζ n π , we use the result of Lemma 3.7 for the 

The conclusion is straightforward using

It is possible to derive an L-norm error estimate with higher convergence rates than (80). The proof is postponed to §7.2.

f.dom Proposition 4.2 (Convergence in L-norm). Assume that β has bounded second-order derivatives with associated bound denoted by σ 2 . Then, under the assumptions of Theorem 4.3, there holds

where C tim is defined in Theorem 4.2, ( Ĉspc 

Numerical examples c:num

We consider two numerical experiments using FreeFem++ [START_REF] Hecht | FreeFem++, Third Edition, Version 3.0-1. User's Manual[END_REF] to illustrate the above analysis, namely convergence to a known smooth solution and control of spurious oscillations for a solution with sharp layers. For all flow regimes, we used the values S cip = 0.005 and S bc = 10 for the penalty parameters and γ = 1 -1 √ 2 .

Convergence to smooth solutions

Let Ω = {r 2 := x 2 + y 2 < 2} and consider the rotating velocity field β = (y, -x) T so that σ = 2. Letting x = (x, y) T , the exact solution is chosen to be the advected heat kernel in the form

where the length scale ℓ 0 = 0.1 determines the spread of the initial Gaussian. We consider two settings, first µ = 0.1 and t F = π/4 and then µ = 10 -4 and t F = 2π. In both cases, the decay of the exact solution away from r(t) is sufficiently fast to enforce homogeneous Dirichlet conditions on ∂Ω. We discretize the boundary ∂Ω with M elements from which a quasi-uniform triangulation of Ω is constructed, yielding a mesh size h = 4π/M . We take M = 2 6+m with m ∈ {0, 1, 2, 3, 4}. For µ = 0.1, the Péclet number decays from 4 to 0.25 corresponding to a diffusion-dominated regime, while for µ = 10 -4 , the Péclet number is 10 3 times larger, corresponding to an advection-dominated regime. In both regimes, the time step is selected by setting the Courant number to Co = 1 2 . Results are reported in Table 5.1. For µ = 0.1, the result on the finest mesh is omitted since the mesh is sufficiently fine, and the diffusion coefficient sufficiently large, to detect the influence of using homogeneous Dirichlet boundary conditions; for µ = 10 -4 , the result on the coarsest mesh is omitted since the mesh is too coarse to resolve the initial datum. In all cases, the convergence rates match, or are slightly better than, those predicted by the theory.

Solutions with sharp layers

The purpose of this test case is to illustrate numerically that in the advection-dominated regime, spurious oscillations resulting from insufficient mesh resolution of sharp layers do not spread over the whole domain, but